首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of varying fertilizer application rates [100–15–100 or 300–46–300 mg L‐1 of nitrogen (N)‐phosphorus (P)‐potassium (K)] and pinching dates on nutrient uptake patterns of poinsettias were studied. During the first seven weeks after potting, varying the N‐P‐K fertilization rate from 100–15–100 to 300–46–300 mg L‐1 N‐P‐K had no effect on plant height, dry weight, nutrient concentration, or nutrient content of poinsettias. The uptake ratios for NO3‐N, K, calcium (Ca), and magnesium (Mg) all were <40% of the amount that was available at the 100 mg L"1 N and K fertilization rate, indicating that poinsettias require lower levels of NO3‐N, K, Ca, and Mg than what was available from the 100–15–100 mg L"1 N‐P‐K fertilization rate. The higher uptake ratios of >60% and >70%, respectively, for NH4‐N and P at the 100 mg L"1 N and K fertilization rate indicated the plants utilized a higher percentage of the available NH4‐N and P, indicating that an application rate >18 mg L‐1 NH4‐N and >15 mg L‐1 P would be required by poinsettias from the week before the plants were pinched through three weeks after pinching. The 300–46–300 mg L‐1 N‐P‐K fertilization rate provided excessive nutrients that were not utilized by the plants during the early stages of plant growth.  相似文献   

2.
Plant growth and metabolism is impaired under stress conditions, resulting in decreased crop yields. The purpose of this investigation was to evaluate the NaCl stress effects on NH+ 4 metabolism in cotton plants at vegetative and reproductive stages of growth.

Cotton (Gossypium hirsutum L.) plants grown in normal (control) and NaCl treated Hoagland solutions were analyzed for distribution of N15 in NH+ 4 plus amide‐N, free α‐amino‐N, total soluble‐N and protein‐N after the plants were provided 15NH4NO3 in nutrient solutions for 6, 12 and 24 h. The concentration of protein‐15N was enhanced under a low level of NaCl (‐0.4 MPa osmotic potential) at the vegetative growth stage. The difference between the protein‐15N concentration of the moderately salinized (‐0.8 MPa) plants and the controls was not significant. A high level of NaCl (‐1.2 MPa) significantly decreased protein‐N content of plants compared with the controls and any other level of salinity. The NaCl increased accumulation of NH4 + plus amide‐N, free (α‐amino‐N, and total soluble‐N in cotton shoots, at both stages of growth. Low osmotic potential (high osmotic pressure) of the nutrient solution induced by excessive amounts of NaCl in nutrient solution inhibited NH+ 4 metabolism and decreased protein synthesis, thus resulting in accumulation of soluble N‐compounds. The ionic effect probably contributed also to inhibition of protein synthesis.  相似文献   


3.
The growth of sesame (Sesamum indicum L.) was studied at three root temperature regimes (25/25, 20/10 and 15/15°C day/night) factorially combined with three NO3 : NH4 + ratios (mM ratios, 10:0, 8:2, or 6:4), as a source of nitrogen (N), in the irrigation solution. The air temperature was kept constant at 30°C. Transpiration, nutrient composition, and level of root‐born cytokinins and gibberellins in the xylem exudate were monitored. The two low root temperature regimes, 15/15 and 20/10°C, restricted the growth of sesame, reduced transpiration and increased the accumulation of soluble carbohydrates in the shoot and in the roots compared to the 25/25°C regime. The NO3:NH4 + ratios had no effect on growth. Nutrient contents in the shoot at low root temperatures, particularly K+, NO3 , and H2PO4 were decreased markedly, but Na+ increased relative to it's content in the 25/25°C regime. Increasing NH4 + proportion in the irrigation solution raised total N concentration in the plant tissues at all root temperatures. The amounts of cytokinins and gibberellins in the xylem exudate decreased at the low root temperature regimes relative to the 25/25°C regime. Low root temperature reduced xylem transport of nutrients and root born‐phytohormones, most probably because of reduced water flow through the plant relative to the 25/25°C regime.  相似文献   

