首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Three olive (Olea europaea L.) cultivars Nabali Baladi (NB), Nabali Muhassan (NM), and Grossi Di'Espagna (GE) were evaluated under salt stress. Seedlings were treated with salinity induced by a 3:1 ratio of calcium chloride and sodium chloride to four concentration levels measured as electrical conductivity (EC) [1.2, 4.1, 7.0, and 14.0 dS/m] for 122 days. Olive seedlings varied in their response to salinity. In all treatments, NB had the highest root; stem and leaf dry weights had among the highest total plant dry weights, specific stem length (SSL) and relative water content (RWC). NB seedlings maintained the highest stomatal conductance at 7.0 dS/m and highest chlorophyll index at 14.0 dS/m. Olive seedlings that tolerated salt tolerance developed mechanisms of nutrient acquisition and distribution in the organs, by storing minimal amounts of sodium (Na+) and chloride (Cl?) in the stems and loading the most in the leaves and roots.  相似文献   

2.
Salinity is a limiting factor for forage productivity in irrigated areas. The aim of this study was to evaluate the salt tolerance index (STI), the K/Na ratio, and the forage quality of several introduced cool season grass species in irrigated agriculture. Four irrigated water salinity concentrations were used (control, 4000, 8000, and 12000 ppm sodium chloride (NaCl)), and four grass cultivars belonging to three species were established under greenhouse conditions at the Qassim University Agricultural Research and Experimental Station during the 2012 and 2013 growing seasons (perennial ryegrass (Lolium perenne L., cvs. Aries and Quartet), endophyte-free tall fescue (Festuca arundinacea Schreb., cv. Fawn), and orchardgrass (Dactylis glomerata L., cv. Tekapo)). A randomized complete block design (RCBD) using three replications was used. Cultivars were evaluated based on their dry weights (g m?2) and forage quality. Additionally, the STI and potassium (K+) and sodium (Na+) concentrations in the studied grass cultivars were evaluated. The dry weights of the grasses decreased significantly as the salinity level of the irrigation water increased. At a salinity of 4000 ppm, the Aries perennial ryegrass had the highest dry weight at both sample cuttings. The Aries, Fawn, and Quartet grasses had the highest STI values. The percent of K+ and the K/Na ratio increased as the salinity of the irrigation water increased for the Fawn tall fescue and Quartet perennial ryegrass. In the previously cultivars, the percentage of Na+ decreased as the salinity level of the irrigation water increased, which was in contrast with the results observed for the Tekapo orchardgrass.  相似文献   

3.
适宜咸水滴灌提高棉花水氮利用率   总被引:5,自引:0,他引:5  
通过田间试验研究了不同灌溉水盐度和灌溉量对棉花水氮利用效率的影响。试验设置三种灌溉水盐度(电导率EC):0.35(淡水)、4.61(微咸水)和8.04 dS/m(咸水),分别以FW、BW和SW表示;两个灌溉量405和540 mm,分别以I405、I540表示。结果表明微咸水灌溉棉花干物质质量最高,其次是淡水灌溉,咸水灌溉最低。咸水灌溉棉花的氮素吸收量、产量显著降低,但微咸水与淡水灌溉差异不显著。农田蒸散量随灌溉水量的增加而增加,随灌溉水盐度的增加而降低。微咸水灌溉对滴灌棉田蒸散量和水分生产率影响不大,但咸水灌溉导致蒸散量和水分生产率显著降低。15N同位素标记试验结果表明,三种灌溉水盐度下,高灌量处理(540 mm)较低灌量处理(405 mm)棉花15N回收率平均增加7.51%,土壤15N回收率降低13.20%,15N淋洗损失率增加29.47%。不同灌溉水盐度处理棉花15N回收率为47.02%~59.86%,微咸水灌溉棉花15N回收率与淡水灌溉差异不大,但咸水灌溉棉花15N回收率较淡水和微咸水灌溉分别降低了10.17%和15.23%。不同灌溉水盐度对土壤15N残留率的影响较小,为16.75%~22.41%。15N的淋洗损失率为1.56%~4.71%,表现为随灌溉水盐度的增加而显著增加,咸水和微咸水灌溉15N淋洗损失率平均较淡水灌溉分别增加了80.53%和136.00%。上述结果说明适宜盐度和灌溉量的微咸水滴灌对棉花生长、产量以及水氮利用率影响不大,但高盐度咸水灌溉会导致棉花减产,水氮利用率显著降低。滴灌条件下,氮素的淋洗损失也是氮肥损失的重要途径,尤其是咸水和微咸水灌溉会加剧氮肥的淋洗损失风险。因此,咸水微咸水灌溉条件下减少氮肥的淋洗损失是提高氮肥利用率的重要方面。  相似文献   

