首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron‐efficient T3238FER tomatoes (Lycopersicon esculentum Mill.) did not respond to Fe‐deficiency stress by releasing hydrogen ions and reductants from their roots when the plants were grown in a K‐deficient nutrient solution with or without sodium. When increments of K were added to the nutrient solution, the plants responded proportionally to Fe‐deficiency stress, Fe was transported to plant tops and the chlorophyll concentration in plant tops increased. As the leaf Fe concentration was increasing, root K concentration was increasing and root Mn concentration was decreasing. The K and Mn in tops did not show the marked differences observed in roots.

In the presence of adequate K, renewing the solutions each time the pH was lowered to near 4 (days 7 and 11) caused an increased concentration of most elements in the plant, especially Mn in both tops and roots. These plants had the same Fe concentration as plants grown in unchanged solutions but they contained much less chlorophyll. Balance of nutrient elements to some degree seems required in order for iron to be made available to function properly in the plant.  相似文献   


2.
Two bush bean cultivars [Phaseolus vulgaris L. cv. ‘Wonder Crop 2’ (WC‐2) and ‘Green Lord’ (GL)], differing in Mn toxicity, were grown in a growth chamber for 12 days in Hoagland No. 2 nutrient solution containing 0.05 to 1 ppm Mn as MnCl24H2O with 1 ppm Fe as Fe‐EDTA, at an initial pH 5.00. Concentrations of Zn, K, Ca and Mg in the tissues of two bush bean cultivars were examined in relation to Mn toxicity.

The concentration of Zn in the leaves of Mn‐sensitive WC‐2 increased significantly with increasing Mn concentration in the solution, but such levels were not toxic to the plants.

The percent distribution of Zn and K in Mn‐sensitive WC‐2 plants (% of total uptake) significantly increased in the tops and decreased in the roots with increasing Mn concentration in the nutrient solution; however, Mn treatment had no effect on distribution of either Ca or Mg in WC‐2. External Mn concentration had little or no effect on the K, Ca, or Mg concentration in the tops of Mn‐tolerant GL.  相似文献   


3.
In a greenhouse experiment, the effect of salinity and Fe chelate on growth and mineral uptake of sunflower (Helianthus annuus L. c.v. Record) was studied.

Sunflower plants were grown in nutrient solution with four levels of salinity (0, 1.5, 3.0 and 4.5 atm), induced by NaCl and four rates of Fe chelate (0, 0.5, 1.0 and 1.5, ppm Fe) as FeEDDHA. The experiment was a completely randomized design with treatment combinations arranged in a factorial manner with three replications.

Dry matter yield, shoot‐root ratio, leaf area, plant height and transpiration decreased as salinity increased, the effect of salinity being depressed by iron applications. Salinity reduced P, K, Ca and Mg uptake by roots as well as that of N, P, K, Ca, Mg by shoots, while Fe applications increased uptake of these elements in roots and shoots. Both salinity and iron applications increased Cl, Na and Fe uptake by roots and shoots, as expected. In most instances salinity reduced uptake of Fe, Mn and Zn by the plants while iron applications improved uptake of these elements.

The sunflower plant used in this experiment was found to be, at least partly, tolerant to salinity and decreased water availability as well as toxicity of ions. Nutritional disorders were the cause of decreased plant growth by increasing salinity of the nutrient solution. The decreased plant growth and mineral uptake, induced by salinity, were partially offset by increased iron levels in the nutrient solution.  相似文献   


4.
Uptake of iron by rice plants was equally rapid when supplied as ionic iron(II) or iron(III) at pH 3 and 4. Iron(III) uptake was reduced at pH 5 and uptake of iron when supplied as FeEDTA was relatively low at all three pH levels.

At pH 4 in the presence of plant roots, reduction of iron(III) to iron(II) occurred as indicated by Fe2+ BPDS formation. BPDS in a 3:1 ratio to iron(III) suppressed iron uptake by about 70%. The reduction was observed to be located in the endodermis of young roots and exodermis of older roots.

A capacity to oxidize iron(II) at the root surface was also observed under local anaerobic and relatively high pH conditions.

The significance of these two counteracting processes in affecting the oxidation state of iron at the root surface is discussed.  相似文献   


5.
An experiment was conducted to clarify the relationship between Mn toxicity and Fe deficiency in bush snap bean (Phaseolus vulgaris L. cv. ‘Wonder Crop No. 2'). Seedlings were grown in full strength Hoagland No. 2 solution at pH 6.0 for ten days. Six concentrations of Mn as MnCl2.4H2O were used in combination with three concentrations of Fe as FeEDTA.

