首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liming and phosphorus (P) applications are common practices for improving crop production in acid soils of the tropical as well as temperate regions. Four greenhouse experiments were conducted on an Oxisol (clayey, kaolinitic, isothermic, Typic Haplustox) to evaluate response of liming (0,2, and 4 g/kg) and P application (0, 50, and 175 mg P/kg) in a factorial combination on growth and nutrient uptake by upland rice (Oryza sativa L.), wheat (Triticum aestivum L.), common bean (Phaseolus vulgaris L.), and corn (Zea mays L.). Phosphorus application significantly (P<0.01) increased dry weight of tops of all the four crop species as well as dry weight of roots of wheat and corn. Liming significantly (P<0.01) improved growth of common bean and corn but had significant negative effects on rice growth. Maximum dry weight of tops of rice and wheat was obtained at 175 mg P/kg without lime. Maximum dry weight of tops in common bean was obtained at 4 g lime/kg with 175 mg P/kg of soil. In all the crops, increasing levels of applied P significantly increased nutrient uptake. With some exceptions, increasing levels of lime tend to reduce uptake of P, zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) and increase the uptake of calcium (Ca) and magnesium (Mg) in all the crop species. Decrease in potassium (K) uptake, due to high lime, is probably due to antagonistic effects of Ca and Mg and reduced micronutrients uptake is probably due to increased soil pH resulting in decreased availability of these elements to plants. Therefore, in these types of acid soils, one should avoid over liming.  相似文献   

2.
王栋  李辉信  胡锋 《土壤学报》2011,48(6):1203-1209
通过始建于2003年中国南方季节性干旱区(江西省余江县)的双季稻田定位试验,于2005~2007年研究了水稻覆草旱作和免耕覆草旱作对稻田土壤理化性质和生物学性质的影响。结果表明,覆草旱作、免耕覆草旱作的耕层土壤容重和总孔隙度与常规水作的差异不显著。与常规水作相比,免耕覆草旱作显著提高土壤有机质、全氮、碱解氮和土壤基础呼吸;与常规水作相比,覆草旱作和免耕覆草旱作均显著提高土壤微生物生物量碳含量、脲酶和蔗糖酶活性。由此可知,覆草旱作和免耕覆草旱作可以作为该区积极推行的具有培肥地力作用的节水型稻作栽培模式。  相似文献   

3.
Fertilization of common bean (Phaseolus vulgaris) plants with amino-acids (AAs) near the beginning of flowering may increase productivity. This procedure is aimed to avoid waste and increase nutrient use efficiency at the end of the crop cycle, improving the leaf area in the translocation of these nutrients to the common bean. In order to test this hypothesis, a field experiment was conducted on a typic Eutrortox (Oxisol) in randomized block design, with three replicates. Four rates of a solution composed of amino-acids (6.8% glycine, 4.4% proline, 3.3% glutamic acid, 2.7% alanine, 1.9% arginine, 1.7% aspartic acid, 1.3% lysine, 1.3% histidine, and 1.0% leucine) applied 45 days after plant emergence were studied. There was no interaction between years of cultivation × amino-acids. However, the productivity of common bean was significantly influenced by the AAs rates, with the highest seed yield obtained at estimated concentration in 0.0094% of the product in foliar sprays. The increases in the rates resulted in increased foliar nitrogen (N) and zinc (Zn) concentrations and decreased sulfur (S) concentration. The macronutrient uptake was nitrogen>potassium>phosphorus>magnesium > calcium > sulfur (N > K > P > Mg > Ca > S), while for micronutrients it was iron>zinc>boron>copper>manganese (Fe > Zn > B > Cu > Mn). In the soil, the concentrations of organic carbon (C) and available P were negatively affected by the AAs rates.  相似文献   

4.
Abstract

Even though Mg is an essential nutrient. the response of upland rice, common bean, and cowpea to Mg application has not been adequately documented in Brazilian oxisols. This study was conducted to examine the influence of Mg application on growth and nutrient uptake by upland rice (Oryza sativa L.), common bean (Phaseolus vulgaris L.), and cowpea (Vigna unguiculata L. Walp.) on an oxisol. Magnesium levels in the soil were created at sowing by application of MgO at rates of 0.30, 1.05, 1.15, 1.33, 3.52, and 6.22 cmol Mg/kg of soil. Application of Mg did not have a significant beneficial effect on dry weight of roots and tops of rice and cowpea. Common bean root and top dry weights were increased with Mg applications up to 1 cmol Mg/kg of soil. Uptake of N, P, K, Ca, Cu, Zn, Fe, and Mn by the three crops was significantly (P < 0.01) decreased by increasing Mg levels in the soil. Results related to changes in chemical properties of soil with the application of Mg are also presented.  相似文献   

