首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grain sorghum, Sorghum bicolor (1.) Moench has not been fully evaluated for its variability in nitrogen efficiency. A 2‐year study using 12 hybrids was conducted and nitrogen efficiency was calculated as: 1. total dry matter (DM) per unit N uptake (NE1), 2. total grain yield per unit N uptake (NE2), and 3. the product of NE2 and the grain N:stover N ratio (NE3). NE1 values increased with plant age and were significantly different among hybrids at all stages of growth. A 20% difference in NE1 was found between the least and most efficient hybrids at maturity. A significant hybrid x year interaction showed that the environment strongly influenced hybrid ranking. Hybrids which ranked high in one year often did poorly the other year and visa versa for NE1, NE2, or NE3. Each N efficiency criterion ranked the hybrids differently, although NE1 and NE2 appeared to be the most closely related. Hybrids generally maintained satisfactory values for NE3 if one parent (either male or female) had a high NE3 value in hybrid combination. Differences were more dramatic for partitioning of N between grain and stover than for NE values among hybrids. Due to environmental influences, it appears that at least 3 or more years of data may be needed in order to establish consistent trends for N efficiency in grain sorghum.  相似文献   

2.
Conservation tillage crop production systems have become common in the central Great Plains because they reduce soil erosion and increase water‐use efficiency. The high residue levels associated with no‐tillage systems can cause soils to be cool and wet which can reduce nutrient uptake and growth of crops. Starter fertilizer applications have been effective in improving nutrient uptake even on soils high in available nutrient elements. Resent research indicates that corn (Zea mays L.) hybrids differ in their responses to starter fertilizer. No information is currently available concerning grain sorghum [Sorghum bicolor (L.) Moench] hybrid response to starter fertilizer. The objective of this study was to evaluate grain sorghum hybrid responses to starter fertilizer in a no‐tillage environment on a soil high in available phosphorus (P). This field experiment was conducted from 1995 to 1997 at the North Central Kansas Experiment Field, located near Belleville, on a Crete silt loam soil (fine, montmorillonitic, mesic, Pachic Arguistoll). Treatments consisted of 12 grain sorghum hybrids and two starter fertilizer treatments. Fertilizer treatments were starter fertilizer [34 kg nitrogen (N) and 34 kg P2O5 ha‐1] or no starter fertilizer. Starter fertilizer was applied 5 cm to the side and 5 cm below the seed at planting. Immediately after planting, N was balanced on all plots to give a total of 168 kg N ha‐1. In all three years of the experiment, grain yield, total P uptake (grain plus stover), grain moisture content at harvest, and days to mid‐bloom were affected by a hybrid x starter fertilizer interaction. Starter fertilizer consistently increased yields, reduced harvest grain moisture, improved total P uptake, and reduced the number of days needed from emergence to mid‐bloom of Pioneer 8505, Pioneer 8522Y, Pioneer 8310, Dekalb 40Y, Dekalb 48, Dekalb 51, Dekalb 55, and Northrup King 524, buthadno effect on Pioneer 8699, Dekalb 39Y, Northrup King 383Y, and Northrup King 735. When averaged over the three years, starter fertilizer increased grain yield of responding hybrids (hybrids in which the 3‐year average grain yield was significantly increased by the application of starter fertilizer) by 920 kg ha‐1. In responding hybrids, starter fertilizer reduced grain moisture at harvest by 54 g kg1 and also shortened the period from emergence to mid‐bloom by five days. Starter fertilizer increased V6 stage aboveground dry matter production and N and P uptake of all hybrids tested. Results of this work show that in high residue production systems even on soils high in available P, starter fertilizer can consistently increase yield of some hybrids, whereas other hybrids are not affected.  相似文献   

3.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

4.
In the dry savannas of west and central Africa, where low soil fertility is major constraint to maize production, the development of tropical maize genotypes with high and stable yield under low-nitrogen condition is very important, since access to these improved genotypes may be the only affordable alternative to many small scale farmers.