Toxicity symptoms, induced by low levels of Mn (0.1 ppm and above), included: small brown necrotic spots and veinal necrosis on primary leaves; necrosis on primary leaf petioles; interveinal chlorosis, with or without brown necrotic spots, on trifoliate leaves; and brown necrotic spots on stipules. Manganese toxicity symptoms were alleviated or prevented by increasing Fe concentration in the nutrient solution.

Manganese concentration in the leaves increased with increasing Mn and decreased with increasing Fe concentration in the nutrient solution, Iron concentration in the roots increased with increasing Fe concentration in the nutrient solution; however, Fe concentration in the leaves was not significantly affected by increasing Mn concentration in the solution culture. Manganese toxicity symptoms developed when Mn concentration in the leaves reached about 120 ppm.

A decrease in the Fe/Mn ratio in the nutrient solution resulted in a proportionate decrease in that of the leaves. Manganese toxicity symptoms occurred when the Fe/Mn ratio in the solution was 10.0 and below, or when the ratio in the leaves was less than 1.5. The ratio of Fe/Mn in the solution required for optimum growth of ‘Wonder Crop No. 2’ bean, without Mn toxicity symptoms, was in the range of 20.0 to 25.0.

Results indicate that the chlorosis on bush bean leaves induced by excessive Mn in the nutrient solution was due to excessive accumulation of Mn and not to Fe deficiency.  相似文献   


6.
Phosphorus uptake by plant roots is influenced by the plant root properties and solution P supply characteristics. These properties included (i) the relation between nutrient concentration and uptake rate, (ii) the change in uptake rate with plant age and with root age.

Information on the size of nutrient flux values and their change with increasing plant age can be used to determine the nutrient levels needed in the soil to supply nutrients rapidly enough to the root surface to minimize deficiencies. The objective of this research was to determine the relation between plant age and P absorption properties and root growth characteristics of wheat (Triticum vulgare L.) cv. Era.

Wheat was grown for periods up to 42 days in solution culture in a controlled climate chamber. Sequential harvests were made and P uptake and root morphology were measured. Shoot growth was exponential with time to 32 days and linear thereafter. Root dry weights increased linearly with time at a slower rate than shoot dry weights. Root length increased logarithmically with time (r2 = 0.95; log y = 0.069x + 1.85).

With increasing plant age there was a reduction in average P uptake rate by wheat roots.  相似文献   


7.
Previous studies showed that limpograss, Hemarthria altissima (Poir), Stapf & C. E. Hubb (PI 364344) was tolerant to low temperature and to high concentrations of Al in acid soil, mine spoil and nutrient solution. Additional experiments were conducted to test the tolerance of this limpograss clone to excess Mn, another potential growth‐limiting factor in acid soils.

Cuttings from a single plant were grown in pots of Mn‐toxic Zanesville soil with no lime (pH 5.1) and 1250 ppm CaCO (pH 6.3) and in nutrient solutions containing 0, 4, 8, 16, 32 or 64 ppm Mn at pH 4.0. The grass was highly tolerant to excess Mn in both media. Liming the soil from pH 5.1 to 6.3 did not significantly affect top dry weight of the first harvest and significantly decreased that of the second. In nutrient solutions at pH 4.0 top dry weights were not significantly affected by Mn concentrations up to 64 ppm. Root dry weights were significantly increased by Mn additions of 16, 32 and 64 ppm. Limpograss (PI 364344) was not injured when Mn concentrations were as high as 930 and 9152 ppm in tops and roots, respectively. High Mn tolerance is yet another trait that should enhance the potential use of this grass in revegetating acid mine spoils and other acid sites.  相似文献   


8.
Seedlings of two bush bean cultivars (Phaseolus vulqaris L. cvs. Mn‐sensitive ‘Wonder Crop 2’ and Mn‐tolerant ‘Green Lord') were grown for 14 days in full strength Hoagland No. 2 nutrient solution containing 0.05 ‐ 2 mg L‐1 of vanadium (V) as ammonium vanadate.