4.
灌溉水盐度和施氮量对棉花产量和水氮利用的影响   总被引:6,自引:3,他引:3  
淡水资源不足和盐渍化是干旱半干旱地区农业生产的重要限制因素,因此提高水、 肥利用效率和作物产量,减少根区盐分积累和地下水污染风险是这些地区水分养分优化管理的重要目标。通过田间试验研究了滴灌条件下灌溉水盐度和施氮量对棉花产量和水、 氮利用率的影响。试验设置灌溉水盐度和施氮量两个因素,灌溉水盐度(电导率,EC)设3个水平,为0.35(淡水)、 4.61(微咸水)和 8.04(咸水)dS/m,分别用SF、 SM和SH表示;施氮(N)量设4个水平,为0、 240、 360和480 kg/hm2,分别以N0、 N1、 N2和N3表示。研究结果表明,棉花干物质重、 氮素吸收量和氮肥利用率受灌溉水盐度、 施氮量及二者交互作用的影响显著。咸水灌溉处理(SH)棉花干物质重、 氮素吸收量、 产量和氮肥表观利用率均显著降低,而微咸水灌溉(SM)对棉花氮素吸收量和氮肥表观利用率影响不大,但干物质重和产量有所降低。施氮肥可显著促进棉花生长,增加干物质重、 氮素吸收量和产量,但随着灌溉水盐度的增加,其促进效应明显受到抑制。微咸水和咸水灌溉会导致水分渗漏增加、 蒸散量降低,增施氮肥则可显著降低水分渗漏、 增加蒸散量。微咸水灌溉水分利用率最高,其次是淡水灌溉,咸水灌溉最低;增施氮肥则可显著提高水分利用率。因此滴灌条件下,高盐度的咸水不宜用于灌溉。而短期的微咸水灌溉不会对棉花产量和水、 氮利用率产生严重的负面影响;同时,合理的配施氮肥也有助于促进棉花生长,提高棉花产量和水分利用率。  相似文献   

5.
微咸水滴灌对黄瓜产量及灌溉水利用效率的影响   总被引:15,自引:8,他引:7  
试验主要研究了华北半湿润地区微咸水滴灌条件下,滴头正下方0.2 m深度土壤基质势分别控制在-10~-50 kPa时,不同盐分浓度微咸水(2.2~4.9 dS/m)对黄瓜产量、灌水量及灌溉水利用效率(IWUE)的影响。研究发现当灌溉水电导率(EC)大于1.1 dS/m时,黄瓜的产量随着EC的增大而降低。当滴头下0.2 m深度土壤基质势控制在-25~-35 kPa时,黄瓜表现出来的耐盐性最强,EC每升高1 dS/m产量大约降低3%。总的趋势是土壤基质势控制越高(-10 kPa)处理的灌溉量越多,IWUE越低,而土壤基质势控制越低(-50 kPa)处理的灌溉量越少,IWUE越高。通过研究,在年降雨量大约为600 mm的半湿润地区,当没有足够的淡水用于作物灌溉时,可以在采用一系列灌溉与栽培管理措施条件下,利用2.2~4.9 dS/m的微咸水来灌溉黄瓜等对盐分中等敏感的作物。  相似文献   