Field trials were conducted at Samaru (Typic Haplustalfs) to investigate the response of low-N tolerant maize cultivars to nitrogen (N) fertilizer. Nitrogen application rates were 0, 30, 60, 90 kg N ha−1 and four maize cultivars (Low-N pool C2, ACR 8328 BN C7, Super Oba II and TZR-SR). Maize leaf area index, intercepted radiation, leaf area and stover weights were increased due to nitrogen application at flowering. For most of the parameters, 60 kg N ha−1 appeared to have the significantly high values. However, there was no significant difference between application rates of 60 and 90 kg N ha−1 in stem weight, stover weight, grain yield and shelling percent at harvest. Genotypic variation observed in the maize agronomic traits were not significant except in leaf weight and grain yield. The amount of nitrogen taken by maize increased with increase in fertilizer rates. Application of 30 and 90 kg N ha−1 to soil increased the maize grain N concentration and total N uptake. About 45.3 kg ha−1 and 8.8 g N kg−1 nitrogen uptake was obtained in maize shoot and grain, respectively, at the application of 90 kg N ha−1. Low-N pool C2 genotype had the highest grain N concentration and shoot uptake significantly higher than TZB-SR. Nitrogen fertilizer applied accounted for 97% variation in soil nitrate. There existed a positive and significant correlation between maize grain yield and leaf nitrogen uptake (r = 0.33, P < 0.01). Averagely, nitrogen fertilizer applied accounted for 86% variations in maize grain yield.  相似文献   


5.
利用CHA生产优质杂种小麦的可行性分析   总被引:2,自引:0,他引:2  
  相似文献   

6.
Ten mungbean (Vigna radiata R. Wilczek) genotypes were evaluated for grain yield and phosphorus (P) efficiency at adequate and deficient P in soil. Genotypes differed significantly in plant height, grain yield, P accumulation (PA), and other P-efficiency parameters at both P levels. The genotype “AEM-40/30” had maximum plant height, grain yield, and phosphorus physiological efficiency index (PPEI) under P deficiency. The genotypes were distributed into nine groups based on their relationship between total PA and grain yield at deficient P level. Moreover, genotypes were categorized into low, medium, or high efficient for each parameter by allotting index score (1, 2, or 3). Maximum cumulative index score (25) was attained by the genotypes “AEM-40/30 and AEM-20/3/87”, and genotype “AEM-30/5/8/90” scored least total index (14). The significant differences among mungbean genotypes for PA, phosphorus harvest index (PHI), PPEI, and grain yield can be exploited to select or identify P-efficient mungbean genotypes.  相似文献   

7.
Identification and utilization of important attributes in the nitrogen economy of wheat (Triticum aestivum L.) should provide a basis for increasing grain protein percentage (GPP). The objectives of this study were to determine the magnitude of genetic variability of some factors important in the nitrogen economy of wheat, their relationship to one another, and their influence on grain yield (GY) and GPP. Twenty‐five hard red winter wheat genotypes representing a wide range of GY, GPP, and plant stature were grown in field trials over a 2‐year period. Significant differences were found for harvest index (HI) and nitrogen harvest index (NHI). Total nitrogen at anthesis (TNA), total nitrogen at maturity (TNM), and biological yield (BY) did not differ significantly. GPP was positively correlated with TNM and BY and negatively correlated with TNA, HI, and GY. GPP was not correlated with NHI, however, stepwise regression of GPP and grain protein yield revealed NHI as a common component, with a positive coefficient. In addition, NHI was positively correlated with GY. Selection of parents with complementary traits for nitrogen‐use efficiency may allow for simultaneous increases in GY and GPP.  相似文献   

8.
Dry bean is an important legume and nitrogen (N) deficiency is one of the most yield-limiting factors in most of the bean-growing regions. A greenhouse experiment was conducted with the objective to determine influence of N on growth, yield, and yield components and N uptake and use efficiency of 23 dry bean genotypes. Straw yield, grain yield, yield components, maximum root length, and root dry weight were significantly increased with the addition of N but varied with genotypes. The N × genotype interactions were also significant for most of these traits, indicating variation in responses of genotypes with the variation in N levels. There was significant difference in N uptake and use efficiency among genotypes. Most of growth and yield components were significantly and positively associated with grain yield. Based on grain yield efficiency index (GYEI), genotypes were classified into efficient, moderately efficient, or inefficient group in N-use efficiency. Nitrogen concentration was greater in grain compared to straw, indicating greater N requirement of dry bean genotypes.  相似文献   

