首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotypic variation to zinc (Zn) deficiency in barley indicates that selection for Zn efficiency is possible. Sahara (Zn-efficient) and Clipper (Zn-inefficient) were evaluated at different Zn nutrition in soil and chelator-buffered nutrient. Zinc deficiency symptoms appeared first in Clipper and later in Sahara. At 0.8 mg Zn/kg soil, shoot and root Zn concentration and content were higher in Sahara than Clipper. The root:shoot dry matter ratio of genotypes increased as Zn application decreased. The 4th and 5th leaf elongation were depressed greater in Clipper than Sahara by Zn deficiency. The genotypes responses to Zn in solution and soil were consistent in all parameters except root growth. In contrast to soil, root drymatter was greater in Clipper than Sahara in solution under Zn deficiency. Shoot Zn concentration and content can be used in assessment of barley genotypes, and may be useful criteria in screening large genotypes aimed at developing molecular markers for Zn efficiency.  相似文献   

2.
A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs and Tede) at different soil Zn levels (0, 2, 4, 8, and 16 mmol kg-1 soil). Results indicated that plant growth of the two cultivars was not adversely affected at soil Zn level≤8 mmol kg-1. Plants accumulated more Zn as soil Zn levels increased, and Zn concentrations of shoots were about 540 /μg g-1 in Aris and 583.9μg g-1 in Tede in response to 16 mmol Zn kg-1 soil. Zn ratios of shoots to roots across the soil Zn levels were higher in Tede than in Airs, corresponding with higher rhizosphere available Zn fractions (exchangeable, bound to manganese oxides, and bound to organic matter) in Airs than in Tede. Low-molecular-weight (LMW) organic acids (oxalic, tartaric, malic, and succinic acids) and amino acids (proline, threonine, glutamic acid, and aspartic acid, etc.) were detected in root exudates, and the concentrations of LMW organic acids and amino acids increased with addition of 4 mmol Zn kg-1 soil compared with zero Zn addition. Higher rhizosphere concentrations of oxalic acid, glutamic acid, alanine, phenylalanine, leucine, and proline in Tede than in Airs likely resulted in increased Zn uptake from the soil by Tede than by Airs. The results suggested that genotypic differences in Zn accumulations were mainly because of different root exudates and rhizosphere Zn fractions.  相似文献   

3.
The zinc (Zn) requirement of a maize (Zea mays L.) hybrid (‘FHY-396’) and an indigenous variety (‘EV-7004’) was measured at low (22.4 ± 5°C) and high (28.8 ± 5°C) root-zone temperatures (RZT). Four Zn rates (0, 3, 9 and 27 mg kg?1 soil) were applied to a calcareous loam soil in pots for the glasshouse study. Shoot and root dry matter yields were significantly more at the higher RZT. Regardless the RZT, maximum relative shoot dry matter yield in hybrid and variety was produced, respectively, at 9 and 3 mg Zn kg?1 soil. Zinc concentration in roots and shoots of both the cultivars increased with Zn rates and it was significantly more at the higher RZT. Cultivars differed in critical Zn concentration (CZnC) required for maximum shoot dry matter yield. The CZnC ranged from 25 to 39 μg Zn g?1 plant tissue for optimum growth of both the cultivars at low and high RZT.  相似文献   

4.
Exudation of organic acids by the roots of three rice cultivars grown in three soils of different phosphorus (P) statuses, and their impacts on the rhizospheric P dynamics and P uptake by the rice plants, were investigated. Quantum root exudates from all the rice cultivars were significantly greater at 21 days after transplantation than at panicle initiation or flowering stages. Malic acid was the most predominant organic acid present in the rice root exudates (10.3 to 89.5 μmol plant?1 d?1), followed by tartaric, citric, and acetic acids. Greater exudation of organic acids from rice grown in P-deficient soil by all the rice cultivars suggested response of rice plant to P stress. Results indicate that the release of organic acids in the root exudates of rice plants can extract P from strongly adsorbed soil P fraction, thereby increasing native soil P utilization efficiency and ensuring adequate P nutrition for the growing rice plants.  相似文献   

