首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Nitrogen (N) loss in the form of volatilized ammonia (NH3) is a considerable problem when ammonium (NH4 +) forming fertilizers are applied to calcareous or alkaline soils. The volatilization of NH3 from urea phosphate (UP) and urea (U) was studied on three selected soils (Hayhook SL, Laveen L, and Latene L) with the use of a laboratory aeration system. Urea phosphate and U were each applied at rates of 0, 50, 100, and 200 mg N kg‐1 soil, either to the surface dry or in solution or mixed with the soil. The volatilized NH3 was trapped in sulfuric acid, sampled periodically, and analyzed for N with the semi microkjeldahl distillation apparatus.

The highest N loss in the form of NH3 occurred when U was applied to Hayhook soil (neutral to acidic, coarse textured, and low CaCO3 content). However, UP applied to Hayhook soil resulted in the lowest NH3‐N loss. Less NH3‐N loss was found from U application to Laveen and Latene soils (fine textured with higher CaCO3 content) than with Hayhook soil. The general trend was higher N loss when a surface application was made, either dry or in solution, than when the fertilizer was mixed with the soil. This trend showed an increase in the amount of volatilized NH3 with increasing N application rates.

Generally, UP is a potential fertilizer for supplying N and phosphorus (P) as plant nutrients with a low potential for losses due to NH3 volatilization.  相似文献   

2.
Combining amendments to the soil made by biochar or hydrochar with nitrogen (N) fertilizer can modify soil N dynamics and availability. Such a response suggests that these amendments would affect ammonia (NH3) emissions from slurry similarly, and potentially reduce volatilization of NH3. This study measured the potential emissions of NH3 following application of pig slurry to the surface of silt‐loam and loam soils amended with biochar and hydrochar (both derived from Miscanthus × giganteus (Greef et Deu)) at a rate of 3% soil dry weight (16 t ha?1 soil area, on average) and 60% water‐filled pore space (WFPS). The experiment was carried out in a dynamic chamber connected to a photo‐acoustic trace gas analyser in a controlled climate (20°C) for 48 hours. Statistically significant differences (P < 0.05) in total emissions were observed between both treatment and soil types. Surprisingly, both amendments increased emissions of NH3 compared with the control; cumulative NH3 emissions averaged 38.7 and 23.5% of applied total ammonium nitrogen (TAN) for hydrochar and biochar, respectively, whereas it was 18.2% for the control. The larger emissions in hydrochar‐amended soil were attributed to the reduced ability to absorb NH4+ associated with greater hydrophobicity and strong pH buffering of the slurry. Furthermore, final soil analyses with deionised water extracts showed significant differences (P < 0.05) in mineral N concentration between treatments. The smaller ammonium concentrations in biochar‐amended soil suggest that some NH4+‐N was immobilized by adsorption on to biochar surfaces. This study observed that biochar and hydrochar properties, as well as soil characteristics, play important roles in controlling NH3 emissions from surface slurry applications. The results obtained identified circumstances where these amendments even enhance volatilization, which provides new information on and insight into the extent and limitations of the potential of biochar and hydrochar for the mitigation of emissions.  相似文献   

3.
Abstract

The effects of various soil properties on ammonia (NH3) volatilization from soils treated with urea were studied by measuring the NH3 evolved when 20 soils selected to obtain a wide range in properties were incubated at ‐0.034 mPa soil moisture potential and 30°C for 10 days after treatment with urea. The nitrogen (N) volatilized as NH3 from these soils represented from 0 to 65% of the urea‐N applied and averaged 14%. Simple correlation analyses showed that loss of NH3 was negatively correlated (P<0.1%) with cation‐exchange capacity, silt content, and clay content and was positively correlated (P <0.1%) with sand content. Loss of NH3 was also negatively correlated with total nitrogen content (P<1.0%), organic carbon content (P<1.0%), hydrogen ion buffering capacity (P<5.0%), and exchangeable acidity (P<5.0%), and was positively correlated with calcium carbonate equivalent (P <1.0%) and with soil pH after incubation with urea (P<1.0%), but was not significantly correlated with initial soil pH or soil urease activity. Multiple linear regression analyses indicated that the amount of urea N volatilized as NH3 from the 20 soils studied increased with increase in sand content and decreased with increase in cation‐exchange capacity. They also indicated that soil texture and cation‐exchange capacity are better indicators of potential loss of urea N as NH3 from soils fertilized with urea than are hydrogen ion buffering capacity or initial soil pH.  相似文献   