9.
ABSTRACT

Research has shown that some corn (Zea mays L.) hybrids grown under reduced tillage conditions respond to starter fertilizer containing nitrogen (N) and phosphorus (P), while others do not. This research studied variability of responsiveness among corn hybrids to starter fertilizer containing a more complete complement of nutrients. The experiment was conducted from 1996 to 1998 on a producer's field near Scandia, KS, on a Carr sandy-loam soil (coarse-loamy, mixed, superactive calcareous, mesic Typic Udifluvents). The response of four corn hybrids (Pioneer 3563, Pioneer 3346, DeKalb 591, and DeKalb 646) to starter fertilizer combinations containing N, P, potassium (K), sulfur (S), and zinc (Zn) was evaluated. In all three years of the experiment, starter fertilizer containing N and P consistently increased grain yield, reduced the number of thermal units needed from emergence to maturity, decreased grain-moisture content at harvest, and increased total P uptake (grain plus stover at maturity) of Pioneer 3346 and DeKalb 591, but had no effect on Pioneer 3563 and DeKalb 646. Addition of S to the starter mix produced additional yield increases for Pioneer 3346 and DeKalb 591, whereas addition of K and Zn to the starter did not show any additional yield benefit for these two hybrids. Grain yield of Pioneer 3563 and DeKalb 646 was not improved by starter fertilizer, regardless of the elemental composition. When no starter fertilizer was applied, early-season root development was greater in Pioneer 3563 and DeKalb 646 than in the other two hybrids. However, the addition of starter fertilizer increased numbers of roots and depth of rooting in Pioneer 3346 and DeKalb 591 but had no effect on Pioneer 3563 and DeKalb 636. Results showed starter fertilizer benefited grain yield for two hybrids. Grain yield of the other two hybrids, however, was not influenced by starter, regardless of which nutrients were supplied. This response may be attributed to differences in root-growth characteristics of the hybrids. The two responsive hybrids did, however, yield an average of 0.75 mg ha?1 greater than the two non-responsive hybrids. This result indicates it is unlikely that all of the yield loss from not using a starter can be avoided by hybrid selection.  相似文献   

10.
稻-麦轮作是太湖流域典型的集约化粮食作物种植体系,化肥用量大,氮磷流失控制广为关注。本文采用大区田间对比试验研究了习惯施肥(FP)和优化控制施肥(CM)两种施肥模式对作物产量及氮磷肥料偏生产力的影响,同时探讨了两种施肥模式下农田径流水中各形态氮、磷的特征和径流氮、磷损失的差异。结果表明优化控制施肥水稻和小麦地上部总生物量、籽粒产量、植株地上各部位养分(氮磷钾)含量及积累量与习惯施肥差异不显著(P>0.05);优化控制施肥水稻和小麦的氮肥偏生产力显著大于习惯施肥(P<0.05),磷肥偏生产力也相似。稻季和麦季优化控制施肥径流水中各形态氮、磷浓度小于习惯施肥,甚至达到显著水平(P<0.05);稻季、麦季和完整轮作期优化控制施肥总氮、总磷的累积流失量显著小于习惯施肥(P<0.05)。优化控制施肥模式不仅能保持水稻和小麦的籽粒产量,而且能显著减少稻-麦轮作体系的氮磷流失,可以在实际农业生产中加以推广和利用。  相似文献   

11.
An European maize (Zea mays L.) landrace core collection (EMLCC) was formed with samples from several countries. Evaluation of the EMLCC may contribute to broad the genetic base of maize breeding programs. The objective of this study was to assess the variability of EMLCC under low nitrogen (N) in relation to high N input. Eighty-five landraces of the EMLCC, grouped in four maturity groups, and three check hybrids were evaluated for response to low (0 kg ha−1) and high (150 kg ha−1) N in Spain and Greece. Five plant size traits (plant height, ear height, leaf length, leaf width and leaf area index), two grain traits (1000-kernel weight and grain yield), and two agronomic traits [growing degree units (GDU) and lodging] were studied. Overall means of plant size and grain traits increased when genotypes were grown at 150-N relative to 0-N input. The relative increase for grain traits was smaller in landraces than in hybrids. This suggests that landraces had lower grain yield response to N supply compared to hybrids. Linear regressions of plant size traits on GDU indicated that vegetative development was primarily associated with flowering lateness. The maturity group was the main source of variation for all traits. Landrace variability within maturity groups was significant for all traits across environments, despite significant landrace × environment interactions. Estimates of genetic and genotype × environment variances, and heritabilities at both high and low N inputs were not significantly different from each other. However estimates were generally larger at high N. Genetic and phenotypic correlation coefficients between the two N levels were very high for all traits.  相似文献   

