首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Increased above‐ground dry matter and grain yields were found for two hydroponically grown maize hybrids (Pioneer‐3925 and Pioneer‐3949) when plants were supplied with an NH4 +‐enhanced nutrient solution (31 percent of total N) compared with a control (4 percent of total N as NH4 +). The major difference in yield developed between silking and 2 weeks post‐silking and silking and 4 weeks post‐silking for the P‐3925 and P‐3949 respectively. The reduced nitrogen content of the stover (leaves plus stalk) was consistently higher on the NH4 +‐enhanced nutrient solution. The decreased production of the control treatment may have resulted from a reduced photsynthetic capacity.  相似文献   

2.
‘One film for 2 years’ (PM2) has been proposed as a practice to control the residual film pollution; however, its effects on grain-yield, water-use-efficiency and cost-benefit balance in dryland spring maize production have still not been systematically explored. In this study, we compared the performance of PM2 with the annual film replacement treatment (PM1) and no mulch treatment (CK) on the Loess Plateau in 2015–2016. Our results indicated the following: (1) PM2 was effective at improving the topsoil moisture (0–20 cm) at sowing time and at seedling stage, but there was no significant influence on soil water storage, seasonal average soil moisture or evapotranspiration; (2) PM2 induced significantly higher cumulative soil temperatures compared to CK, and there was no significant difference between PM2 and PM1; (3) no significant differences were identified in grain-yield and water-use-efficiency between PM1 and PM2, and compared to CK, they improved by 16.3% and 15.5%, respectively; (4) because of lower cost of plastic film, tillage, film laying and remove in PM2, economic profits improved by 21% and 70% compared to PM1 and CK. This research suggested that PM2 was effective at alleviating the spring drought and was beneficial in reducing poverty traps in dryland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号