4.
Abstract

Volatilization of ammonia derived from nitrogen (N) fertilizers and its possible reabsorption by crops depend on specific soil, climate, and atmospheric conditions, as well as the method of fertilizer application and plant architecture. In an experiment carried out in Piracicaba, State of São Paulo, Brazil, the volatilization of ammonia derived from urea, ammonium sulfate, and natural soil were quantified using static semi‐open N‐ammonia (NH3) collectors. Fertilizers were top‐dressed under the plant canopy on top of dead leaf mulch. In another experiment, the reabsorption of the volatilized ammonia by plants was quantified using 15N‐labeled urea. Results showed, as expected, that volatilization derived from urea was seven times more intense in relation to ammonium sulfate, whose volatilization was very low, and slightly more than the natural volatilization from soil at pH 5.3. The loss of ammonia from the ammonium sulfate was very low, little more than twice of that of the natural soil. Through isotopic labeling, it was verified that 43% of the volatilized N‐NH3 was reabsorbed by coffee plants, which gives evidence that volatilization losses are greatly reversed through this process.  相似文献   

5.
Abstract

In a laboratory study, ammonia (NH3) was trapped from 10 g soil units treated with 10 mg urea‐N, 10 mg urea‐N plus 50 ug N‐(n‐butyl) thiophosphoric triamide (NBPT), or 10 mg urea‐N plus 50 ug phenyl‐phosphorodiamidate (PPD). The soil was a Dothan loamy sand with pH levels adjusted to 6.0, 6.5, and 6.9 prior to N application. After 12 days, NBPT reduced NH3 volatilization 95 to 97%, while PPD reduced it 19 to 30%. Although NH3 loss was positively related to initial soil pH, there was no interaction between pH and urease inhibitor. In a field study, NH3 was trapped in semi‐closed chambers from 134 kg N/ha surface applied to corn (Zea mays L.) 6 weeks after planting. Nine days after N application, NH3 losses were 20.5, 1.5, 1.5, and 0.2 kg N/ha from urea, urea plus 0.25% NBPT, urea plus 0.50% NBPT, and ammonium nitrate, respectively. Covariance analysis showed that percent organic matter was negatively related to NHL losses. The soil properties, initial pH, CEC, and percent sand, did not vary enough to affect NH3 volatilization. In conclusion, in both the laboratory and the field, NBPT exhibited strong control of NH3 volatilization, and could thereby prevent significant loss of surface‐applied urea‐N to crops.  相似文献   

6.
Ammonia (NH3) volatilization is an important N loss pathway in intensive agriculture of the North China Plain (NCP). Simulation models can help to assess complex N and water processes of agricultural soil–crop systems. Four variations (Var) of a sub‐module for the deterministic, process‐based HERMES model were implemented ranging from simple empirical functions (Var 3 and 4) to process‐oriented approaches (Var 1 and 2) including the main processes of NH3 volatilization, urea hydrolysis, nitrification from ammonium‐based N fertilizer, and changes in soil solution pH. Ammonia volatilization, plant growth, and changes in ammonium and nitrate pools in the soil over several winter wheat–summer maize double‐crop rotations at three locations in the NCP were simulated. Results were calibrated with two data sets (Dongbeiwang 1, Shunyi) and validated using two data sets (Dongbeiwang 2, Quzhou). They showed that the ammonia volatilization sub‐module of the HERMES model worked well under the climatic and soil conditions of N China. Although the simpler equations, Var 3 and 4, showed lower deviations to observed volatilization across all sites and treatments with a mean absolute error (MAE) of 1.8 and 1.4 in % of applied N, respectively, compared to process‐oriented approaches, Var 1 and 2, with a MAE of 2.2 and 1.9 in % of applied N, respectively. Environmental conditions were reflected better by the process‐oriented approaches. Generally, simulation results were satisfying but simulated changes in topsoil pH need further verification with measurements.  相似文献   