12.
ABSTRACT

Assessing the genetic variation and relationships present in crop germplasm is a pre-requisite for parental selection and breeding. The objective of this study was to determine the genetic relationships present among selected heat and drought tolerant wheat genotypes using simple sequence repeat (SSR) markers, agronomic traits and grain quality parameters to select desirable parents for breeding. Twenty-four agronomically selected wheat genotypes sourced from the International Maize and Wheat Improvement Centre (CIMMYT)’s heat and drought tolerance nursery and four local check varieties were genotyped using 12 selected polymorphic SSR markers. The test genotypes were phenotyped using yield and yield-component traits, and grain protein content (GPC) under non-stressed (NS) and drought-stressed (DS) conditions. Expected heterozygosity mean value of 0.58 indicated moderate genetic diversity for breeding. The studied wheat genotypes were delineated into six genetic groups using cluster analysis. Significant genotypic differences were observed for agronomic traits and GPC under NS and DS conditions. Genetically unrelated breeding parents including LM02, LM13, LM23, LM41, LM44, LM71, LM73 and LM75 were selected for population development and breeding for enhanced grain yield and protein content under heat and drought-stressed environments.  相似文献   

13.
Abstract

Information on the combined effects of N and water stresses on corn (Zea mays L.) is of importance for selecting nitrogen efficient and drought tolerant genotypes. Greenhouse and field experiments were conducted to determine the interactive effects of N and water stresses on N utilization efficiency (NUE), leaf water status and yield of diverse corn genotypes. Three genotypes which normally rank differently for NUE in the field, were grown to the 9‐leaf stage in the greenhouse with four N rates of 0, 30, 60, and 90 mg/kg and two water regimes (stressed for 8‐d, and unstressed). In the field experiment, four genotypes with different NUE history, were grown with N rates of 0, 60, 120, and 180 kg/ha, and water regimes of irrigated and dryland. Maximum grain yield was obtained at different N rates for different genotypes and for different water regimes. The genotypes differed significantly in NUE as expected, but also for water use efficiency (WUE) in both experiments. Nitrogen x water regime interactions for NUE were not significant in either experiment. Water regime did not significantly change the rank among genotypes for NUE as the genotype x water regime interactions for NUE were not significant in either of the two environments. This should greatly simplify selection of corn genotypes for NUE. NUE paralleled WUE closely for the genotypes studied. There was 19% difference between the best and poorest nitrogen efficient hybrids in terms of grain produced per kg total N uptake. Increasing N rate further decreased the total water potential of water stressed plants. There was a significant N x water regime interaction for grain yield. The grain yield increases due to irrigation compared to dryland ranged from 23% to 84% for the genotypes studied. Leaf water and osmotic potentials decreased significantly as N rate increased in the dryland, but were the same over N rates in irrigated plants. Apparent remobilization of N from leaves to grain was the major source of grain N in all genotypes, however, there were differences between genotypes for the fraction of leaf N remobilized. Genotypic selection for NUE does not appear to be influenced by water regime, and may result in simultaneous selection for WUE.  相似文献   

14.
稻-麦轮作是太湖流域典型的集约化粮食作物种植体系,化肥用量大,氮磷流失控制广为关注。采用大区田间对比试验,研究了习惯施肥(FP)和优化控制施肥(CM)2种施肥模式对作物产量及氮磷肥料偏生产力的影响,同时探讨了2种施肥模式下农田径流水中各形态氮、磷的特征和径流氮、磷损失的差异。结果表明:优化控制施肥水稻和小麦地上部总生物量、籽粒产量、植株地上各部位养分(氮磷钾)含量及积累量与习惯施肥差异不显著(P>0.05);优化控制施肥水稻和小麦的氮肥偏生产力显著大于习惯施肥(P<0.05),磷肥偏生产力也相似。稻季和麦季优化控制施肥径流水中各形态氮、磷浓度小于习惯施肥,甚至达到显著水平(P<0.05);稻季、麦季和完整轮作期优化控制施肥总氮、总磷的累积流失量显著小于习惯施肥(P<0.05)。优化控制施肥模式不仅能保持水稻和小麦的籽粒产量,而且能显著减少稻-麦轮作体系的氮磷流失,可以在实际农业生产中加以推广和利用。  相似文献   