4.
Abstract

In a pot experiment, the effects of NO3‐N and NH4‐N fertilizer were examined on the pH of the bulk soil and rhizosphere, and on the growth and nutrient uptake of 18–35‐d old bean plants (Phaseolus vulgaris L.) supplied with KH2PO4 or rock phosphate (Hyperphos). Prior to sowing, the soil was incubated for 16 d to ensure complete nitrification of NH4‐N which decreased bulk soil pH from 6.8 to 5.5. In other pots, a nitrification inhibitor, N‐Serve, was added together with the ammonium fertilizer and after 18 d growth, the pH of the bulk soil was 6.6 while the pH of the rhizosphere decreased to 4.5. Shoot and root dry matter yield was significally greater for plants supplied with KH2PO4 and fertilized with NH4‐N compared with NO3‐N. This increased growth by NH4‐N fed plants was presumably due to a increased nutrient availability caused by the acidification of the bulk soil. Shoot concentrations of ? and micronutrients, such as Fe, Mn, Zn, and Cu, were higher for plants supplied with NH4‐N, and more strikingly were higher for plats supplied with NH4‐N+N‐Serve when expressed on a root length basis. In this latter case, the increased nutrient acquisition by plants could only be due to acidification of the rhizopshere. The inhibitory effect of NH4‐N+N‐Serve, particularly on root growth, was not caused by NH4+ toxicity, but was due to a direct effect of N‐Serve as shown by growth comparisons with another nitrification inhibitor, dicyanodiamide (DCD).  相似文献   

5.
Oilseed rape (Brassica napus L.) response to root temperature regimes (20/20, 16/8 and 12/12°C day/night) at constant 20°C air temperature was studied. At each regime, three NO3 :NH4 + ratios (10:0, 8:2, or 6:4), at constant 10 mM N, in the irrigation solution were tested. Plant growth, transpiration, ionic composition and level of cytokinins and gibberellins in the xylem exudate were monitored. The two low root temperature regimes, 12/12 and 16/8°C, reduced rape shoot growth by 28 and 22%, and increased the accumulation of soluble carbohydrates by 42 and 26% in the roots, respectively, as compared to the 20/20°C regime. Low root temperatures reduced plants transpiration. The NO3 :NH4 + ratios had no effect on rape growth. At low root temperatures NO3 contents increased in the shoot and decreased in the roots. The sum of cations and that of anions at 12/12 and 16/8°C root temperatures decreased significantly as compared to 20/20°C. The presence of NH4 + in the irrigation solution decreased the concentrations of Ca2+ and Mg2+ in the shoots and roots and increased that of Cl in the shoots and of H2PO4 in the roots at all root temperatures. Cytokinins and gibberellins contents in the xylem exúdate decreased at the low root temperature regimes. Low root temperature reduced total upward transport of the mineral nutrients and phytohormones, most probably because of reduced water flow through the plant.  相似文献   

6.
Poinsettia cultivars Supjibi and Freedom were grown in eight hydroponic solutions to develop a baseline solution for further nutritional studies. Four solutions contained nitrogen (N) from Ca(NO3)2‐4H2O and KNO3 (denoted as ‐NH4) and four contained Ca(NO3)2‐4H2O, KNO3, nitric acid, and NH4NO3 as the N sources (denoted as +NH4). The four ‐NH4 and +NH4 solutions were further divided by an IX or 2X rate of micronutrients [boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), and zinc (Zn)] (denoted as IX or 2X). A factorial of these four solutions at 2 concentrations (100 mg L1 of N and potassium (K) and 15 mg L1 phosphorus (P), or 300 mg L1 of N and K and 46 mg L‐1 P) was studied. Greater leaf and stem dry weight for both ‘Supjibi’ and ‘Freedom’ was observed in plants grown with the +NH4 solutions, with a larger increase occurring with’ Supjibi’. Leaf NH4‐N content for both cultivars was higher for both the 100 and 300 mg L‐1 N and K fertilization rates when NH4‐N was included. The leaf K content was highest for the plants grown with the +NH/2X solution for ‘Supjibi’, for both fertilization rates, and leaf K content increased as the K application rate increased. Results indicate that for nutritional studies with poinsettias, hydroponic solutions should include between 12.5% to 33% of the N in the NH4 form, a calcium magnesium (Ca:Mg) ratio of 2:1, and a micronutrient concentration of (mg I/1) 0.5, 0.02, 6.6, 0.5, 0.1, and 0.05, respectively, for B, Cu, Fe, Mn, Mo, and Zn, for adequate plant growth.  相似文献   