6.
Salinity is one of the major environmental stressors which has deleterious effects on the growth, development, and yield of crops. Because of the gradual increase in soil and water salinity in the East Azarbaijan, Iran, Tanacetum balsamita L. cultivation in this region has always been associated with many problems. To study the effect of foliar spray of iron sulfate (FeSO4) (0, 750, and 1500 mg L?1) under sodium chloride (NaCl) salinity (0, 50, and 100 mM) on some physiological characteristics of Tanacetum balsamita L. plants, an experiment was conducted as a factorial based on complete randomized block design with three replications. Total soluble solids (TSS) and essential oil contents were significantly affected by the interaction effects of FeSO4 foliar application and salinity levels. The highest TSS and essential oil content were found in the plants under NaCl0 × FeSO4 1500 mg L?1 treatment combination. Leaf length, leaf fresh and dry weights were influenced by both Fe foliar application and salinity levels. Foliar application of iron (Fe) positively affected leaf length, leaves fresh and dry weights, root fresh and dry weights and peroxidase (POD) content, especially at 1500 mg L?1. Other traits such as leaf length, leaf fresh and dry weights, malondialdehyde (MDA), POD and catalase (CAT) contents were influenced by salinity levels. For POD, MDA, and CAT contents, the highest values were recorded with NaCl 50 and 100. The highest values of leaf length, leaf fresh and dry weights were found in the control plants.  相似文献   

7.
Salinity stress is one of the important agricultural problems in the world. A factorial experiment based on completely randomized design with four replications was conducted to evaluate the effects of phytohormones (gibberellic acid and abscisic acid) on the activity of antioxidant enzymes (peroxidase, superoxide dismutase and catalase), rubisco activity and content, and proline in three wheat cultivars (Gascogen, Zagros, and Kuhdasht) under control and salinity stress (3.5 and 7 dS m?1). The results showed that salinity stress (3.5 and 7 dS m?1) decreased the activity of catalase, rubisco, carboxylase, but increased peroxidase, superoxide dismutase activity and proline content. Gibberellic acid caused 58.03% increased in rubisco carboxylase activity in Zagros at 7 dS m?1 in comparison with abscisic acid under salinity stress compared with the control plants in Kuhdasht. Activity of superoxide dismutase in Kuhdasht cultivar at 7 dS m?1 salinity level showed 76.43% increased in Gascogen under salinity stress compared with the control plants with gibberellic acid application. The highest proline content as an osmolyte was found in Zagros at 7 dS m?1 salinity level with abscisic acid (194 μmol g?1 DM) application. Peroxidase activity increased 83.31% and catalase activity decreased 61.27% compared with the control plants in Zagros. Gibberellic acid application significantly prevented reduction in rubisco content under salinity stress. In conclusion, increased in peroxidase and superoxide dismutase activity and proline content decreased the adverse effects of salinity stress on studied cultivars. Also, the foliage spray of gibberellic acid enhanced and improved the growth condition. In this experiment, Zagros cultivar showed more tolerance to salinity stress than the other two cultivars.  相似文献   