15.
Abstract

Maize (Zea mays L.) is an important cereal crop with multiple uses in the world. Stay‐green hybrids have been developed because of their higher productivity. Few studies have been conducted to evaluate the influence of nitrogen (N) levels on N uptake, remobilization, grain yield and N concentration in stay‐green hybrids compared to senescent ones. Field studies were undertaken in P.R. China on an Ustochrepts soil to determine the effects of N levels and hybrids differing in leaf senescence on grain yield and N concentration, N uptake, remobilization, and residual in vegetative tissues in 1996 and 1997. The stay‐green hybrid ND108 had greater yields than TK5 (intermediate senescing) and ZD120 (fast senescing) under both high (225 kg N ha?1) and low N (0 in 1997 or 45 kg N ha?1 in 1996, respectively) supply. ND108 took up more N than the two other hybrids. Grain N concentration of ND108 did not decrease by low N significantly, excepting the experiment sown in the summer of 1996, when post‐silking N uptake was reduced greatly by the shortened grain filling duration. Nitrogen remobilization efficiency in vegetative tissue was higher in senescent hybrids ZD120 than ND108. Nitrogen retained in the stover at harvest was higher in ND108, which can lead to a deficit of soil N for the next crop if the stover is not returned into soil. It was suggested that, though stay‐green hybrids have been developed for high N conditions, they have advantages over senescent hybrids also under N limited conditions.  相似文献   

16.
Abstract

Corn (Zea mays L.) is a major source of nutrition for humans and animals. Chemical and physical properties of corn endosperm vary among hybrids, are influenced by genotype and environment, and may affect the crop's response to nitrogen (N) fertilization. The objective of the study was to measure the responses of grain yield and grain N, phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), iron (Fe), boron (B), zinc (Zn,) and copper (Cu) concentration of different endosperm types to N fertilization. The study was conducted at two Ohio locations in 1988, where six endosperm types and two N rates (34 and 200 kg N/ha) were combined in a split plot arrangement. Nitrogen rate (main plots) had little effect on yield at either location, and the soft endosperm hybrid was the only hybrid to respond to N fertilizer. Within fertilizer level, hybrids differed in grain yield with the waxy hybrid out yielding the normal endosperm hybrid, and the hard endosperm hybrid out yielding the soft one at the 200 kg N/ha rate. Application of N fertilizer increased the grain N concentration of all hybrids. Grain of the waxy hybrid contained an equal or greater N concentration than the normal hybrid. In contrast, no difference in N level was found between hard and soft endosperm hybrids at either fertilizer level. Climatic conditions and soil fertility differences might have been partly responsible for location effects. Genetic make‐up could have been a factor in differing hybrid response since grain concentration of nutrients Varied by location, endosperm type, and N treatment.  相似文献   

17.
An experiment was conducted to study the response of two maize hybrids to external potassium (K) application under saline conditions. The data showed that there was an increase in the organic solute contents and sodium ion under salinity stress, though potassium, calcium, nitrogen and phosphorus were decreased. There was a non-significant effect of K application on glycinebetaine and total soluble sugar, however; the proline, protein and total free amino acids were increased with the application of external K. The enzymatic activity like nitrate reductase and nitrite reductase activity were severely reduced under salinity stress and improved by K application. The maize hybrids differed significantly for all the parameters discussed in the study except sugar, phosphorus and number of grain rows per cob. The increase in yield parameters was more pronounced under control than under saline conditions. The enhanced yield and yield components of these maize hybrids might be due to the quick response to external K application, resulting in high contents of leaf potassium, calcium, nitrogen and phosphorus. The results indicated that the maize hybrid ‘Pioneer32B33’ might perform better than ‘Dekalb979’ under saline conditions when sufficient potassium is applied in the rooting medium.  相似文献   