Increasing V concentration in the solution decreased total dry weight of both cultivars. Plant tops were stunted and leaf color became dark green at 1 ‐ 2 mg L‐1 V, especially in ‘Green Lord’. Veinal necrosis similar to that of Mn toxicity was observed in the primary leaves of ‘Wonder Crop 2’ at 0.2 mg L‐1 V or above, but not in those of ‘Green Lord’.

The V concentrations in the roots increased exponentially with increasing V concentration in the solution; however, V concentrations in the leaves and stems were not affected. The Mn concentrations in the primary leaves increased under the higher V treatment in ‘Wonder Crop 2'; but not in ‘Green Lord’. In contrast, Fe concentration in the leaves of ‘Wonder Crop 2’ decreased markedly with increasing V concentration in the solution. Enhanced Mn uptake and greater reduction of Fe uptake by ‘Wonder Crop 2’ may explain the incidence of V‐induced Mn toxicity.  相似文献   


9.
Species of Amaranthus are grown extensively as leafy green vegetables in tropical Africa and Asia and as high yielding grain crops in Western South America, Central America, Northern India, Western Nepal, and Pakistan. The crop is often grown on acid, marginal soils, under subsistence conditions, where liming even the soil plow layer may not be economically feasible. Hence, the identification or development of strains with high tolerance to acid soils would be beneficial. Aluminum and Mn toxicities are the most important growth‐limiting factors in many acid soils. The objective of our research was to determine the tolerances of selected Amaranthus strains to high levels of these elements in acid soils.

Fifteen strains, representing five species, were grown in greenhouse pots of an acid, Al‐toxic Tatum soil limed to pH 4.8 and 5.8. Strains differed significantly in tolerance to the acid soil. Relative yields (pH 4.8/pH 5.8%) ranged from 50.1 to 6.3% for tops and from 54.5 to 5.7% for roots. Four strains of A. tricolor L. (vegetable type) were significantly more tolerant than six strains of A. cruentus L. (seed and vegetable type). Strains of A. hypochondriacus L. and A. caudatus L. studied were intermediate in tolerance.

Twelve strains, representing four species, were grown on an acid, Mn‐toxic Zanesville soil at pH 4.6 and 6.3. Strains also differed significantly in tolerance to this acid soil; however, overall growth was better and strain differences were smaller than on Al‐toxic Tatum soil at pH 4.8. On Zanesville soil the relative top yields (pH 4.6/pH 6.3%) ranged from 74.1 to 18.6%. The most tolerant group included three strains of A. tricolor and one strain of A. hypochondriacus, but four strains of A. cruentus were also fairly tolerant. The sensitive end of the scale included one strain of A. cruentus and two strains of A. hypochondriacus.

In general, strains that were most tolerant to the Al‐toxic Tatum soil were also among the most tolerant to the Mn‐toxic Zanesville soil. Likewise, those most sensitive to the high Al soil were most sensitive to the high Mn soil. But some strains that were sensitive to excess Al in Tatum soil were fairly tolerant to high Mn in Zanesville soil.

Results suggest that superior strains of Amaranthus can be selected or developed for use on acid soils.  相似文献   


10.
The influence of soil temperature on nutrient accumulation in aerial portions of sorghum plants was evaluated in a greenhouse experiment. Plants were grown in 20‐liter containers at cooled and ambient soil temperatures of 20 and 25C, respectively, and were harvested at the 8‐ and 12‐leaf stages of development for yield and nutrient analysis.

At the 8‐leaf stage, sorghum plants subjected to 25C were significantly higher in concentration of N, P, K, Mg, and Cu, but were significantly lower in Ca. Soil temperature did not significantly affect concentration of Zn, Fe, and Mn. At the 12‐leaf stage, sorghum plants grown in the warm soil temperature treatment were lower in concentration of N, K, Ca, Mg, Zn, Fe, Mn, and Cu than plants grown in the cooled‐soil treatment. Phosphorus showed a negative response to increased temperature.