5.
The effects of calcium and humic acid on seed germination, growth and macro- and micro-nutrient contents of tomato (Lycopersicon esculentum L.) seedlings in saline soil conditions were evaluated. Different levels of humic acid (0, 500, 1000 and 2000 mg kg?1) and calcium (0, 100, 200 and 400 mg kg?1) were applied to growth media treated with 50 mg NaCl kg?1 before sowing seeds. Seed germination, hypocotyl length, cotyledon width and length, root size, shoot length, leaf number, shoot and root fresh weights, and shoot and root dry weights of the plant seedlings were determined. Macro- and micro-nutrient (N, P, K, Ca, Mg, S, Cu, Fe, Mn and Zn) contents of shoot and root of seedlings were also measured. Humic acid applied to the plant growth medium at 1000 mg kg?1 concentration increased seedling growth and nutrient contents of plants. Humic acid not only increased macro-nutrient contents, but also enhanced micro-nutrient contents of plant organs. However, high levels of humic acid arrested plant growth or decreased nutrient contents. Levels of 100 and 200 mg kg?1 Ca2+ application significantly increased N, Ca and S contents of shoot, and N and K contents of root.  相似文献   

6.
ABSTRACT

Zinc (Zn) deficiency is a global nutritional problem in crops grown in calcareous soils. However, plant analysis criteria, a good tool for interpreting crop Zn requirement, is scarcely reported in literature for onion (Allium cepa L.). In a greenhouse experiment, Zn requirement, critical concentrations in diagnostic parts and genotypic variation were assessed using four onion cultivars (‘Swat-1’, ‘Phulkara,’ ‘Sariab Red,’ and ‘Chilton-89’) grown in a Zn-deficient (AB-DTPA extractable, 0.44 Zn mg kg?1), calcareous soil of Gujranwala series (Typic Hapludalf). Five rates of Zn, ranging from 0 to 16 mg Zn kg?1 soil, were applied as zinc sulphate (ZnSO4·7H2O) along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and boron (B). Four onion seedlings were transplanted in each pot. Whole shoots of two plants and recently matured leaves of other two plants were sampled. Zinc application significantly increased dry bulb yield and maximum yield was produced with 8 mg Zn kg?1. Application of higher rates did not improve yield further. The cultivars differed significantly in Zn efficiency and cv. ‘Swat-1’ was most Zn-efficient. Fertilizer requirement for near-maximum dry bulb yield was 2.5 mg Zn kg?1. Plant tissue critical Zn concentrations were 30 mg kg?1 in young whole shoots, 25 mg kg?1 in matured leaves, 16 mg kg?1 in tops and 14 mg Zn kg?1 in bulb. Zinc content in mature bulb also appeared to be a good indicator of soil Zn availability status.  相似文献   

7.
A greenhouse experiment with 11 soil series and two zinc (Zn) rates (0 and 15 mg Zn kg?1 as zinc sulfate) was performed to determine critical deficiency level of Zn for corn (Zea mays L.) on calcareous salt-affected soils in central Iran. In addition, the most important soil properties affecting Zn phytoavailability were determined. Critical Zn deficiency levels were determined using the Cate-Nelson and Mitscherlich procedures. In most soils, application of Zn increased the dry matter yield, and Zn concentration and content in the shoot and root of corn. A positive correlation was observed between the soil electrical conductivity (EC) with Zn concentration in shoots, roots and whole plant while shoot Zn content was negatively correlated with buffer capacity of Zn in soil. Critical deficiency levels of Zn in soil for corn based on the Cate-Nelson and Mitscherlich method were 1.35 and 1.23 mg kg?1 for diethylenetriaminepentaacetic acid (DTPA)-extracted soil Zn, respectively.  相似文献   

8.
Rate of zinc (Zn) release from solid to solution phase by organic acids can influence Zn availability in calcareous soils. The objective of the present study was to investigate the effect of different concentrations (1.1, 2.2, and 3.3 mM) of oxalic acid and citric acid on the kinetic release of Zn from two calcareous soils from Eastern Iran. The two organic acids showed significant difference in Zn release from studied soils. Cumulative Zn release during 72 h ranged from 5.85 to 10.4 mg kg?1 in soil 1 and ranged from 8.7 to 16.9 mg kg?1 in soil 2 using different concentrations of oxalic acid. The amount of cumulative Zn release after 72 h in soil 1 ranged from 13.65 to 28.77 mg kg?1 and from 17.63 to 23.13 mg kg?1 when different concentrations of citric acid was used. In general, Citric acid released 38% more Zn from soils than oxalic acid. The release of Zn from soils increased with citric acid concentration but decreased with increasing of oxalic acid concentrations in the solution. The simplified Elovich equation best described Zn release as a function of time (r2 = 0.93 and SE = 0.78). From the present study, Zn release from soils can be limited by the higher concentration of oxalic acid, while citric acid is suitable for enhancing soil lability of Zn.  相似文献   