8.
河套灌区土壤盐分对化肥氮素转化过程的影响研究   总被引:2,自引:0,他引:2  
土壤盐渍化严重影响土壤养分利用与生产力提升,为阐明土壤盐渍化对河套灌区农田土壤肥料氮素转化关键过程的影响。以内蒙古河套灌区不同含盐量土壤为试验材料,通过室内恒温培养试验,分析了不同盐分梯度下土壤中氮素转化的水解和硝化过程。试验共设置了低盐(EC_(5:1)=1.46 dS/m)、中盐(EC_(5:1)=2.19 dS/m)、高盐(EC_(5:1)=3.43 dS/m)3种盐分梯度,分别施用尿素和磷酸二铵两种化学氮肥。研究结果表明:①土壤盐分升高抑制了尿素的水解作用,高盐处理尿素的净水解量较中盐和低盐处理分别降低19.4%和27.1%,而土壤盐分在中盐时对磷酸二铵的水解表现出促进效应,中盐处理磷酸二铵净水解量较低盐、高盐处理分别提高33.6%和4.3%。②土壤高盐分会抑制硝化反应的开始,高盐处理相较低盐、中盐处理推迟3 d左右;土壤盐分升高对两种氮肥净硝化量的影响均表现为先促进后抑制的作用,中盐处理尿素的净硝化量,较低盐、高盐处理分别提高了8.6%和9.1%,中盐处理磷酸二铵的净硝化量,较低盐、高盐处理分别提高了19.1%和5.1%。③在等氮输入条件下,各土壤盐分梯度下磷酸二铵处理转化产生的铵态氮、硝态氮、无机氮均高于尿素处理。土壤盐分含量对化肥氮转化影响显著,不同肥料种类其影响存在差别;土壤盐分升高对肥料养分的释放存在抑制,适量的土壤盐分会促进硝化作用,这增加氮素淋溶损失的风险。  相似文献   

9.
R. XU  M. YAMADA  H. FUJIYAMA 《土壤圈》2013,23(2):213-222
Salinity stress is a major factor limiting the growth of turfgrass irrigated with recycled wastewater. The change in lipid peroxidation in terms of malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxide (APX) and glutathione reductase (GR) in the shoots and roots of Kentucky bluegrass and tall fescue were investigated under salinity stress. Plants were subjected to 0, 50, 100, 150 and 200 mmol L 1 NaCl for 40 d. The MDA content under salinity stress was lower in tall fescue than in Kentucky bluegrass in both shoots and roots. Activities of SOD in the shoots of both species increased with salinity stress. The activities of CAT and APX decreased in Kentucky bluegrass, but no significant difference in the activities of CAT and APX was observed in tall fescue. The activities of SOD, CAT and APX in the shoots of tall fescue were higher than those in Kentucky bluegrass. In the roots of Kentucky bluegrass, SOD and GR activities increased and CAT and APX activities decreased in comparison with the control. In the roots of tall fescue, salinity increased the activities of SOD, CAT, and APX. These results suggested that tall fescue exhibited a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher SOD, CAT and APX activities than Kentucky bluegrass.  相似文献   

10.
Cucumber (Cucumis sativus L. cv. Lvyuan4) seedlings were either noninoculated or inoculated with four bacteria to study the interactions of salinity in saline soil, cucumber, and bacteria. The seedlings were grown under controlled conditions in pots; the solutions of 100, 200, 400, and 600 mM sodium chloride (NaCl) and bacterial broth were added to the soils. Deionized water was used as control. There were nine treatments in the experiment. Each treatment contained three replications and each replication represented six plants. After 14 days of treatment, morphological characteristics, fresh and dry weights, chlorophyll, soluble sugar, malonaldehyde, proline, nutrient elements, and sodium (Na+) and chloride (Cl?) contents in plants and soils were calculated. Soil salinity inhibited seedlings growth, but low concentration of NaCl promoted plant growth. Soil microbial biomass decreased in saline soils and increased in inoculated treatments. Bacteria had the role of promoting growth and protecting plants against salinity. Bacteria accelerated Na+ and Cl? uptake markedly.  相似文献   

11.
In arid and semi-arid regions, effluent from subsurface drainage is often saline and in the absence of a natural outlet, its disposal is a serious environmental threat. A field experiment was conducted for 7 years using drainage water of different salinity levels (ECiw=6, 9, 12 and 18.8 dS/m) for irrigation of wheat during the dry winter season. The objective was to find whether crop production would still be feasible and soil salinity would not be increased unacceptably by this practice. The experimental crop was wheat during the winter season and pearl-millet and sorghum in the rainy season, grown on a sandy loam soil provided with subsurface drainage system. All crops were given a pre-plant irrigation with non-saline canal water and subsequently, saline drainage water of different salinity levels was used for the irrigation of wheat as per the treatment. On an average, the mean yield reduction in wheat yield at different ECiw was 4.2% at 6, 9.7% at 9, 16.3% at 12 and 22.2% at 18.8 dS/m. Pearl-millet and sorghum yields decreased significantly only where 12 dS/m or higher salinity water was applied to previous wheat crop. The high salinity and sodicity of the drainage water increased the soil salinity and sodicity in the soil profile during the winter season, but these hazards were eliminated by the subsurface drainage during the ensuing monsoon periods. The results obtained provide a promising option for the use of poor quality drainage water for the irrigation of winter wheat without undue yield reduction and soil degradation.  相似文献   

12.