It was concluded that further research relating element uptake and translocation to temperature is needed. Element accumulation in the roots, stems, leaves, and floral and seed portions of the plant should be included. In addition, the interaction between plant age and element concentration should be studied more thoroughly. Both this study and the published literature indicate that this interaction is significant for many of the elements.  相似文献   


11.
Rabbiteye blueberries grown in sand culture were subjected to varying levels of N fertilization (0 ‐ 81 mg N/liter) applied in aqueous solution at the rate of 250 ml/plant daily. Essential elements other than N were kept constant. Shoot growth and leaf concentration of N, P, K, Mg, Ca, Mn, Fe, Cu, B, Zn, Co, and Al were determined. Shoot growth and percent leaf N increased with increased N levels. Shoot growth increased little at N fertilization levels of 0 ‐ 9 mg/ liter but increased rapidly at higher rates. N content in leaves followed a quadratic curve, with % N in leaves increasing more rapidly from 0 to 27 mg N/liter than from 27 to 81 mg N/liter fertilization levels. Leaf concentration of K, Ca, Mg, Mn, B, and Ca decreased linearly as N levels increased. Total content of all elements increased as N fertilization increased. Visual N deficiency became increasingly evident as % N content decreased below 1.4% N.

Nitrogen, the most utilized element in plants, is usually the first to become deficient in sandy soils low in nutrient content (1). Rabbiteye blueberries (Vaccinium ashei Reade) are often grown on acidic, sandy, upland coastal plains soils that are low in cation exchange capacity, organic matter content, and available nutrients. In these acidic soils, NH4N is more available than in neutral soils (2). The NH4N source appears to be more suitable for blueberry growth, resulting in greater nutrient uptake, plant growth, and % N of leaf tissue than did the NO3N sources (5,6).

Nitrogen deficiency symptoms in rabbiteye blueberries are characterized by small, yellow and/or red leaves and stunted plants (3). Since young rabbiteye plants are very sensitive to fertilizer, similar chlorosis symptoms (yellowing or reddening of leaves) can be associated with over‐fertilization, possibly due to root damage (7). Cain (2) found that leaves from healthy container‐grown highbush (V. corymbosum L.) blueberry plants contained about 2% N and higher levels of K and Ca than field‐grown plants. Greenhouse and Field studies indicate that leaf N content in rabbiteye blueberries is usually lower, ranging from about 1.5 to 1.8 (3,7,8). Increased N fertilization decreased the nutrient uptake of other essential elements (Ca and Mg) in rabbiteye blueberries (6). In highbush, Popenoe (4) indicated that a depression of P and K might occur under conditions of high N levels.

This study was initiated to ascertain the effect of NH4N fertilization levels on uptake patterns of essential elements and to determine the relationships of N fertilization, leaf N content, plant growth, and visible deficiency symptoms.  相似文献   


12.
The relative response of poppy (Papaver somniferum L.) and eight crop and vegetable species to excess manganese was investigated in a glasshouse, solution culture experiment. Plant yields and manganese concentrations were measured after two and six weeks growth at five levels of manganese (10–800 μM).

Poppies were highly sensitive to manganese toxicity in solution culture and reductions in shoot yield occurred at lower manganese levels in solution and at lower shoot manganese concentrations than that for the following sensitive species, ranked in order of increasing tolerance : brussels sprout, barley, green beans, lucerne and grean pea. In contrast lupins, oats and sugar beet were relatively tolerant producing about 80% or more of maximum shoot yield at the highest solution manganese level (800 μM Mn).

In this study the sensitivity of poppy, and brussels sprout, to manganese excess was attributed to their low shoot manganese “toxicity threshold values”; and their capacity to partition a high proportion of total plant manganese and dry matter to the shoot at solution manganese levels ≥ 100 μM.

The application of these results to field grown poppy is discussed in relation to interactions between manganese and other elements which modify plant tolerance to manganese excess.  相似文献   


13.
Purpose: The purposes of this study were to characterise the migration and the colonisation dynamics of two different fluorescent-tagged rhizobia in various alfalfa tissues (especially in seeds); and also to develop efficient inoculation treatments to promote colonisation ability of target rhizobia in elite seed varieties.

Materials and methods: Four treatments (root drench, root damaging and drench, root drench with matrine, and flower spray) were applied to inoculate alfalfa with two fluorescent-tagged rhizobia, Ensifer meliloti LZgn5f (gn5f) and Ensifer meliloti 12531f (12531f), at three different growth stages; bud, flower and pod stages. The migration and colonisation dynamics of the two fluorescent tagged rhizobia strains were monitored using UV lamp detection and a stereo fluorescence microscopy.

Results: The results showed that both rhizobia strains mainly colonised the roots and could migrate to aerial tissues. In aerial tissues, when alfalfa plants were inoculated during the bud stage, both rhizobia strains mainly colonised the leaves and stems; during the flower stage, a spray inoculation treatment resulted in more 12531f colonising reproductive tissues, while during the pod stage, more rhizobial strains gn5f colonised seeds using the root drench with matrine treatment.