7.
ABSTRACT

Ammonia (NH3) volatilization from fertilizer applications reduces efficiency and poses environmental hazards. This study used semi-open static chambers to measure NH3 volatilization from organic fertilizers (feather meal, blood meal, fish emulsion, cyano-fertilizer) to evaluate the impacts of fertilizer source, application method, and rate on NH3 volatilization. In 2014, two application rates (28 and 56 kg N ha?1) were applied to lettuce (Lactuca sativa L.). Solid fertilizers (feather meal, blood meal) were preplant applied in a subsurface band, whereas liquid fertilizers (fish emulsion, cyano-fertilizer) were applied weekly through drip irrigation beginning two weeks after transplanting. In 2015, a single application rate (28 kg N ha?1) was applied to cucumber (Cucumis sativus L.). Solid fertilizers were applied in either subsurface or surface bands. There was a significant difference in NH3 volatilization among fertilizers, but there was little difference between application rates. Liquid fertilizers had lower NH3 emissions than solid fertilizers due to their timing and placement. In 2014, blood meal at 56 kg N ha?1 and feather meal at both rates had the highest NH3 fluxes. In 2015, surface-banded blood and feather meal had the highest NH3 fluxes. Fertilizer decisions for organic systems should consider NH3 emission losses and practices for their reduction.  相似文献   

8.
Use of nitrogen (N) fertilizer is underway to increase in Sub-Saharan Africa (SSA). The effect of increasing N rates on ammonia (NH3) volatilization—a main pathway of applied-N loss in cropping systems—has not been evaluated in this region. In two soils (Alfisols, ALF; and Andisols, AND) with maize crop in the East African highlands, we measured NH3 volatilization following urea broadcast at six rates (0–150 kg N ha?1) for 17 days, using a semi-open static chamber method. Immediate irrigation and urea deep placement were tested as mitigation treatments. The underlying mechanism was assessed by monitoring soil pH and mineral N (NH4+ and NO3?) concentrations. More cumulative NH3-N was volatilized in ALF than in AND at the same urea-N rate. Generally, higher urea-N rates increased proportional NH3-N loss (percent of applied N loss as NH3-N). Based on well-fitted sigmoid models, simple surface urea application is not recommended for ALF, while up to 60 kg N ha?1 could be adopted for AND soils. The susceptibility of ALF to NH3 loss mainly resulted from its low pH buffering capacity, low cation exchange capacity, and high urease activity. Both mitigation treatments were effective. The inhibited rise of soil pH but not NH4+ concentration was the main reason for the mitigated NH3-N losses, although nitrification in the irrigation treatment might also have contributed. Our results showed that in acidic soils common to SSA croplands, proportional NH3-N loss can be substantial even at a low urea-N rate; and that the design of mitigation treatments should consider the soil’s inherent capacity to buffer NH3 loss.  相似文献   