Purpose

Two plant species (tall fescue and alfalfa) grown alone and in combination was investigated to evaluate phytoremediation of polychlorinated biphenyl (PCB)-contaminated soil and the impact on the catabolic genes and soil enzyme activities in the rhizosphere.

Materials and methods

Surface soil was collected from Xiaoshan (a PCB-containing capacitors and transformers storage site). The phytoremediation experiment was carried out in an agricultural greenhouse experiment station at Huajiachi campus, Zhejiang University. Soil dressing method and fertilizers were applied to improve soil quality for the pot experiment. Soil dehydrogenase activity was measured spectrophotometrically by the reduction of 2, 3, 5-triphenylterazolium chloride (TTC) to triphenyl formazane (TPF) and catalase activity was determined by back-titrating residual H2O2 with KMnO4. Quantitative real-time PCR using SYBR green I was employed with the individual primer sets to determine the relative abundance of the biphenyl dioxygenase genes. Total bacterial numbers were determined by CFU counting and amplification of 16S rDNA.

Results and discussion

Planting treatment significantly enhanced bacterial numbers and PCB removal. The copy numbers of the bphA, bphD.1.B, bphD.2.A, and bphD.2.A/B genes, total bacteria counts, and dehydrogenase activity were the highest in mixed cropping soil, which indicated that tall fescue (forage grass) and alfalfa (legume) mixed cropping was most beneficial to soil bacteria, the potential PCB degraders, and enzyme activity. However, the highest removal of PCBs was found in tall fescue single plant cultivation, followed by combined plant cultivation, probably because tall fescue had greater biomass and could extract more PCBs from soil. Compared with nutrients amended unplanted control, the removals of tri-, tetra-, and penta-CBs in tall fescue single-planted and tri-CBs in combined planted soils were significantly enhanced (p?<?0.01).

Conclusions

The presence of vegetation significantly promoted the dissipation of PCBs and growth of total bacteria and the potential PCBs degraders in soils. Tall fescue and alfalfa mixed cropping was most beneficial to soil bacteria and enzyme activity. Tall fescue showed highest ability for remediation of PCBs in a poor quality soil.  相似文献   

13.
滨海盐碱地是滨海地区重要的土地资源,随着滨海地区城镇化进程及生态文明建设的发展,迫切需要低成本、快速、可持续的滨海盐碱地原土植被构建技术。针对滨海盐碱地原土建植与咸水/微咸水资源的利用,该研究以月季(Rosa chinensis)为例,采用微咸水滴灌技术进行滨海盐碱地水盐调控植被构建。试验在渤海湾曹妃甸区吹沙造田形成的典型沙质滨海盐渍土上进行,设计了灌溉水电导率(ECiw)为0.8、3.1、4.7、6.3、7.8 dS/m的5个处理,研究滴灌水盐调控对土壤盐分淋洗及月季根系生长和分布特征的影响。结果表明:在渤海湾滨海地区气候条件下,先进行淡水滴灌盐分强化淋洗和缓苗灌溉,随后采用7.8 dS/m的微咸水滴灌,0~100 cm土层土壤盐分得到了有效的淋洗,尤其是根层0~40 cm土壤盐分经过一个月左右,由初始28.33 dS/m降低到均小于4 dS/m,一个低盐适生的土壤环境得到快速营造;随着ECiw的增加,0~40 cm土层土壤最终趋于稳定的盐分呈增加趋势,土壤脱盐过程可以被logistic方程描述,脱盐过程可划分为快速脱盐、缓慢脱盐和盐分趋于稳定3个阶段;94%以上的月季根系主要分布在0~20cm的表层土壤中,随着ECiw的增加,根系生物量显著降低,根系受盐分胁迫生理干旱影响向土壤深处生长以扩大水分空间。研究认为,采用短期淡水滴灌盐分强化淋洗和缓苗淡水滴灌、随后进行微咸水滴灌的方法,可以实现土壤盐分的快速淋洗并维持在较低水平,但受盐分对根系生长的影响会作用于植物地上部分生长及植物存活,因此需要结合植物耐盐性及生产目标(产量、景观)确定适宜灌溉水矿化度阈值。  相似文献   