5.
Abstract

Applications of zinc (Zn) and copper (Cu) at excessive rates may result in phytotoxicity. Experiments were conducted with mixtures of soils that were similar except for their Zn and Cu levels. The critical toxicity levels (CTL) in the soils and plants for these elements were determined. Peanut (Arachis hypogaea L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and rice (Oryza sativa L.) were the crops grown. One soil mixture had Mehlich 3‐extractable Zn concentrations up to 300 mg dm‐3 with no corresponding increase in soil Cu; two soil mixtures had soil Zn concentrations up to 400 and 800 mg dm‐3 with a corresponding increase in soil Cu up to 20 and 25 mg dm‐3, respectively; and four soil mixtures had no increase in soil Zn, but had Mehlich 1‐extractable Cu concentrations from 6 to 286 mg kg‐1. Under a given set of greenhouse conditions, the estimated Mehlich 3‐extractable Zn CTL was 36 mg dm‐3 for peanut, 70 mg dm‐3 for soybean, between 160 and 320 mg dm‐3 for rice, and >300 mg dm‐3 for corn. No soil Cu CTL was apparent for peanut or soybean, but for corn it was 17 mg dm‐3 and for rice 13 mg dm‐3. With different greenhouse procedures and the Mehlich 1 extractant, the soil CTL for rice was only 4.4 mg kg‐1. Therefore, peanut and soybean were more sensitive to Zn toxicity, whereas corn and rice were more sensitive to Cu toxicity. Plant Zn CTL for peanut was 230 mg kg‐1, while that for soybean was 140 mg kg‐1. Copper appeared to be toxic to corn and rice at plant concentrations exceeding 20 mg kg‐1.  相似文献   

6.
Abstract

The objective of this research was to mesasure the effect of intercropping corn (Zea mays L.) with velvet bean (Mucuna pruriens) oil corn yields, soil fertility, and weed control in northern Belize. Two soils were used which are widespread in the area. These soils are high in clay (simectitc) and are well supplied with bases. One soil, the Louisville, has a black surface horizon overlying light gray to white calcareous weathered coral. The other soil was Xaibe which consists of a reddish‐brown clay over hard limestone “cap rock”; at 30–40 cm. Both soils had a relatively high organic carbon (C) and total nitrogen (N) content. We classified the Louisville as Calciustert and the Xaibe as a Ustropept. The treatments used (carried out annually in 1990, 1991, and 1992) were residue burn (B), bum plus fertilizer (BF), a velvet bean intercrop (G), and a velvet bean intercrop plus fertilizer (GF). Velvet bean intercropping did not have a positive effect on corn yields on these soils. For adequate yields to be maintained, it appears that fertilization with N, phosphorus (P), potassium (K) and certain micronutrients are required. We did obtain some indication that velvet bean intercropping will reduce weed population, including a serious infestation of cogongrass (Jmperata cylindrica). Velvet bean did not maintain the soil N content Corn yields decreased on the Louisville soil at San Victor from a range of 2,804 kg/ha to 3,181 kg/ha in 1990 to 1,783 kg/ha to 2,065 kg/ha in 1992. There were no significant treatment effects in any year. With the Xaibe soil, no yields were obtained in 1990 because of weed competition. In 1991, yields ranged from 555 kg/ha to 1,146 kg/ha (no significant treatment effects). In 1992, the fertilized plots, BF and GF, had corn yields of 1,391 kg/ha and 1,592 kg/ha, respectively. The unfertilized plots, B and G, had corn yields of 751 kg/ha and 699 kg/ha, respectively. We did obtain sufficient information valuable for persons making fertilizer recommendations on similar types of soil. The Mehlich 3 and the ammonium bicarbonate‐DTPA extractant (the latter extractant similar to that used in Belize) did not give good correlations between P and K leaf levels and corn yields. Where soil test P and K were often adequate, corn ear leaf levels were deficient (and presumably yields were reduced because of this metabolic deficiency). We concluded from both soil tests and leaf analyses that the micronutrients copper (Cu), manganese (Mn), and molybdenum (Mo) are seldom, if ever, limiting plant growth and grain yield, although there appears to be seasonal differences. With both soils, soil tests were not good indicators of zinc (Zn) concentrations in the leaf. In 1992, soil tests indicated adequacy of this element, although leaf Zn was deficient in all plots on the Louisville soil in 1990, most plots in 1992, and several plots on the Xaibe soil in both years.  相似文献   