9.
氨挥发是稻田氮素损失的一个重要途径,有效控制稻田氨挥发对水稻增产减排具有重要意义。界面阻隔材料具有环境友好性和低成本的特点,可以作为一种截然不同的氨挥发减排方法。本研究比较分析了3种界面阻隔材料对水稻产量、氮肥利用率和氨挥发排放的影响,以期为水稻降本增效及减少环境污染提供技术支持。通过在稻田喷施表面分子膜材料和覆盖稻糠,比较了两种表面分子膜材料——聚乳酸(PLA)和卵磷脂(LEC)及稻糠(RB)施用后水稻产量及其构成、稻田田面水pH和铵态氮及硝态氮含量动态、稻田氨挥发及氮肥吸收利用的变化特征。结果表明, 3种界面阻隔材料均显著增加了水稻产量,与常规施肥对照(CKU,无添加界面阻隔材料)相比增幅分别为13.0%(RB)、21.0%(PLA)和24.1%(LEC)。增产主要是因为有效穗数的增加,其中RB和PLA处理与CKU处理差异达显著水平;每穗粒数和结实率均无显著差异。LEC处理显著提高了氮肥利用率(19.0%),但RB处理氮肥利用率显著低于CKU。与CKU处理相比,3种界面阻隔材料的添加减少12.3%~19.9%的氨挥发量。PLA处理氨挥发减排效果最佳,达显著水平;其次为LEC处理。氨挥发减排可能与界面阻隔材料添加导致的田面水pH、铵态氮浓度变化和土壤铵态氮含量的增加有关。与CKU处理相比,所有处理均增加了田面水铵态氮浓度,但同时降低了田面水pH,且在水稻分蘖期影响较明显。其中PLA处理还提高了土壤铵态氮含量。本研究表明,稻田施加界面阻隔材料是稻田氨挥发减排以及增产增效的另一种可行的技术途径。  相似文献   

10.
A sensitivity analysis of the model described in Part I showed that the proportion of N lost as ammonia from surface applied urea is very sensitive to the initial pH of the soil, its pH buffer capacity, the rate of urea application, and the soil urease activity. Under the conditions tested, the diffusion of bicarbonate ion to the soil surface, to neutralize the acid generated when NH4+ is volatilized as NH3, appeared to be the main process controlling the rate of ammonia volatilization. The amount of ammonia volatilized was not very sensitive to the value of the transfer coefficient between the soil surface and the atmosphere, nor to the soil moisture status if this was around field capacity. Adsorption of ammoniacal-nitrogen was less important than the soil pH buffer capacity in influencing the ammonia volatilization. Further applications and extensions of the model are discussed.  相似文献   

11.
Nitrogen (N) loss as ammonia (NH3) from agricultural systems is one of the major sources of atmospheric pollutants and is responsible for more than 50% of global NH3 emissions. Ammonia volatilization from animal manures may be altered by amendment with chars derived from pyrolysis (pyrochars) or hydrothermal carbonization (hydrochars) by providing exchange sites for ammonium (NH4+) or changing the pH of manure. Pyrochar and hydrochar differ in chemical and structural composition, specific surface area, and pH and therefore may affect NH3 volatilization differently. In a laboratory incubation experiment, we investigated the effect of pyrochar (pH 9.0) and hydrochar (pH 3.8) from Miscanthus on NH3 emission after addition to poultry manure and cattle slurry. We analyzed manure treatments with and without char addition and acidification and determined the effect of char addition on immobilization of manure-derived NH4+. Ammonia emission from pure poultry manure amounted 84% of the applied NH4+-N, while 67% of the applied NH4+-N was lost as NH3 from cattle slurry. Addition of pyrochar or hydrochar had no or only marginal effects on NH3 emissions except for a reduction in NH3 emissions by 19% due to hydrochar application to CS (p?<?0.05), which seems to be primarily related to the char pH. Sorption of NH4+ by admixture of chars to manure was generally small: between 0.1- and 0.5-mg NH4+-N g?1 chars were sorbed. This corresponds to between 0.1 and 3.5% of the NH4+ applied, which obviously was not strong enough to reduce emissions of NH3. Overall, our results do not provide evidence that addition of pyrochar or hydrochar to cattle slurry and poultry manure is an effective measure to reduce NH3 volatilization.  相似文献   