14.
高羊茅和优良菌群联合作用降解陕北黄绵土中的石油烃   总被引:3,自引:1,他引:2  
杨琴  聂麦茜  苏君梅  蒋欣 《土壤》2009,41(3):471-476
以长庆油田石油开采区的烃污染土壤作为供试土壤,以高羊茅为供试植物.从陕北石油污染土壤和污染泥浆中分别获得菌群 TJQ 和菌群 JQ1;用原油污染城市花园土,经过 90 天驯化获得菌群 JQ2,3 菌群中主要以细菌和真菌为主,放线菌较少.降解结果表明,与对照组相比,接种菌群 JQ1、JQ2 、TJQ 及其混合体使土壤中石油降解速率加快,30 天内石油烃去除率提高了13.8% ~ 25.4%,微生物 FDA 活性增长 2 ~ 3倍,其中 JQ1+JQ2 组合对石油降解幅度最大,30 天降解率可高达 35.36%.尽管供试土壤中 N、P 和有机质含量少,pH 偏碱性,土壤贫瘠,不利于植物生长,但高羊茅与各菌群及其混合体联合作用,在其出苗、生长的同时,能明显提高土壤中石油降解效率.与未种植高羊茅相比,30 天内,石油降解率最大可提高 14.4%,其中 JQ1+JQ2+高羊茅组合对土壤中石油烃降解幅度最大,30 天降解率最高达 49.81%.且根际微生物的数量也相应高出 1 ~ 2 个数量级, 微生物 FDA 活性高出 0.53 ~ 1.26 倍.  相似文献   

15.
In the arid regions, turfgrass cover is an integral part of landscape to protect the soil from erosion, enhance the aesthetic value, and improve the microclimate. The salinity and the scarcity of fresh water of the arid region are the major challenging factors in turfgrass production. Therefore, the need for salt tolerant turfgrass with functional quality is necessary to improve the turf performance. The detrimental effects of salinity include growth suppression, and lowered osmotic potential ultimately leading to firing of the leaf blades. In this context, the study was undertaken to determine the relative salt tolerance and growth response of turfgrass genotypes in order to recommend turfgrass cultivars that can tolerate high salinity irrigation and maintain excellent visual and functional qualities under United Arab Emirates (UAE) condition. The paspalum cultivars maintained the highest succulence percentage compared to the bermudagrass cultivars under enhanced salinity levels. The shoots count, fresh weight (FW), and dry weight (DW) were found highest in paspalum types. The chlorophyll a, chlorophyll b and the total chlorophyll content was found higher in bermuda grass types under high salinity levels. The bermudagrass cultivars showed significantly higher carotenoids, anthocyanins and proline compared to the paspalum types under salt stress condition. In the case of princess 77 and Yukon, an inherently high amount of proline was recorded which confirmed an increase up to 10,000 ppm and drastically declined beyond this concentration. Sea Dwarf paspalum and Sea Isle 2000 maintained uniformity in the proline level at all levels of salinity without significant variation. These findings point to the fact that both paspalum and bermuda types exhibited varied responses to different physiological and biochemical parameters under the saline conditions. Paspalum types have an edge over the bermudagrass in terms of shoot density, which is a potential factor in determining the high-quality turfs. Bermudagrass types can be applied in lower salinity conditions based on the responses as evidenced from the present results.  相似文献   