18.
王永锐 《核农学报》1992,6(4):219-224
研究结果表明,高产杂交水稻有较多的~(32)P和~(14)C积集在分蘖和孔熟期的稻穗中,杂交水稻F_1乳熟期同化的~(14)C-葡萄糖向稻穗输送的百分率高。观察发现,杂交稻谷粒产量与~(14)C-葡萄糖在稻穗中分布及与IAP(输入积)之间的相关性高。低产杂交稻没有上述特性。放射性同位素~(32)P、~(14)C在分蘖和稻穗中的分布可作为预测杂交水稻F_1谷粒产量的指标。  相似文献   

19.
《Journal of plant nutrition》2013,36(8):1173-1194
The SPAD chlorophyll meter was found to be a reliable, quick, and non-destructive tool used for directly measuring leaf chlorophyll and indirectly assessing the proportional parameter of leaf, and by extension, plant nitrogen (N) status. The meter has been used successfully to assess leaf N in conventional maize crops, but it has not been used with new maize (Zea mays L.) genotypes containing leafy (L) and reduced stature (RS) traits. SPAD meter readings were collected on the uppermost fully developed leaves (before silking) and on the ear leaf (after silking) of field grown maize genotypes with and without the L and RS traits. The experiment was conducted during 1996 and 1997 at two sites in Eastern Canada (Ottawa and Montreal). At each site in each year, a split plot arrangement of two treatment factors was used in a randomized complete block design with four blocks. The main plot treatments were levels of N (0, 85, 170, and 255 kg ha?1), with six maize genotypes as subplot treatments. The hybrids included: (i) leafy reduced-stature, LRS, (ii) non-leafy normal stature, NLNS, (iii) leafy normal stature, (LNS), (iv) non-leafy reduced-stature, NLRS, (v) conventional commercial hybrids, Pioneer 3905 as the hybrid check for late maturity, and (vi) Pioneer 3979, a check for early maturity. The hybrids were chosen on the basis of their contrasting canopies and root architecture. The SPAD meter readings were collected on the same five plant genotypes over time (six times per site per year, except four times for the Ottawa site in 1997). All genotypes showed increasing meter reading values as plants aged until silking. In general, SPAD meter readings increased as N fertilization level increased at each measurement date for both sites and years. In general, LNS and P3905 hybrids showed greater SPAD meter readings than other hybrids at all sampling dates for both sites and growing seasons. Applied N rates were significantly correlated with the SPAD meter readings. More highly significant relationships were found for N fertilizer levels and SPAD meter readings for the hybrids in 1997 than for the hybrids in 1996. For the Montreal site in 1997, LRS, LNS and P3905 hybrids were among those showing the highest r values between N level and SPAD readings. The correlation coefficients between SPAD readings and grain yield were generally lower. However, the NLNS hybrid had a high SPAD-yield correlation at the Macdonald site in 1997.  相似文献   

20.
Increased application of nitrogen fertilizers has significantly raised grain yield and protein concentration in wheat. However, only 30–50% of applied fertilizer nitrogen are usually utilized by the plant. In this study, four soft red winter wheat genotypes (Triticum aestivum L., IL07‐4415, MD05W10208‐11‐8, OH06‐150‐57 and Sisson) were grown under three different nitrogen regimes (high, medium, and low) in a greenhouse, and grain yield, grain protein concentration, nitrogen use efficiency (NUE) and their associated traits were evaluated. Among the four genotypes, a high‐yielding cultivar, Sisson, exhibited superior performance in terms of grain weight plant−1 and NUE for yield (NUEY) at low nitrogen due to maintained grain number spike−1 and harvest index. Significant yield losses due to nitrogen limitation were attributable to reduced spike number plant−1 and grain number spike−1 in the other genotypes. Interestingly, a linear relationship between NUEY and NUE for grain protein (NUEP) was detected at high (R 2 = 0.67) and low (R 2 = 0.42) nitrogen; both of these traits were positively correlated with grain number spike−1, 1000‐seed weight, and harvest index under nitrogen‐limited conditions (R 2 = 0.35–0.48). These results suggest that simultaneous improvement of NUEY and NUEP could be achieved through the selection of the three yield components (grain number spike−1, 1000‐seed weight, and harvest index) at low nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号