12.
A laboratory study was initiated to investigate the effects of temperature (25, 30, 35, and 40 °C) and water quality on the loss of fertilizer nitrogen (N) through volatilization out of irrigation waters collected from 10 different Arizona sources. A 300‐mL volume of each water source was placed in 450‐mL beakers open to the atmosphere in a constant‐temperature water bath with 10 mg of analytical‐grade ammonium sulfate [(NH4)2SO4] dissolved into each sample. Small aliquots were drawn at specific time intervals over a 24‐h period and then analyzed for ammonium (NH4 +)‐N and nitrate (NO3 ?)‐N concentrations. Results showed potential losses from volatilization to be highly temperature dependent. Total losses (after 24 h) ranged from 30–48% at 25 °C to more than 90% at 40 °C. Volatilization loss of fertilizer N from irrigation waters was found to be significant and should be considered when making decisions regarding fertilizer N applications for crop production in Arizona particularly when using ammonia‐based fertilizers.  相似文献   

13.
Abstract

Surface‐applied urea fertilizers are susceptible to hydrolysis and loss of nitrogen (N) through ammonium (NH3) volatilization when conditions favorable for these processes exist. Calcium chloride (CaCl2) and ammonium thiosulfate (ATS) may inhibit urease activity and reduce NH3 volatilization when mixed with urea fertilizers. The objective of this study was to evaluate the effectiveness of CaCl2 and ATS as urea‐N loss inhibitors for contrasting soil types and varying environmental conditions. The proposed inhibitors were evaluated in the laboratory using a closed, dynamic air flow system to directly measure NH3 volatilization. The initial effects of CaCl2 on ammonia volatilization were more accentuated on an acid Lufkin fine sandy loam than a calcareous Ships clay, but during volatilization periods of ≥ 192 h, cumulative N loss was reduced more on the Ships soil than the Lufkin soil. Calcium chloride delayed the commencement of NH3 volatilization following fertilizer application and reduced the maximum N loss rate. Ammonium thiosulfate was more effective on the Lufkin soil than the Ships soil. For the Lufkin soil, ATS reduced cumulative urea‐N loss by 11% after a volatilization period of 192 h. A 20% (v/v) addition of ATS to urea ammonium nitrate (UAN) was most effective on the coarse textured Lufkin soil whereas a 5% addition was more effective on the fine textured, Ships soil. Rapid soil drying following fertilizer application substantially reduced NH3 volatilization from both soils and also increased the effectiveness of CaCl2 but not ATS. Calcium chloride and ATS may function as limited NH3 volatilization inhibitors, but their effectiveness is dependent on soil properties and environmental conditions.  相似文献   

14.
Abstract

Chemical transformations of ammonium nitrate (NH4NO3) and urea‐nitrogen (N), at different rates of application, were studied in a Candler (Typic Quartzipsamment) and Wabasso (sandy, Alfic Haplaquod) sand by incubating fertilized surface soil (from 0 to 15 cm depth) samples at 10% moisture content (by weight) in the laboratory at 25±1°C. During the 7 d incubation, the percentage of transformation of NH4‐N into NO3‐N was 33 to 41 and 37 to 41% in the Candler fine sand and Wabasso sand, respectively, at application rates of 1.00 g N kg1. In a parallel experiment, 85 to 96% of urea applied (equivalent to 0.25 to 1.00 g N kg‐1soil) was hydrolyzed to NH4‐N within 4 d in the Candler soil, whereas it required 7 d to hydrolyze 90 to 95% of the urea applied in the Wabasso soil. No nitrification was evident for 30 days in the Candler fine sand which received urea application equivalent to ≥ 0.50 g N kg‐1. In the urea‐amended Wabasso sand, the formation of NO3 decreased as the rate of urea‐N increased. Possible loss of N from NH3 volatilization or inhibition of activity of nitrifiers due to elevated soil pH (8.7 to 9.2) during the incubation of urea amended soils may have caused very low nitrification.  相似文献   