9.
由于北方石灰性土壤锌有效性低,作物锌含量无法满足人体营养需求.前期研究发现种植绿肥可提高后茬小麦锌含量且后者与自身吸锌量正相关,但机制尚不明确.通过田间试验测定绿肥(黑麦豆、绿豆、高丹草)地上部锌含量,水培试验收集分析绿肥根系分泌物组成,土壤浸提试验测定根系分泌有机酸对土壤pH值及土壤锌的影响,从而揭示绿肥吸锌能力及其...  相似文献   

10.
Increased phosphorus (P) efficiency is needed to sustain agriculture productivity on soils with low available P. Significant differences were found among Brassica cultivars for growth, P utilization, and remobilization under P deficiency (see our companion paper, Aziz et al., 2011a). To identify the possible mechanisms of P acquisition from low soluble P compounds, four cultivars (‘Rainbow’, ‘CON-1’, ‘Dunkeld’, and ‘Peela Raya’) were selected to ascertain the relationship of their differential P acquisition and growth with their root length in soil and with organic acid release pattern in solution culture experiments. For this purpose their growth and P acquisition from phosphate rock (PR) was compared with calcium di-hydrogen phosphate (Ca-P) when adding uniform dose of 100 mg P kg?1 soil separately from the two sources. Biomass accumulation, root length, root fineness, plant P uptake and ash alkalinity was significantly (P < 0.01) different in plants of all the four cultivars when supplied with PR or Ca-P in soil. Minimum biomass produced by ‘Peela Raya’ grown with either P source was followed by ‘CON-1’, ‘Dunkeld’, and ‘Rainbow’ in ascending order. Shoot dry matter production had a significant positive correlation with root dry matter production (r = 0.85, P < 0.01), root length (r = 0.59, P < 0.05) and root P uptake (r = 0.95, P < 0.01). Cultivars varied significantly for organic acid secretion in solution culture experiment. Higher quantities of secreted citric acid, malic acid and tartaric acid in solution culture experiment were measured for ‘Rainbow’ and ‘Dunkeld’ cultivars. Efficient performance of these two cultivars for growth and P uptake was associated with their longer roots and more secretion of organic acids especially citric acid.  相似文献   

11.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

12.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

13.
Our study analyzed the effect of foliar tissues and seed tissue for determining the micronutrient status of a crop. Zinc (Zn) requirements of onion (Allium cepa L.) leaves and seeds were estimated from yield response curves based on field experiment conducted on a Zn-deficient calcareous soil. Three onion cultivars, i.e., ‘Swat-1’, ‘Phulkara’, and ‘Sariab Red’ were grown by applying 0, 2, 4, 8, and 16 kg Zn ha?1. Zinc application significantly increased seed yield of all the three cultivars of onion. The order of seed yield response to Zn fertilization was: ‘Swat-1’ < ‘Phulkara’ < ‘Sariab Red’. Fertilizer Zn requirement for near-maximum seed yield was 2 kg Zn ha?1. Zinc concentration in mature onion seed also appeared to be a good indicator of soil Zn availability status. Critical Zn concentration in seed was 18 mg Zn kg?1, and in matured leaves was 21 mg kg?1.  相似文献   