7.
Abstract

Experiments were conducted using different NO3 /NH4 + ratios to determine the effects of these sources of N on mineral element uptake by sorghum [Sorghum bicolor (L.) Moench] plants grown in nutrient solution. The NO3 /NH4 + ratios in nutrient solution were 200/0, 195/5, 190/10, and 160/40 mg N L–1. Nutrient solutions were sampled daily and plants harvested every other day during the 12‐day treatment period.

Moderately severe Fe deficiencies were observed on leaves of plants grown with 200/0 NO3 /NH4 + solutions, but not on the leaves of plants grown with the other NO3 /NH4 + ratios. As plants aged, less Fe, Mn, and Cu were translocated from the roots to leaves and leaf/root ratios of these elements decreased dramatically in plants grown with 200/0 NO3 /NH4 + solutions. Extensive amounts of Fe, Mn, and Cu accumulated in or on the roots of plants grown with 200/0 NO3 /NH4 + solutions. Manganese and Cu may have interacted strongly with Fe to inhibit Fe translocation to leaves and to induce Fe deficiency. As the proportion of NH4 + in solution increased, K, Ca, Mg, Mn, and Zn concentrations decreased in the leaves, and Ca, Mg, Mn, and Cu concentrations decreased in roots. Potassium and Zn tended to increase in roots as NH4 + in solution increased.  相似文献   

8.
Abstract

Inhibition of nitrification in soil results in a decreased ratio of nitrate‐nitrogen (NO3‐N) to ammonium‐nitrogen (NH4‐N). If the conditions for NO3‐N loss by leaching or denitrification exist, nitrification inhibitors should increase concentrations of total inorganic soil nitrogen (N) (TISN) (NH4‐N + NO3‐N). This can then result in plants taking up more N and developing more crop yield or biomass. This study examined whether inhibition of nitrification by dicyandiamide (DCD) would result in increased concentrations of TISN under field conditions. The effects of DCD on soil N were evaluated in hyperthermic sandy soils planted to potato (Solanum tuberosum L., cv. Atlantic). Treatments were factorial combinations of N as ammonium nitrate (NH4NO3) at 67, 134, and 202 kg N ha‐1 and DCD at 0, 5.6, and 11.2 kg DCD ha‐1. Soil NH4‐N, NO3‐N, and TISN concentrations were determined for up to five potato growth stages at two locations for two years for a total of 16 determinations (cases), i.e., four were not determined. The N form ratio [NO3‐N/(NH4‐N + NO3‐N] x 100 was decreased in 10 of 16 cases, indicating that nitrification was inhibited by DCD. With two of these 10 cases, TISN concentration increased, but with four others, TISN concentration decreased with at least one N rate. With four of these 10 cases, inhibition of nitrification had no effect on TISN concentration. Under the conditions of these field studies, DCD inhibited nitrification more often than not. Inhibition of nitrification was, however, more likely to reduce TISN concentration than to increase it. This may have been due to DCD effects on immobization of applied NH4‐N.  相似文献   