7.
The appropriate supply of magnesium (Mg) to the common bean (Phaseolus vulgaris L.) according to the requirements of each variety increases the productivity and nutritional value of grains. However, there are few studies on soil's ability to provide the adequate amount of the nutrient and on the reaction of plants with different Mg concentrations. The present study analyzed the response of the common bean plant to soil fertility, grain yield (GY), shoot dry weight (SDW) yield, nutritional status and the response of physiological components of the plant to the concentrations of Mg applied to the tropical soil. Thus, an experiment was conducted in a completely randomized design, in 5 × 4 factorial arrangement, with three replicates. The varieties BRS Estilo, IAPAR 81, BRS Ametista, IPR Campos Gerais (CG) and IPR Tangará were cultivated in an Ustoxix Quatzipsamment with five rates of Mg [0, 50, 100, and 200 mg kg?1, source magnesium chloride (MgCl2)]. The common bean varieties and the Mg rates significantly affected the soil chemical properties. Photosynthetic rate, stomatal conductance, transpiration rate, intercellular concentration of carbon dioxide (CO2), and total soluble sugars significantly correlated with common bean GY and SDW yield. The nutrient content in leaves and grains showed difference responses among the varieties. IAPAR 81 showed the highest rate of mobilization of nitrogen, phosphorus, magnesium, sulfur, boron, copper and zinc (N, P, Mg, S, B, Cu, and Zn) for grains, being an important factor in studies of crop biofortification.  相似文献   

8.
To investigate the current available nitrogen (N) and chemical properties of paddy soils affected by crop rotation between irrigated paddy rice (Oryza sativa L.) and upland soybean [Glycine max (L.) Merr.] (paddy-upland rotation), topsoils were collected from 22 fields of four different farmers in the northeastern region of Japan. Regardless of organic material application, a significant negative correlation was found between available soil N and an increase in the proportions of upland seasons to total crop seasons after the initiation of paddy-upland rotation. Soil total N and total carbon (C) also tended to decrease with an increase in upland frequency. In fields with repeated applications of cattle manure compost, the soil available N was higher than in fields where only crop residue was applied. A significant negative correlation was also found between the soil available N:total N ratio and upland frequency. This indicates that the part of soil N related to available N was notably lost by the use of paddy fields as upland fields. In order to sustain available soil N over the minimum suitable level of 80?mg?kg?1, upland frequency should not exceed 65% when only crop residues and no other organic materials are applied. The upland frequency can be raised by the repeated application of organic materials which maintain a higher level of available soil N. The results imply that care should be taken to maintain the N fertility of paddy soil at a suitable level in paddy-upland rotation, and that upland frequency and organic materials applied are important factors to do this.  相似文献   

9.
Abstract

A greenhouse experiment was carried out to determine the S response and the plant S content of rice (Oryza sativa L.) cultivars OS‐6 and IR‐20 grown in sandy Apomu soil series under upland conditions.

Sulphur application increased growth and dry matter yield. At low S rates OS‐6 gave higher grain yield than IR‐20. With high S rates, OS‐6 responded more in straw production. The leaf S content was highest during early growth and decreased with plant age. At flower emergence, the blade of the Y‐leaf appeared to be a suitable index for measuring the S status of the plant. The critical S level was estimated at 0.15%. The critical S levels in the grain and straw at harvest were estimated respectively at 0.12%, and 0.10%. The N/S ratios for the grain and straw at harvest appeared not to be a useful index for determining the critical S status of the plant.  相似文献   