Conclusions: These results indicate that endophytic rhizobia are natural inhabitants of internal regions of roots, stems, leaves and that the endophytes may arise from reproductive tissues, such as seeds. Understanding the population dynamics of endophytic rhizobia in alfalfa would considerably improve the survival of target rhizobia during seed transfer. Combining target endogenous rhizobial species with good alfalfa seed varieties may lead to the development of a novel breeding method.  相似文献   


14.
Nitrate reductase activity (NRA) was studied in pea, a C3 plant, and sorghum, a C4 plant, at various stages of growth and development. Influence of moisture stress and nitrogen application was also observed since these factors have profound influence on growth and development.

In pea, NRA was maximum at pod maturity stage and minimum at flowering stage. In sorghum plant there was gradual increase in NRA upto grain formation followed by a fall in activity at maturity.

Nitrogen treatment as nitrate and ammonia significantly increased nitrate reductase activity over control in both pea and sorghum. Treatment with potassium nitrate was found to stimulate more NRA in pea than with ammonium sulphate. In sorghum, both forms of nitrogen did not differ much in their influence on NRA.

Influence of moisture stress in reducing NRA was more clear in sorghum, a C4 plant than in pea, a C3 plant. In general, control plants recorded low NRA in both the crops when compared to nitrogen treated plants except at pod formation stage in pea.  相似文献   


15.
Greenhouse experiments with alfalfa (Medicago sativa L. cv. ‘Apollo') were performed to evaluate the effect of varied nutrient solution concentrations of S on the yield, nodulation, dinitrogen fixation, N and S concentration, and the partitioning of N and S into shoots and roots.

Sulfur treatments consisted of four levels (0, 1, 2.5, and 25 mg S/L) of added S. The experimental design was a randomized complete block, with three replications. Seeds were inoculated with commercial inoculum, planted in plastic containers of acid‐washed sand, and irrigated with nutrient solution for one minute, at 2 h intervals.

Sulfur application increased the yield of all treatments. The results demonstrated that the addition of 2.5 mg S/L to the nutrient solution, besides providing the highest total dry matter yield (12 g/72 plants), showed the highest percent yield increase (19%), acetylene reduction rate (0.426 umole ethylene/mg nodule dry wt/h), total N content (306 mg/72 plants), percent recovery of S (3.8%), and percent increase in N due to dinitrogen fixation (32%).

N:S ratios obtained were different for shoots and roots, with S application decreasing the N:S ratios. The N:S ratios of 16:1 (shoots), and 9:1 (roots) obtained in the 2.5 mg S/L treatment were found to be adequate for normal growth and development.

These data indicated that the 2.5 mg S/L treatment (2.7 mg total S/L) was optimal for alfalfa seedling development.  相似文献   


16.
The effects of salinity on carbohydrates in leaves and roots of different salt tolerant cotton genotypes Glza 45 (salt tolerant) and Dandara (salt sensitive) during the initial salinity stress are investigated. Changes of starch and sucrose in relation to soluble amylases, phosphorylase and invertase in young leaves are studied. The plants are grown in water culture under controlled conditions.

Starch and sucrose accumulation is rapidly stimulated in leaves of Dandara, particularly due to extreme potassium sulfate supply, while in Giza 45 the amount of starch and sucrose declines except for extreme potassium sulfate treatment. The low sucrose value in roots of Dandara increases extremely, especially as a result of potassium chloride treatment. In contrast, the higher sucrose content in roots of Giza 45 is little affected. Amylase activity changes considerably in positive correlation with the starch content, whereas the low specific activity of phosphorylase is little affected. The sucrose content in the leaves is directly controlled by a high level of invertase activity of both cotton varieties.

Possible interactions of carbohydrate metabolism and genotyplcal ion regulation in response to the different salt tolerance of the genotypes are discussed. It is concluded that genotypical differences in the carbohydrate metabolism could be effective mechanisms for salt tolerance in cotton.  相似文献   


17.
Nineteen bush bean cultivars were screened for tolerance to excess Mn in nutrient solution and sand culture experiments. Seven‐day‐old seedlings were treated with full strength Hoagland No. 2 nutrient solution containing different Mn concentrations for 12 days in the greenhouse.