9.
ABSTRACT

Impatiens (Impatiens wallerana Hook. f.) is the most important annual bedding plant in the United States, based on wholesale dollar volume. Production of high-quality plants requires optimization of the nutrition regimen during growth, especially the total nitrogen (N) concentration and the ratio of N sources. The objective was to determine the N concentration and the nitrate (NO3 ??N):ammonium (NH4 +?N) ratio of N source that optimized bedding-plant impatiens growth and flower development. Four N concentrations (3.5, 7, 10.5, and 14 mmol N · L?1) were used in factorial combination with four ratios of NO3 ??N:NH4 +?N (4:0, 3:1, 1:1, and 1:3). Application of treatments was made for 30 d. Then for 10 d only deionized water was applied to reduce salt buildup. Substrate pH was lowest (4.9) with the NH4 +?N source and electrical conductivity (EC) highest, but never > 2.4 dS m?1. Nitrogen concentration and N source displayed an interaction for most growth parameters. Shoot fresh and dry weights and flower bud number were maximized at the 1:3 NO3 ??N:NH4 +?N ratio with a N concentration of 10.5 mmol L?1. However, plant diameter, leaf number, and leaf chlorophyll content responded quadratically to N form ratio, with the 1:1 ratio optimum at a concentration of 10.5 mmol N· L?1.  相似文献   

10.
Abstract

This study was designed to explore nitrogen (N) nutrition in bearberry plants (Arctostaphylos uva‐ursi L.) using a hydroponic culture system. Two experiments were performed in which the total N concentration (34, 52, and 73 mg L?1) and N‐NO3 ?:N‐NH4 + ratio (50/50, 60/40, and 70/30 in %) in the nutrient solution were varied and effects on nutrient uptake [N, phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] and foliar composition determined. Highest‐quality plants were yielded using a N level of 73 mg L?1 and a N‐NO3 ?:N‐NH4 + ratio of 50/50. Standard nutrient values for foliar tissue were obtained for bearberry plants growing in these hydroponic cultures for their use as preliminary norms in the diagnosis and recommendation integrated system (DRIS). In a subsequent complementary experiment, these norms were used in the DRIS procedure and applied to plants growing in solutions of varying K concentrations. It was found that the DRIS norms established in the hydroponic experiments were able to account for changes in nutrient limiting factors produced in response to the varying K concentrations in the nutrient solution. The results obtained will be useful for the nutritional diagnosis of bearberry plants.  相似文献   

11.
Plant nitrogen (N) uptake, growth, and N use efficiency may be affected by N form (NO3 or NH4 +) available to the root. The objectives of this study were to determine the effect of mixed N form on dry matter production and partitioning, N uptake, and biomass N use efficiency defined as total dry matter produced per unit plant N (NUE1) in U.S. and tropical grain sorghums [Sorghum bicolor (L.) Moench]. The U.S. derived genotype CK 60 and three tropical genotypes, Malisor‐7, M 35–1, and S 34, were evaluated in a greenhouse trial using three nutrient solutions differing in their NO3 /NH4 + ratio (100/0, 75/25, 50/50). Shoot and root biomass, N accumulation, and NUE, were determined at 10‐leaf and boot stages. Averaged over all genotypes, shoot and root biomass decreased when NH4 + concentration was increased in the solution. Shoot biomass was reduced by 11% for 75/25 and 26% for 50/50 ratios, as compared to 100/0 NO3 /NH4 +. Similarly, root biomass reduction was about 34% and 45% for the same ratios, respectively. Increasing NH4 + concentration also altered biomass partitioning between shoot and root as indicated by decreasing root/shoot ratio. Total plant N content and NUE1 were also reduced by mixed N source. Marked genotypic variability was found for tolerance to higher rates of NH4 +. The tropical line M 35–1 was well adapted to either NO3 as a sole source, or to an N source containing high amounts of NH4 +. Such a characteristic may exist in some exotic lines and may be used to improve genotypes which do not do well in excessively wet soil conditions where N uptake can be reduced.  相似文献   