10.
Abstract

Environmental regulations and limited storage space compel processors to remove spent limestone and not stockpile it on site. This material is often used as a liming material to control pH on acid soils, but in some cases may have to be applied to alkaline soils. This study was undertaken to evaluate the effect of applying sugar beet processing lime on soils with an alkaline solum. Studies were conducted at seven sites representing four soil series. Lime was applied at rates of 0,1.4, 2.8, and 5.6 magnesium (Mg) ha‐1. Sugar beet (Beta vulgaris L.), soybean (Glycine max L.), cora (Zea mays L.), field bean (Phaseolus vulgaris L.), and wheat (Triticum aestivum L.) were used as test crops. Yield of sucrose and roots of sugar beet as well as yield of soybean, corn, field bean, and wheat were not affected by lime application. Manganese (Mn) and zinc (Zn) concentration in leaves of sugar beet and soybean, and whole field bean plants decreased with increasing lime rates. These results show this lime may be applied at rates up to 5 Mg ha‐1 once every three years on these alkaline soils without negatively affecting the yield of sugar beet, soybean, corn, field bean, and wheat. Nutritional status of these crops should be carefully monitored after lime application.  相似文献   

11.
Abstract

An incubation study was conducted for 30 days in Taloka (fine, mixed, thermic mollic Albaqualf) and Leadvale (fine, silty, siliceous, thermic typic Fragiudult) silt loam soils to evaluate carbon (C) and nitrogen (N) mineralization from soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and wheat (Triticum aestivum L.) residues. Corn and soybean residues were collected at the tasseling and late vegetative stages, respectively. Wheat straw was collected after harvest. Carbon dioxide (CO2) evolution and inorganic N accumulation were measured. Carbon mineralization was described by a sequential decomposition model with a rapid and slow phase, each described by first‐order kinetics. Rapid and slow fraction rate constants and percent rapid were determined. Decomposition ranged from 39% for wheat to 67% for soybean. Carbon dioxide evolution peaked on the third day, and 30 to 50% of residue C was decomposed during the first six days of incubation. Decomposition and N mineralization were higher in the Taloka compared to the Leadvale soil, and generally followed the sequence soybean > corn > wheat residues as did percent rapid fraction, and rapid and slow fraction rate constants. Rapid fraction rate constants ranged from 0.039±0.005 to 0.115±0.005 per day. Slow fraction rate constants ranged from 0.013±0.002 to 0.030±0.002 per day. Percent rapid fraction ranged from 13±2% to 38±2%. The half‐lives of the slow fraction ranged from 23.4±3.5 to 51.8±3.5 days. Nitrogen mineralization, as estimated by ammonium (NH4) and nitrate (NO3) formation occurred only with the soybean residue, whereas the corn and wheat residues were characterized by N immobilization throughout the study.  相似文献   

12.
Agricultural land in lowland Vietnam is scarce due to population growth. Hence, cultivation is increasingly practised on the steep upland slopes. Factors affecting resource use, soil fertility and household economics were studied in six villages of the Black Thai ethnic group in northwest Vietnam. Farmers were interviewed about their individual household situation. Yield development of major crops and cropping patterns in upland cultivation over the last 50 years were recorded in group discussions. In addition, soil fertility was analysed on different land‐use units. Formerly predominant upland rice changed to maize and cassava production at present. Decreasing soil fertility and a shift from subsistence to market‐oriented production, facilitated by new maize varieties and better access to markets are major causes. The Black Thai farmers economy has improved in recent years. The decline in soil fertility is concealed by higher maize yields from new varieties, and soil fertility conservation ranks low among farmers' priorities. The improved economy of the individual households might be of short duration if farmers cannot be sensitized to new resource management options. These have to be developed in line with farmers' priorities and the fragile environment of Vietnam's uplands. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Seeds enriched with zinc (Zn) are ususally associated with better germination, more vigorous seedlings and higher yields. However, agronomic benefits of high‐Zn seeds were not studied under diverse agro‐climatic field conditions. This study investigated effects of low‐Zn and high‐Zn seeds (biofortified by foliar Zn fertilization of maternal plants under field conditions) of wheat (Tritcum aestivum L.), rice (Oryza sativa L.), and common bean (Phaseolus vulgaris L.) on seedling density, grain yield and grain Zn concentration in 31 field locations over two years in six countries. Experimental treatments were: (1) low‐Zn seeds and no soil Zn fertilization (control treatment), (2) low‐Zn seeds + soil Zn fertilization, and (3) Zn‐biofortified seeds and no soil Zn fertilization. The wheat experiments were established in China, India, Pakistan, and Zambia, the rice experiments in China, India and Thailand, and the common bean experiment in Brazil. When compared to the control treatment, soil Zn fertilization increased wheat grain yield in all six locations in India, two locations in Pakistan and one location in China. Zinc‐biofortified seeds also increased wheat grain yield in all four locations in Pakistan and four locations in India compared to the control treatment. Across all countries over 2 years, Zn‐biofortified wheat seeds increased plant population by 26.8% and grain yield by 5.37%. In rice, soil Zn fertilization increased paddy yield in all four locations in India and one location in Thailand. Across all countries, paddy yield increase was 8.2% by soil Zn fertilization and 5.3% by Zn‐biofortified seeds when compared to the control treatment. In common bean, soil Zn application as well as Zn‐biofortified seed increased grain yield in one location in Brazil. Effects of soil Zn fertilization and high‐Zn seed on grain Zn density were generally low. This study, at 31 field locations in six countries over two years, revealed that the seeds biofortfied with Zn enhanced crop productivity at many locations with different soil and environmental conditions. As high‐Zn grains are a by‐product of Zn biofortification, use of Zn‐enriched grains as seed in the next cropping season can contribute to enhance crop productivity in a cost‐effective manner.  相似文献   