15.
Abstract

In many poultry producing areas, the amounts of poultry litter generated exceeds the amounts needed for application to soil, as fertilizer, at environmentally safe rates. To reduce the amounts of litter produced, Ndegwa et al. (1991) proposed fractionating the litter to generate a fine fraction that could be used as fertilizer, and a coarser fraction that could be recycled into poultry houses as bedding material. Because the fine fraction may need to be stored for several months before land application, knowledge of the changes that occur during storage would be important from the point of view of litter utilization. The objective of this study was to monitor water and inorganic nitrogen (N) contents, as well as potential ammonia (NH3) volatilization and carbon dioxide (CO2) emission in samples of whole litter and fine fraction stored in an unheated building for 16 weeks. Potential NH3 volatilization and CO2 emission were measured at unamended water contents and at a water content of 0.5 kg kg‐1. Water and inorganic N contents of the whole litter and fine fractions showed some fluctuations during the first 4 weeks, but remained relatively stable from weeks 4 to 16. At unamended water contents, potential NH3 volatilization and CO2 emission were relatively low and similar for the whole litter and the fine fraction. Also, potential NH3 volatilization remained stable whereas CO2 emission decreased with time. Increasing the water content to 0.5 kg kg‐1significantly increased potential NH3 volatilization and CO2 emission in the whole litters and fine fractions, with larger increases usually observed in the fine fractions. At 0.5 kg kg‐1, both potential NH3 volatilization and CO2emission decreased with time. These results suggest that the fine fraction and the whole litter should be stored at relatively low water contents to prevent N losses through NH3 volatilization and possibly denitrification.  相似文献   

16.
Broadcasting of urea to agricultural soils can result in considerable losses by NH3 volatilization. However, it is unclear if the impact of this practice on NH3 emissions is further enhanced when performed on no-till (NT) soils. The objective of this study was to compare NH3 volatilization following broadcasting of urea to NT and moldboard plowed (MP) soils. Intact soil cores were taken shortly after harvest from NT and MP plots of three long-term tillage experiments in Québec (Canada) and stored for 4.5 months prior to incubation. Urea (14 g N m−2) was applied at the soil surface and NH3 volatilization was measured for 30 d using an open incubation system. Mean cumulative NH3 losses were greater (P < 0.001) in NT (3.00 g N m−2) than in MP (0.52 g N m−2). Several factors may have contributed to the higher emissions from the NT soils. Urease activity in the top 1 cm of soils was on average 4.2 times higher in NT than in MP soils. As a result, hydrolysis of urea occurred very rapidly in NT soils as indicated by enhanced NH3 emissions 4 h after application of urea. The presence of crop residues at the surface of NT soils also decreased contact of the urea granules with the soil, possibly reducing adsorption of NH4+ on soil particles. Lower volatilization on the MP soils may also have partly resulted from a fraction of urea granules falling into shallow cracks. Field trials are needed to confirm our finding that NT soils bear greater potential for NH3 volatilization following surface application of urea than MP soils.  相似文献   

17.
氮肥深施能有效减少土壤氨挥发,然而目前国内外关于小麦-玉米轮作体系氮肥深施缺乏周年系统性研究。本试验于2018年10月—2019年10月在中国科学院栾城农业生态系统试验站小麦-玉米轮作农田进行,利用动态箱法研究不同深施模式氨挥发损失率、氨挥发特征,旨在探讨冬小麦-夏玉米轮作体系下土壤氨排放对氮肥深施的响应,为减少农业源氨排放和优化农田施肥提供理论依据。试验设置5个处理:不施肥(CK)、常规肥料表施(T1)、缓释肥表施(T2)、缓释肥基追肥分层深施(T3)、缓释肥一次性分层深施(T4)。结果表明:氨挥发主要发生在玉米追肥季,占全年氨挥发量的84.84%;T1、T2、T3和T4处理的周年氨挥发累积量分别为22.75 kg·hm-2、6.17 kg·hm-2、2.25 kg·hm-2和0.55 kg·hm-2,分别占总施肥量的4.86%、1.32%、0.48%和0.13%。与常规肥料表施(T1)相比,缓释肥处理(T2、T3和T4)分别降低72.88%、90.11%和97.32%的氨挥发损失;一次性深施处理(T4)能避开土壤氨高挥发期,周年氨挥发累积量与不施肥处理(0.43 kg·hm-2)没有显著差异,且显著低于表施处理。CK、T1、T2、T3和T4全年产量分别为8.31 t·hm-2、13.20 t·hm-2、12.66 t·hm-2、14.42 t·hm-2和14.22 t·hm-2;与常规肥料表施(T1)相比,缓释肥深施(T3和T4)均可提高作物产量,分别增产9.25%和7.75%。而缓释肥表施(T2)产量略有降低。综合考虑土壤氨排放和作物产量,缓释肥表施(T2)可以显著降低土壤氨挥发,但是作物产量不稳定;而氮肥深施(T3、T4)能在保证作物高产的基础上显著降低土壤氨排放,是一种高效、简便、环境友好的施肥方式。  相似文献   