16.
Arbuscular mycorrhizal (AM) fungi alleviate the unfavorable effects of salinity stress on plant growth. A pot study was conducted to determine the effects of AM fungi and salt on growth and some physiological parameters of Citrus jambheri rootstock. Four levels of salinity (2, 4, 6, and 8 dS m?1 as NaCl) and three mycorrhizal treatments (Glomus etunicatum, Glomus intraradices and non-mycorrhizal (NM) control) were used. As salinity increased, all measured characteristics of plants after 4.5-month growth except Na uptake, proline content, and electrolyte leakage decreased. Shoot dry weight and K uptake were significantly higher in G. intraradices-colonized seedlings than NM controls at all salinity levels. Root dry weight and shoot P uptake were significantly higher in G. etunicatum-colonized seedlings than NM controls at all salinity levels. G. intraradices-colonized seedlings had significantly higher proline content than NM controls and G. etunicatum-colonized seedlings at salinity levels of 4, 6 and 8 dS m?1. The electrolyte leakage percentage was significantly lower in G. intraradices-colonized seedlings than NM controls at all salinity levels. The data demonstrated that mycorrhizal citrus seedlings exhibited greater tolerance to salt stress than NM seedlings and the enhanced proline content seems to be one of the mechanisms involved.  相似文献   

17.
This experiment was conducted as a factorial based on complete randomized design (CRD) to study the effects of mycorrhiza inoculation density on cucumber cv. Super N3 irrigated with different salinity sodium chloride (NaCl) levels. Treatments were mycorrhiza inoculations; M1 (non mycorrhizal plant), M2 and M3 (mycorrhiza inoculations with 1000 and 2000 spores) and saline water was provided by S1, S2, S3, and S4 (control, 50, 75, and 100 mM NaCl) with 4 replications. The results showed that saline water reduced root, shoot, and fruit weights, and increased proline and electrolyte leakage. Photosynthesis rate, stomata and mesophyll conductance significantly decreased with increased NaCl concentrations. Mycorrhiza inoculation with 2000 spores increased fruit fresh and dry weights, proline and electrolyte leakage, and both mycorrhiza inoculations increased root and shoot dry weights, photosynthesis and stomata conductance. Root volume increased by mycorrhiza inoculation with 2000 spores under non-stress condition, and root length was stimulated by both mycorrhiza inoculations at all saline water levels. Fruit fresh and dry weights were enhanced by mycorrhiza inoculation with 1000 spores at all saline water levels. Photosynthesis rate was reduced by saline water stress and mycorrhiza inoculation stimulated photosynthesis rate. Mycorrhiza inoculation with 2000 spores increased transpiration under saline and non-saline conditions. Proline content of cucumber leaves increased under saline water application. Electrolyte leakage increased by saline water and mycorrhiza inoculation could not improve it. Both mycorrhiza inoculations (1000 and 2000 spores) at all salinity levels, and mycorrhiza inoculation with 1000 spores at 100 mM NaCl enhanced fruit weight, photosynthesis, and proline content of the cucumber leaves.  相似文献   

18.
ABSTRACT

To assess seed germination parameters and identifying tolerant varieties, seeds of nine tall fescue varieties (Festuca arundinacea Schreb.) were germinated under various salinity levels for 14 days. Tall fescue is considered ‘moderately tolerant’ to salinity stress, but our study revealed a remarkable diversity among the tested varieties. Armani, Essential, Fatcat, and Starlett were found to reach the same final germination (>90%), irrespective of NaCl concentration up to 15 ds m?1 NaCl; Asterix and Meandre expressed lower germination under the highest salinity level (>75%); and final germination decreased in Eyecandy, Rhizing star, and Thomahawk gradually with increasing salinity (>55%). The main effect of increasing salinity was a delay in germination, and our study suggests that the recording of final germination, which is performed on day-14 in a standard germination test, should be postponed in order to understand the full effect of salinity on germination potential. Nonetheless, a delay in germination will affect turf quality negatively and hence there is good reason to test for salinity tolerance when choosing a variety for sowing on saline soil. Further, our findings indicate a future perspective for breeding for improved salinity tolerance in tall fescue by the identification of salinity-tolerant breeding lines or varieties.  相似文献   