12.
‘Helleri’ holly (Ilex crenata Thunb. ‘Helleri') plants were grown in solution culture at aluminum (Al) concentrations of 0, 6, 12, 24, and 48 mg.L‐1 for 116 days. Aluminum did not affect root or crown index, stem length growth, plant dry weight, or leaf area. Aluminum treatments significantly increased Al uptake and reduced nutrient uptake of magnesium (Mg), calcium (Ca), zinc (Zn), and copper (Cu) on some sampling dates. Iron (Fe) and manganese (Mn) uptake decreased on most sampling dates but increased on some with Al treatments. Potassium (K), phosphorus (P), and boron (B) uptake were significantly affected by Al, decreasing and increasing at different sampling dates. Although plants preferentially took up ammonium‐nitrogen (NH4 +‐N) in all treatments (including 0 Al controls), neither NH4 +‐N nor nitrate‐nitrogen (NO3 ‐N) uptake were affected by Al. Tissue concentrations of P, K, B, Zn, and Al increased with Al treatment; whereas tissue Ca, Mg, and Cu concentrations decreased with increasing Al. Iron and Mn tissue concentrations exhibited increases and decreases in different tissues. Results indicated that ‘Helleri’ holly was tolerant of high concentrations of Al.  相似文献   

13.
Zucchini squash (Cucurbita pepo L. cv. Green Magic) plants were grown hydroponically with nitrate (NO3):ammonium (NH4) ratio of 3:1 until the onset of flowering when the plants were assigned to four NO3:NH4 ratio (1:0, 1:1, 1:3, or 3:1) treatments. Changing the original nitrogen (N) form ratio significantly affected plant growth, fruit yield, nutrient element, and water uptake. Growth of plants was better when NO3‐N (1:0) was the sole form of N than when NH4‐N was part of the N treatment. Fruit yields for plants fertilized with 1:0 or 1:3 N‐form ratio were double those of plants grown continuously with 3:1 N ratio. The largest leaf area and plant water use were obtained with 1:0 N ratio treatment Total uptake of calcium (Ca), magnesium (Mg), and potassium (K) decreased with increasing NH4‐N proportion in the nutrient solution which suggest NH4‐N was competing with these cations for uptake. The results also demonstrated that growers may increase fruit yield by using a predominantly NO3‐N source fertilizer through the vegetative growth stage and by shifting the NO3:NH4 ratio during the reproductive phase.  相似文献   

14.
Abstract

The primary nitrogen forms utilized by plants are ammonium and nitrate. Although the importance of nutrients other than nitrogen for proper turfgrass growth is well established, the amounts of these nutrients in the plant tissue in relation to the use of different N‐forms has not been clearly documented. This study was conducted under greenhouse conditions to determine the effect of N‐form and cutting regime on growth, macronutrient, and micronutrient content of creeping bentgrass (Agrostis palustris Huds. ‘Penncross'). Treatments consisted of 100% NO3? (calcium nitrate), 100% NH4 + (ammonium sulfate), and a 50:50 ratio of NH4 +:NO3 ?. Half the turfgrass plants were maintained at a height of 1 cm (cut), while the other half of the plants were not cut until the end of the study (uncut). The uncut 50:50 treatment yielded the highest shoot, verdure, and total plant dry matter, while the uncut NO3 ? treatment produced the highest root dry matter. The uncut NH4 + treatment yielded the least shoot, root, and total plant dry matter. Plants of the uncut NO3 ? treatment had greater accumulation of macronutrients in the shoot and root tissue compared to plants of the NH4 + treatment. The uncut NO3 ? and 50:50 treatments had higher total accumulation of micronutrients compared to the uncut NH4 +‐treated plants. The cut NO3 ? treatment resulted in the highest macronutrient and micronutrient contents in the root tissue in comparison to other cut treatments. The cut treatments had the highest percentage accumulation of nutrients in the verdure tissue, while the uncut treatments had the highest percentage accumulation of nutrients in the shoot tissue.  相似文献   