14.
A field study was conducted on upland soils for six years to determine interactive effects of winter wheat (Triticum aestivum L.) cover crop, organic and inorganic soil amendments on grain yields and nutrient utilizations in a no-till corn (Zea mays)-soybean (Glycine max) rotation. Experimental design was a split-plot arrangement with four replicates. Cover crops were the main plots and fertilization treatments used as sub-plot. Fertilization treatments included an unfertilized control, poultry litter, poultry litter (PL) plus flue gas desulfurization (FGD) gypsum and inorganic N fertilizer applied every other year to corn. Corn grain yield and grain N and P uptake were greater with PL than inorganic fertilizer in 2014 and 2016. Addition of FGD gypsum to PL significantly increased corn grain yield by 15% in 2016. Cover crop increased corn and soybean grain yields in a year with less seasonal rainfall possibly by conserving soil moisture.  相似文献   

15.
采用田间小区试验研究了秸秆还土方式对旱地土壤培肥和玉米产量的影响。结果表明,秸秆翻压与覆盖均有明显培肥土壤,提高玉米产量的作用,但两种还土方式之间的差异不明显。  相似文献   

16.
施肥对砂姜黑土基础肥力及强筋小麦产量、品质的影响   总被引:7,自引:0,他引:7  
为探讨不同施肥方式对砂姜黑土的培肥效果和不同土壤基础肥力水平对优质强筋小麦产量及品质的影响,在22年长期定位试验的基础上,研究了不同施肥方式下砂姜黑土基础肥力的变化,并分析了土壤主要养分性状与强筋小麦产量和品质的关系.结果表明,长期单施有机肥或有机肥与化肥配合施用均能较单施化肥处理显著提高土壤全氮、有机质、碱解氮、速效磷及速效钾的含量;同一施氮水平,有机肥与化肥配施处理的基础肥力产量(不施肥时的产量)较单施化肥的高2715.0kg·hm-2.土壤有机质、全氮、全磷及速效磷含量与籽粒产量、蛋白质、湿面筋和沉降值均呈正相关.有机肥与化肥配施不仅是培肥地力的主要途径,同时还是确保优质小麦保优栽培,实现可持续发展的有效措施.  相似文献   

17.
Soybean is an important grain crop for Brazil, and phosphorus (P) plays an important role in improving yield of this crop in Brazilian Oxisols. Data are limited on influence of P sources and rate on soybean yield, yield components, and P-use efficiency. A field experiment was conducted for 3 consecutive years to determine response of soybean to three fertilizers (single superphosphate, Yoorin, and Arad) with 0, 17.5, 35, and 52.5 kg P ha?1 (0, 40, 80 and 120 kg P2O5 ha?1). Grain yield was significantly influenced by phosphorus fertilization. Overall, maximum grain yield was produced by application of single superphosphate, followed by Yoorin and Arad. Number of grains per pod and 100-grain weights were also influenced significantly by P fertilization. Shoot dry weight, number of pods per plant, and grain harvest index had a significant positive association with grain yield. Phosphorus uptake in grain was about six times more than uptake in shoots, and P uptake in grain had a significant positive association with grain yield. Phosphorus-use efficiency (kg grain/kg P applied or uptake) decreased with increasing P rate, and it was greater for single superphosphate than for Yoorin and Arad sources of P fertilization. However, P-utilization efficiency (kg grain plus straw yield / P uptake in grain plus straw) was greater under Yoorin treatment compared to the two other sources of P.  相似文献   