14.
The ability of buckwheat (Fagopyrum esculentum) roots to acquire phosphorus (P) was characterized by investigating P uptake, morphological features, and chemical changes in the rhizosphere. Over a range of nutrient solution P concentrations (5–500 μmol · L?1), maximum shoot growth was achieved with a P supply between 5 and 100 μmol · L?1. Root weight and root length, as well as length and frequency of root hairs, were higher at low P levels. Root surface and the root surface/shoot dry weight ratio reached high values. Though P uptake rates were only moderate (0.15 pmol · cm?1 root · sec?1), shoot P concentrations were high (1.8% of dry weight with 100 μM P) predominantly being inorganic (80%). Phosphorus efficiency was characterized by a high specific absorption rate (810 mmol P · kg?1 root dry wt · d?1) rather than by an efficient utilization for dry weight production. Root exudates of low-P plants had lower pH values than exudates of high-P plants and increased the solubility of FePO4 and MnO2 to a greater extent. Amounts of exuded organic acids and phenolics were low and could not account for the observed solubilization of FePO4 and MnO2. Enhanced hydrolysis of glucose-6-phosphate by exudates from low-P plants was due to an increased “soluble” acid phosphatase activity, and root surface phosphatase activity was also slightly enhanced with P deficiency. In the rhizosphere soil of buckwheat, some depletion of organic P forms was observed, and in pot trials with quartz sand, buckwheat utilized glucose- 6-phosphate as a P source at the same rate as inorganic P.  相似文献   

15.
ABSTRACT

A greenhouse experiment with four bread wheat [Triticum aestivum L.] genotypes, ‘Rushan,’ ‘Kavir,’ ‘Cross,’ and ‘Falat,’ and a durum wheat [Triticum durum L.] genotype, ‘Dur-3,’ at two zinc (Zn) rates (0 and 15 mg Zn kg?1 dry soil) and four salinity levels (0, 60, 120, and 180 mM NaCl) was conducted. After 45 d of growth, the shoots were harvested, and Zn, iron (Fe), potassium (K), sodium (Na), and cadmium (Cd) concentrations were determined. In the absence of added Zn, visual Zn deficiency symptoms were observed to be more severe in ‘Dur-3’ and ‘Kavir’ than in other genotypes. The effect of Zn deficiency on shoot dry matter was similar to its effect on visual deficiency symptoms, such that shoot growth was most depressed in ‘Kavir’ and ‘Dur-3.’ At the 180 mM treatment, Zn fertilization had no effect on shoot dry matter of genotypes. Genotypes with high Zn efficiency had greater shoot Zn content than genotypes with low Zn efficiency. In the absence of added Zn, the Dur-3, and ‘Cross’ genotypes had the highest and lowest Cd concentrations, respectively. Application of Zn had a positive effect on salt tolerance of plants.  相似文献   

16.
To study the effect of nitrogen and salinity on growth and chemical composition of pistachio seedlings (cv. ‘Badami’), a greenhouse experiment was conducted. Treatments consisted of four salinity levels [0, 800, 1600, and 2400 mg sodium chloride (NaCl) kg?1 soil], and four nitrogen (N) levels (0, 60, 120, and 180 mg kg?1 soil as urea). Treatments were arranged in a factorial manner in a completely randomized design with three replications. The highest level of nitrogen and salinity decreased leaf and root dry weights. Nitrogen application significantly increased the concentration of shoot N and salinity suppressed shoot N concentration. Salinity and nitrogen fertilization increased shoot and root sodium (Na), calcium (Ca), and magnesium (Mg) concentrations. Nitrogen application increased proline concentration and reducing sugar content. Although salinity levels increased proline concentration a specific trend on reducing sugars content was not observed.  相似文献   

17.
We compared acetic, ascorbic, and oxalic acids with ethylenediaminetetraacetic acid (EDTA) to enhance phytoextraction of nickel (Ni), manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) by maize. Except ascorbic acid, acids significantly (P < 0.05) decreased shoot dry weight with maximum (5.60 g pot?1) recorded with ascorbic acid and minimum with oxalic acid (4.06 g pot?1). Maximum ammonium bicarbonate–diethylenetriaminepenta acetic acid (AB-DTPA)–extractable nickel (19.94 mg kg?1) was recorded with EDTA and it was minimum (10.57 mg kg?1) with oxalic acid. The EDTA significantly (P < 0.05) increased AB-DTPA-extractable lead while other acids decreased it. Except acetic acid, other acids significantly (P < 0.05) increased Ni and Zn concentration in shoots with maximum Ni (9.22 mg kg?1) and Zn (37.40 mg kg?1) with EDTA.  相似文献   