15.
Inorganic nitrogen (N) in soils is a primary component of soil‐plant N buffering. This study was conducted to determine if non‐exchangeable ammonium‐nitrogen (NH4‐N) could serve as an index of potentially mineralizable organic N which is an important sink in N buffering. Four long‐term winter wheat (Triticum aestivum L.) experiments that had received annual fertilizer N at 0 to 272 kg N ha‐1 were used. Soils from these experiments were extracted by four 10 mL portions of 2M potassium chloride (KC1) at room temperature followed by extraction with 20 mL of 2M hot KC1. Extraction at 100°C for four hours using 3 g soil and 20 mL 2M KC1 was found to be the most effective. Hot KC1‐extractable NH4‐N minus room temperature KCl‐extractable NH4‐N was considered non‐exchangeable NH4‐N. Non‐exchangeable NH4‐N was correlated with the long‐term N rates, and believed to be a reliable index of potentially mineralizable organic N. The relationship was linear for NH4‐N where the lowest N rate had the lowest extractable N. The mean non‐exchangeable NH4‐N concentration ranged from 8.42 to 16.34 mg kg‐1; whereas, nitrate‐nitrogen (NO3‐N) ranged from 0.07 to 1.87 mg kg1. Total inorganic N extracted was similar to that mineralized in a 42‐day aerobic water saturated incubation. In addition, using a linear‐plateau model, extractable NH4‐N was highly correlated with long‐term average yield (R2=0.92). For the soils evaluated, this method provided a rapid measure of potentially mineralizable N.  相似文献   

16.
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a potentially high‐yielding grain crop for the Southern Coastal Plain region of the USA. Information on the growth and N nutrition of pearl millet is limited; therefore, this study was initiated with the objective of studying pearl millet growth, N content, N uptake patterns and N‐form preference. Plants were grown in solution culture using a modified Hoagland's solution. Solutions were changed weekly and transpirational losses replaced daily. The N‐form ratios were 1:0, 3:1, 1:1, 1:3 and 0:1 NH4 + to NO3 Uptake was determined by difference between the initial and final solutions. Nitrate and NH4 + uptake patterns were different from each other and were influenced by the ratio of NH4 + to NO3 . After the plants had been transferred to the solutions, ammonium was preferred for the first two weeks, with NO3 preferred thereafter. Nitrate uptake was highest during the grain filling period. Plant growth as measured by leaf, stem, root, and seed weight, plant height, average seed weight, and head length was generally reduced as NH4 + increased. The largest reduction was observed between the 3:1 and 1:0 ratios. Ammonium nutrition had an overall negative effect on pearl millet growth. Ammonium fertilization of pearl millet under conditions that increase absorption of NH4 + over NO3 may have a negative effect on pearl millet growth and development.  相似文献   

17.
Abstract

Nitrite (NO2 ?‐N) toxicity symptoms have been observed on lettuce (Lactuca sativa) at various locations in California. The objective was to evaluate the symptoms of ammonium (NH4 +‐N) and nitrite (NO2 ?‐N) toxicity on Sundevil iceberg lettuce and Paragon romaine lettuce and to determine lettuce growth and biomass production under different levels of NO2 ?‐N. Hydroponic studies under greenhouse conditions were conducted using nutrient solutions containing nitrate (NO3 ?‐N) and two other forms of nitrogen (NO2 ?‐N and NH4 +‐N) applied at a constant concentration (50 mg NL?1) or using different NO2 ?‐N levels (0, 5, 10, 20, 30, and 40 mg N L?1) and a constant NO3 ?‐N level (30 mg N L?1). Crown discoloration (brownish color) was observed for lettuce grown in both NO2 ?‐N and NH4 +‐N solutions approximately 3 weeks after transplanting into the hydroponic systems. Lettuce grown in NO3 ?‐N solution produced larger biomass and greater number of leaves per plant than lettuce grown in NO2 ?‐N or NH4 +‐N solutions. Increasing the concentration of NO2 ?‐N suppressed plant height, fresh and dry biomass yield, and number of leaves and increased the root vascular discoloration. Lettuce growth was reduced more than 50% at NO2 ?‐N concentrations greater than 30 mg N L?1. Even at 5 mg NO2 ?‐N L?1, growth was reduced 14 and 24% for romaine and iceberg lettuce, respectively, relative to that obtained in nitrate solution. Although concentrations between 5 and 40 mg NO2 ?‐N L ?1 reduced dry biomass similarly for both lettuce types, toxicity symptoms were more severe in iceberg lettuce than in romaine.  相似文献   