18.
A field experiment was conducted for 3 crop years (July‐June) at the Indian Agricultural Research Institute, New Delhi to study the effects of Sesbania and cowpea green manuring (GM) and incorporation of mungbean residues after harvesting grain, Leucaena loppings, FYM and wheat straw incorporation before planting rice and application of 0,40,80 and 120 kg N ha?1 to rice on the soil organic carbon (SOC), alkaline permanganate oxidizable N (APO‐N), 0.5 M sodium bicarbonate extractable P (SBC‐P) and 1N ammonium acetate exchangeable K (AAE‐K) in surface 0–15 cm soil after the harvest of rice and wheat grown in sequence. Green manuring and addition of organic residues prevented the decline in SOC. On the other hand addition of N fertilizer tended to decrease SOC after rice harvest. On the contrary application of green manures, organic residues, FYM and fertilizer N increased APO‐N, which indicates the benefit of these treatments to a more labile soil organic N pool. Also application of green manures, organic residues, FYM and fertilizer N increased SBC‐P. Not much change was observed in AAE‐K by the treatments applied.  相似文献   

19.
不同施肥模式对赤红壤旱地作物产量和土壤肥力的影响   总被引:6,自引:0,他引:6  
采用长期定位田间试验,研究不同施肥模式对赤红壤旱地花生一甘薯轮作制产量和土壤肥力的影响.5年定位试验表明,平衡施肥平均产量最高,花生和甘薯比常规施肥增产13.1%~13.5%,净增收提高14.0%;氮磷钾对花生和甘薯的增产率逐年提高,但花生和甘薯分别对缺磷和缺钾较敏感.年际间产量变化趋势表明,常规施肥对花生和甘薯产量的变异系数大于平衡施肥;不施肥区和氮磷钾缺素区的产量均呈现逐年下降,但缺氮对花生产量的敏感性大于甘薯,甘薯缺磷或缺钾对产量的敏感性高于花生.平衡施肥的氮磷钾利用率平均分别为40.9%、17.7%和24.2%;缺素区的土壤供肥量比不施肥区提高了近1倍;土壤有机质都有所提高,施用氮肥都使土壤酸度有所增加;不施肥区和氮磷钾缺素区都使相应的土壤速效养分明显下降;常规施肥使土壤有效磷下降22.5%,碱解氮和速效钾则基本维持不变,但平衡施肥使土壤有效磷含量基本不变,碱解氮和速效钾则分别提高26.2%和38.4%.  相似文献   

20.
稻麦玉米秸秆残留还田量定量估算方法及应用   总被引:2,自引:4,他引:2  
为了解秸秆残留还田是秸秆直接还田的基本形式。该文通过逐步推导,给出了秸秆残留还田量定量估算的系列公式,并将秸秆残留还田量定量估算建立在5个参数的基础上,即农作物平均株高、收割留茬高度、叶部生物量比例、枝叶脱落率和秸秆机械收集损失率;以实地调查为基础,结合对试验数据收集整理,给出了小麦、玉米、水稻三大农作物秸秆残留还田量定量估算的参数体系,并估算出了三大农作物的秸秆残留还田量,分别为7 106.92、4 543.48和6 392.95万t,合计为18 043.35万t,占三大农作物的秸秆总产量的31.13%;三大作物人工收获秸秆残留还田量为1724.47万t,机械收获秸秆残留还田量为16 318.88万t,后者是前者的9.46倍;进而以农作物面积为权重,推算出全国的秸秆残留还田量为25 330.08万t,计算出单位面积耕地的残留还田量为1.87 t/hm2,与基本还田量的最低需求3.0 t/hm2相比尚需增加60%以上,与基本还田量的一般需求4.5 t/hm2相比尚需增加1.41倍。论文最后指出了秸秆残留还田量定量估算需要继续深入开展的主要研究工作:一是开展更广泛的田间实测,进一步提高小麦、玉米、水稻三大农作物秸秆残留还田量定量估算参数的精准度,尤其是收割留茬高度和秸秆机械收集损失率这两大参数的精准度,以便更确切地估算三大农作物的秸秆残留还田量;二是针对棉花、大豆、油菜等主要经济作物进行秸秆残留还田量定量估算研究,建立全国主要粮经作物秸秆残留还田量定量估算的参数体系;三是建立区域性的秸秆残留还田量定量估算的参数体系,逐步实现各区域秸秆残留还田量的定量估算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号