19.
Background: The low fertility of sandy soils in South‐Western Australia is challenging for the establishment of temperate perennial pastures. Aims: To assess whether microbial consortium inoculant may improve plant growth by increasing nutrient supply, root biomass and nutrient uptake capacity. Methods: Five temperate perennial pasture grasses–cocksfoot (Dactylis glomerata L. cv. Howlong), phalaris (Phalaris aquatica L. cv. Atlas PG), tall fescue (Festuca arundinacea L. cv. Prosper), tall wheatgrass (Thinopyrum ponticum L. cv. Dundas), and veldt grass (Ehrharta calycina Sm. cv. Mission) were tested in a controlled environment on the growth and nutrition with the microbial consortium inoculant and rock mineral fertiliser. Results: Veldt grass produced the highest shoot and root growth, while tall fescue yielded the lowest. Rock mineral fertiliser with or without microbial consortium inoculant significantly increased root and shoot biomass production across the grass species. The benefit of microbial consortium inoculation applied in conjunction with rock mineral fertiliser was significant regarding shoot N content in tall wheatgrass, cocksfoot and tall fescue. Shoot P and K concentrations also increased in the five grass species by microbial consortium inoculation combined with rock mineral fertiliser in comparison with the control treatment. Arbuscular mycorrhizal (AM) colonisation decreased with rock mineral fertilisation with or without microbial consortium inoculant except in cocksfoot. Conclusions: The response to microbial consortium inoculation, either alone or in combination with rock mineral fertiliser, was plant species‐dependent, indicating its potential use in pasture production.  相似文献   

20.
甲烷(CH4)是一种强效温室气体,准确认识特定类型土壤CH4源汇特征及影响因子调控作用,对于提升土壤CH4吸收潜力以减缓全球气候变化具有重要意义。该研究以盐渍土为研究对象,在土壤室内培养试验中,设置了3个土壤含水率处理,分别为田间持水率(Field Capacity,FC)的50%(50%FC),75% FC和100% FC;并在每个含水率下设置了6个含盐量处理,电导率分别为0.3、1.0、2.0、3.2、4.9和6.2 dS/m,研究不同土壤含水率和含盐量条件下盐渍土CH4吸收特征。在田间测坑试验中,观测了0.3、1.0和5.0 dS/m 3种含盐量土壤的CH4吸收特征及其对水分动态的响应。室内土壤培养试验结果表明,100%FC下6种盐分水平土壤CH4累积吸收量分别是75%FC下的1.08~1.39倍和50%FC的1.27~1.72倍,表明在田间持水率范围内,含水率升高促进了土壤CH4吸收;在3种含水率下,土壤CH4累积吸收量均随着处理含盐量升高而降低,6.2 dS/m最高含盐量处理的CH4累积吸收量相比0.3 dS/m最低含盐量处理显著降低了42.6%、52.3%和55.1%;相比50%FC、100%FC含水率下高含盐量对土壤CH4吸收具有更强的抑制作用,土壤含水率和含盐量对CH4吸收的影响存在显著的交互作用。田间测坑试验在野外田间条件下进一步验证了室内培养试验的结果,试验观测期内所有含盐量处理土壤CH4吸收速率均与土壤含水率呈显著正相关关系(P<0.01);1.0和5.0 dS/m含盐量处理的累积CH4吸收量分别为0.3 dS/m非盐渍土处理的82.6%和59.8%,高含盐量抑制了土壤对CH4的吸收。研究结果表明盐渍土是CH4的汇,并受到土壤含水率和含盐量显著影响,在盐渍土开发利用中应考虑通过合理的水盐调控以提高土壤CH4汇的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号