18.
Abstract

Seedlings of four maize hybrids were grown hydroponically to investigate the impact of different N sources (Ca(NO3)2, (NH4)2SO4 and a 1:1 mixture of both) on (i) production and partitioning of root and shoot dry matter, (ii) concentration of soluble carbohydrates in roots and shoots and their partitioning to these plant parts, (iii) concentration of starch in the shoot, and (iv) N uptake. During the main phase of the experiments (duration 14d), the plants were grown in a greenhouse at 25/22°C day/night temperatures and a photoperiod of 16h. Nitrogen was supplied at three concentrations (2.8, 28, and 280 ppm). The root‐zone pH was 6.5. Under the lowest N supply, the N sources produced similar root and shoot dry matters. At the highest N level (280 ppm), NO3‐fed plants were superior. In contrast, the mixture of NH4 and NO3 ? was optimum at 28 ppm. More or less pronounced N form by N concentration interactions were also found in the concentration and distribution of soluble carbohydrates and in all remaing traits. There were almost statistically significant cultivar by N form interactions in shoot dry matter (P = 0.07) and total dry matter (P = 0.06), indicating the existence of considerable genotypic variation in sensivity to NH4‐N.  相似文献   

19.
Abstract

This trial was carried out to establish an appropriate nutrient solution for Aglaonema commutatum and to investigate the nutritional effects generated by modifications in the solution. Six treatments were tested: control (T0; pH 6.5, E.C. 1.5 dS m?1, 6 mmol L?1 NO3 ?‐N, and 6 mmol L?1 K+); high nitrogen (N) level (T1; 9 mmol L?1 6:3 NO3 ?–NH4 +); N form (T2; 6 mmol L?1 N‐NH4 +); high K+ level (T3; 12 mmol L?1 K+); high electrical conductivity (T4; E.C. 4 dS m?1, 25 mmol L?1 NaCl), and basic pH (T5; pH 8). At the end of the cultivation, leaf, shoot, and root dry weights and elemental concentrations were determined. Nutrient contents and total plant uptake were calculated from the dry weights and nutrient concentrations. Plant K+ uptake increased with application of K+ or basic nutrient solution. The uptake and transport of calcium (Ca) were enhanced by the use of NO3 ?‐N and inhibited by the presence of other cations in the medium (NH4 +, K+, Na+) and by basic pH. Magnesium (Mg) uptake increased with NO3 ?‐N application and with pH. Sodium (Na) uptake was the highest in the saline treatment (T4), followed by the basic pH treatment. Sodium accumulation was detected in the roots (natrophobic plant), where the plant generated a physiological barrier to avoid damage. Dry weight did not differ significantly (p<0.05) among treatments except in the NaCl treatment. These results may help in the formulation of nutrient solutions that take into account the ionic composition of irrigation water and the physiological requirements of plants.  相似文献   

20.
Abstract

Plant growth in saline soils is regulated by the availability of nitrogen (N). High soil nitrate (NO3)‐N can lead to poor water quality. Many workers think that NO3‐N as a source for N can contribute to better plant growth in saline soils. The purpose of this work was to determine the necessity of NO3‐N and the ratio of NO3/ammonium (NH4) in the N fertilizer which gives higher productivity of the biomass yield of corn. Corn (Zea mays L.) plants (Var. LG11) were grown under saline soil conditions (8.5 dS m‐1), soils taken from the Euphrates valley (ACSAO Research Station) at Deir‐Ez‐Zor, east of Syria, from the surface layer of soil (0–25 cm). Five levels of N were applied in two forms, ammonium sulfate [15(NH4)2SO4] with enrichment (1.5% a) as the NH4‐N form and calcium nitrate [Ca(NO3)2] as the NO3‐N form, besides fixed amounts of phosphorus (P) and potassium (K) for all N treatments. The corn plants were harvested at the flowering stage (56 days old), oven dried, weighed, and analyzed for total N and 15N recovery. The results indicated that the dry matter weight for treatments which received a combination of NH4‐N and NO3‐N gave higher dry matter yield than a single treatment of one source of N. But, NO3‐N was more effective in improving yield than NH4‐N. Nitrogen recoveries on the basis of added and absorbed N derived from fertilizer were significantly more affected by NO3‐N than NH4‐N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号