18.
Adsorption and desorption reactions of zinc (Zn) in soils control its availability to plants. In the present investigation, time-dependent Zn release was evaluated using three organic acids [diethylenetriaminepentaacetic acid (DTPA), citric acid, and maleic acid] to depict the Zn fraction controlling Zn release rate from slightly calcareous to calcareous soils. Eight surface and two subsoil samples of selected soil series varied in their physicochemical properties, amount of Zn held in different chemical pools, and Zn-retention capacities (21–61%). Each soil was extracted for a total period of 24 h at 1:10 soil/extractant suspension ratio using 0.005 M DTPA. The time-dependent parabolic diffusion model best described the Zn release in six consecutive extractions. Soils differed in cumulative Zn extracted (1.09–3.81 mg kg?1 soil) and Zn release rate. Under similar conditions, three soils differing in Zn-retention capacities were also extracted with five different concentrations (0.01–0.0001 M) of citric and maleic acids. Although both maleic and citric acids released soil Zn at greater rates and in greater amounts than DTPA, maleic acid was more efficient. Soil Zn bound to amorphous iron (Fe) + manganese (Mn) oxides was the main Zn pool that controlled Zn release characteristics.  相似文献   

19.
Cu, Zn, and Cd acquisition by two spinach cultivars depending on P nutrition and root exudation Within a spectrum of 11 spinach cultivars (cvs) differences in the Cu, Zn, and Cd contents of shoots had been noticed. The aim of this study was therefore to analyze in more detail the acquisition of Cu, Zn, and Cd by the most differing cultivars (Tabu and Monnopa) in dependence on P nutrition. The plants were grown in a low phosphorus Luvisol (pH 6.3; total contents Cu: 89, Zn: 297, Cd: 2.4 mg kg—1) with two phosphorus levels in pots under natural conditions. For the determination of inflow, root length/shoot weight ratio and of the Cu, Zn, and Cd concentration in the soil solution (rhizosphere) plants were harvested 26 and 40 days after sowing. Root exudation of organic acids of the two cvs was measured 35 days after growing in quartz sand with different P supply. Both cultivars responded to P fertilizer by doubling their shoot weight. With increased P supply (0.68—0.77% P in shoot‐DM) both cultivars showed similar heavy metal contents in the shoot resulting from similar root length/shoot weight ratios (RSR) and net uptake rates of the three elements as well as the same element concentrations in the rhizosphere soil solution. Under P deficiency, however, cv. Tabu (0.52% P in shoot‐DM) showed in comparison with cv. Monnopa (0.48% P) higher Cu, Zn, and Cd contents of shoots although its RSR was smaller than that of cv. Monnopa. However, the inflow for Cu was higher and for Zn and Cd significantly higher compared with cv. Monnopa. This result of cv. Tabu corresponded with higher concentrations of Cu, Zn, and Cd of its rhizosphere soil solution, and its higher exudation rates of oxalate, citrate, and malate (3.9; 1.0; 0.7 nmol cm—1 h—1). The corresponding values for cv. Monnopa were: 1.7; 0.3; 0.4 nmol cm—1 h—1. The mobilization of Cu, Zn, and Cd by the excreted organic acids seems to be responsible for the higher Cu, Zn, and Cd inflow of cv. Tabu.  相似文献   

20.
One of the strategies of the plants growing in phosphorus (P)-deficient environments is to exudate low-molecular-weight organic acids (LMWOA). Thus, we aimed to investigate the effect of LMWOA on phosphorus uptake of barley from either fertilizer or inherited soil phosphorus. The experiment was set up in full factorial arrangement in completely randomised design with two phosphorus (0 and 50 mg P kg?1), five organic acids, LMWOA (malic acid, oxalic acid, citric acid, acetic acid, ascorbic acid), and four organic acid rates (0, 10, 20, and 30 mmol kg?1). The effects of LMWOA on yield in descending order were: oxalic acid > ascorbic acid > malic acid > acetic acid > citric acid. The maximum P concentration in grain was obtained at 30 mmol kg?1 LMWOA treatments. As a result, it was found that oxalic acid was the most effective LMWOA in increasing nutrient uptake induced grain yield with and without phosphorous fertilizer application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号