18.
The use of biochar as soil improver and climate change mitigation strategy has gained much attention, although at present the effects of biochar on soil properties and greenhouse gas emissions are not completely understood. The objective of our incubation study was to investigate biochar's effect on N2O and NO emissions from an agricultural Luvisol upon fertilizer (urea, NH4Cl or KNO3) application. Seven biochar types were used, which were produced from four different feedstocks pyrolyzed at various temperatures. At the end of the experiment, after 14 days of incubation, soil nitrate concentrations were decreased upon biochar addition in all fertilizer treatments by 6–16%. Biochar application decreased both cumulative N2O (52–84%) and NO (47–67%) emissions compared to a corresponding treatment without biochar after urea and nitrate fertilizer application, and only NO emissions after ammonium application. N2O emissions were more decreased at high compared to low pyrolysis temperature.Several hypotheses for our observations exist, which were assessed against current literature and discussed thoroughly. In our study, the decreased N2O and NO emissions are expected to be mediated by multiple interacting phenomena such as stimulated NH3 volatilization, microbial N immobilization, non-electrostatic sorption of NH4+ and NO3, and biochar pH effects.  相似文献   

19.
A lysimeter experiment was carried out to evaluate the effects of the NH3 volatilization mitigation by adding anaerobically digested cattle slurry (ADCS) alone, with wood vinegar (WV) or with a higher level of floodwater (HFW), on emissions of CH4 and N2O from a paddy soil planted with fodder rice. We have carried out the following treatments: (1) chemical fertilizer, (2) ADCS, (3) ADCS + WV, and (4) ADCS + HFW; the height of floodwater was 10 cm in the latter treatment, and it was 3 to 4 cm in the other treatments just before fertilizer applications. Nitrogen fertilizer rate added to soil in each treatment was 30 g NH4+–N m−2 (split in one basal and two top-dressing additions). Ammonia volatilization in the ADCS treatment was 2.7 g NH3–N m−2 throughout the growing season, and it was significantly reduced by 79% and 55% in the ADCS + WV and ADCS + HFW treatments, respectively. The total amount of CH4 emitted in the ADCS treatment in the growing season was not significantly enhanced by the mitigation of NH3 volatilization either by adding wood vinegar or by increasing the height of the floodwater. Negligible N2O emissions were observed in all treatments during the growing period.  相似文献   

20.
Abstract

This research was conducted with Biscayne marl soil and Krome gravelly loam from Florida and Quincy fine sand and Warden silt loam from Washington to determine ammonia (NH3) volatilization at various temperature and soil water regimes. Potassium nitrate (KNO3), ammonium nitrate (NH4NO3), ammonium sulfate [(NH4)2SO4], or urea were applied to the soil at a rate of 75 kg N ha?1. Soil water regime was maintained at either 20% or 80% of field capacity (FC) and incubated at 11, 20, or 29°C, which represented the minimum, average, and maximum temperatures, respectively, during the potato growing season in Washington. Results indicated that the ammonia volatilization rate at 20% FC soil water regime was two‐ to three‐fold greater than that at 80% FC. The cumulative volatilization loss over 28 days was up to 25.7%. Results of this study demonstrated that ammonia volatilization was accelerated at low soil water regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号