Cultivars showing the greatest sensitivity to Mn toxicity were ‘Wonder Crop 1’ and ‘Wonder Crop 2'; those showing the greatest tolerance were ‘Green Lord’, ‘Red Kidney’ and ‘Edogawa Black Seeded’.

Leaf Mn concentration of plants grown in sand culture was higher than that for plants grown in solution culture. The lowest leaf Mn concentration at which Mn toxicity symptoms developed, was higher in tolerant than in sensitive cultivars. The Fe/Mn ratio in the leaves at which Mn toxicity symptoms developed, was higher in the sensitive cultivars than in the tolerant ones.

We concluded that Mn tolerance in certain bush bean cultivars is due to a greater ability to tolerate a high level of Mn accumulation in the leaves.  相似文献   


18.
The effects of various P and Zn levels on iron nutrition of sunflower (Helianthus annuus L.c.v. Record) were studied in two separate experiments in nutrient solution under greenhouse conditions.

In the first experiment, sunflower was grown in nutrient solutions containing four levels of P(1.5, 2.5, 3.5 and 4.5 mM/l) and three levels of Fe(0.25, 0.75, and 1.5 ppm) as FeCl3 or FeEDDHA. In the second experiment (following the first experiment), the treatments were three P levels (0.75, 1.50 and 3.00 mM/l), three Fe levels (0.25, 0.75 and 1.5 ppm) as FeEDDHA and three Zn levels (0.1, 0.2 and 0.4 ppm).

The plants receiving Fe‐chelate, except for 0.25 ppm Fe, showed no symptoms of iron chlorosis. With inorganic Fe treatments, iron chlorosis appeared after 7–10 days depending on P level, but except for 0.25 ppm Fe which remained chlorotic, plants recovered completely within 3–4 days thereafter due to pH regulating mechanism of sunflower under iron stress condition. With both sources of Fe, chlorosis was associated with high P:Fe ratio.

Increased P and Fe levels in nutrient solution resulted in general increases in the dry weights of roots and shoots. The Fe concentration of shoots, except in few instances, was not affected by P levels, indicating that the sunflower cultivar used in this experiment could utilize inorganic Fe as well as Fe‐chelate under our experimental conditions.

Increasing P levels caused significant increases in Mn content of the shoots as 0.25 and 0.75 ppm inorganic Fe3+. Increased Fe levels increased shoot Mn content with inorganic Fe and decreased it with Fe‐chelate. The effects of P, Fe and Zn on sunflower indicated an antagonistic effect of Zn on 1.5 ppm Fe for all P levels. Increased Zn levels in nutrient solution generally increased Zn content of the shoots without having any marked effect on their Mn content.  相似文献   


19.
Book review     
Trace elements in plants by M. Ya. Shkolnik

Elsevier Science Publishers P. O. Box 330 1000 AH Amsterdam The Netherlands

Elsevier Science Publishing Company 52 Vanderbilt Ave. New York, New York 10017  相似文献   


20.
Lucerne was grown in nutrient solutions at adequate and “deficient”; levels of sulphur, nitrogen, phosphorus or potassium. Volatile losses of sulphur were then measured when shoots and roots were oven dried at 80°C for 48 hours.

Small but significant losses of sulphur occurred during oven drying. Losses from shoots ranged from 4.2 to 13.9 μgS/g dry weight, which represented from 0.38 to 0.66% of the total sulphur content of the shoot. Losses from roots ranged from 12.0 to 47.8 μgS/g dry weight, representing 0.82 to 1.77% of the total sulphur content of the root. Decreases in supply of nitrogen, phosphorus, potassium or sulphur generally decreased the amount of volatile sulphur lost by oven drying shoots. Losses from roots generally decreased when supply of sulphur decreased, but increased when nitrogen and potassium supply decreased, and were generally unaffected by phosphorus supply.

The organic sulphur concentration in the tissue was linearly correlated with absolute losses of sulphur (r = 0.799** for shoots; r = 0.822** for roots), the amount of sulphur lost per unit dry weight (r = 0.469* for shoots; r = 0.381* for roots) and the percentage of the total sulphur released as volatile sulphur (r = 0.937** for shoots; r = 0.970** for roots). By contrast, the total sulphur concentration in the tissue was linearly correlated only with the amount of sulphur lost per unit dry weight ( r = 0.704** for shoots; r = 0.723** for roots).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号