共查询到20条相似文献,搜索用时 16 毫秒
1.
《Communications in Soil Science and Plant Analysis》2012,43(3):347-361
The relatively poor accessibility, high costs, long turnaround time for analysis, and lack of information about soil and plant testing in the Andean highland region (Altiplano) of Bolivia has hampered informed and timely nutrient management decisions for potato (Solanum tuberosum L.) crops. The objective of this study was to determine if the Cardy nitrate meter (Horiba Ltd., Kyoto, Japan), a low-cost, portable, and rapid field test method, could be used to improve nitrogen (N) fertility management among isolated rural indigenous communities at different elevations in this rugged semi-arid environment. Fully matured leaf petioles were sampled at blooming time from potato trials established in three communities during the 2006–2007 and 2007–2008 growing seasons. Those trials were composed of 12 fertility treatments (i.e., an unfertilized control and different combinations of sheep and cow manure, inorganic fertilizer, commercial household/urban compost, and a commercial microbial activator soil amendment) arranged in a randomized complete block design with four replications. In general, in both growing seasons and in all communities, nitrate measured in the sap of leaf petioles by the Cardy meter had relatively low but significant correlations with leaf petiole total N (ranging from r2 = 0.07 to r2 = 0.60 across seasons and communities) and with total fresh tuber yield (ranging from r2 = 0.11 to r2 = 0.50 across seasons and communities). However, some problems were encountered with being able to consistently calibrate the meter with supplied standards prior to each use of the meter. These results indicate that the Cardy ion meter might be an effective tool for potato growers or agricultural professionals working in the Altiplano of Bolivia if further research can be conducted to determine if the meter is consistent for diverse sites in the Altiplano and is practical for the cultural, economic, and environmental conditions of the region. 相似文献
2.
Muhammad Faisal Bilal Muhammad Ashfaq Wahid Amir Shakeel Andrew French Muhammad Sarwar 《Journal of plant nutrition》2017,40(14):1978-1992
Commercial cultivation of Bt cotton produced higher boll load which led to stiff inter-original competition for photosynthates, resulting in early cessation of growth (premature senescence) due to more availability of sink and less sources. To overcome this problem, field experiment was conducted during 2011 and 2012 using five treatments of plant growth manipulation viz. no fruiting branch removal (F1), removal of first fruiting branch (F2), removal of first and second fruiting branch (F3), removal of all squares from first fruiting branch (F4), removal of all squares from first and second fruiting branches (F5), and three potassium (K) application rates viz. 50 kg ha?1 (K1), 100 kg ha?1 (K2), and 150 kg ha?1 (K3). More nodes above white flower were recorded in F5, followed by F3, while minimum were recorded in F1. Among potassium levels, maximum nodes above white flower were recorded in K3 followed by K2 and K1 during both years of study. Plant height recorded at physiological cutout stage or at maturity stage showed that plants gained more height with removal of all squares from first tosecond fruiting branches with higher potassium dose. Leaf K increased with increasing applied potassium and also with square/branch removal. So early removal of squares/fruiting branches along with higher potassium dose helped in delaying canopy senescence in Bt cotton. 相似文献
3.
《Soil Science and Plant Nutrition》2013,59(1)
(pp. 825–831) This study was carried out to clarify the effects of soil nitrate before cultivation and amounts of basal-dressed nitrogen on additional N application rate and yields of semi-forced tomato for three years from 1998 to 2000. The amounts and timing of additional N dressing were determined based on diagnosis of petiole sap nitrate. The top-dressing was carried out with a liquid fertilizer when the nitrate concentration of a leaflet's petiole sap of leaf beneath fruit which is 2–4 cm declined below 2000 mg L?1. For standard yield by the method of fertilizer application based on this condition, no basal-dressed nitrogen was required when soil nitrate before cultivation was 150 mg kg?1 dry soil or higher in the 0–30 cm layer; 38 kg ha?1 of basal-dressed nitrogen, which corresponds to 25% of the standard rate of fertilizer application of Chiba Prefecture, was optimum when soil nitrate before cultivation was 100150 mg kg?1 dry soil; 75 kg ha?1 of basal-dressed nitrogen, which corresponds to 50% of the standard, was optimum when soil nitrate before cultivation was under 100 mg kg?1 dry soil. A standard yield was secured and the rate of nitrogen fertilizer application decreased by 49–76% of the standard by keeping the nitrate concentration of tomato petiole sap between 1000–2000 mg L?1 from early harvest time to topping time under these conditions. 相似文献
4.
《Communications in Soil Science and Plant Analysis》2012,43(3):507-518
Studies have reported significant differences in nitrate accumulation among genotypes within a crop species, but the reason for these differences is not clear. This study investigated nitrate (NO3) efflux from roots of two oilseed rape cultivars (Brassica napus L. cvs. ZY821 and D89) and the relationship between nitrate efflux and plant nitrate accumulation. Nitrate efflux was estimated by measuring nitrate released from roots into nitrate-free nutrient solutions 58 days after sowing. The solutions were buffered with either 2.0 mM (n-morpholino) ethanesulfonic acid (MES) or 0.05 mM phosphate. Whole-plant and petiole nitrate accumulations were significantly greater for ZY821 compared to D89. Nitrate efflux varied diurnally, and the difference between cultivars was greater in the morning than in the afternoon. Data suggested that the relatively high pH of the phosphate-buffered solutions increased nitrate efflux rates from oilseed rape plants; therefore phosphate buffer should not be used when making direct determinations of nitrate efflux. Maximum cumulative nitrate efflux was 0.97 μmol g?1 fresh-weight (FW) root for ZY821 and 1.9 μmol g?1 FW root for D89. Maximum nitrate efflux rate was 0.084 μmol g?1 FW min?1 for ZY821 and 0.097 μmol g?1 FW min?1 for D89. These results indicated that between the two cultivars, ZY821 had the greatest petiole nitrate nitrogen concentration and the lowest total nitrate efflux. We suggest that cultivars with low nitrate efflux rates are able to translocate and store greater amounts of nitrate in aboveground plant organs, especially in petioles. 相似文献
5.
不同品种菠菜叶柄和叶片的硝态氮含量及其与植株生长的关系 总被引:8,自引:3,他引:8
温室盆栽试验研究了我国北方不同菠菜品种叶柄和叶片的硝态氮含量及其与植株生长的关系。结果表明,30个菠菜品种地上部分的生长量和硝态氮含量存在显著差异。叶柄和叶片在反映品种间生长量和硝态氮含量变异方面的作用并不相同。叶片占植株地上部鲜重的比例高于叶柄,品种间叶片生长量的差异亦大于叶柄,叶片与植株生长量的正相关关系更为显著。但与生长量的情况不同,叶柄的硝态氮含量、累积总量均显著高于叶片,是菠菜累积硝态氮的主要器官。叶柄硝态氮含量的品种间差异远大于叶片,与植株地上部硝态氮含量的正相关性更为显著。菠菜不同品种之间,叶柄硝态氮含量与地上部鲜重、干重及水分均表现出显著的正相关关系,而叶片硝态氮含量与植株生物量及其各组分之间却无这种关系。 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(11):1563-1575
The ability to determine the optimal nitrogen (N) content in maize plants needed to obtain maximum growth is important to the management of the crop. It has been shown that N content declines as a function of aboveground biomass accumulation (W): [N] = 3.4W–0.37. The goal of this study is to evaluate the applicability of relating chlorophyll meter readings with the optimal N content relationship to provide a tool for whole-plant N-status diagnosis in maize without the necessity of measuring N content. Biomass of shoot and specific organs, N concentration, and chlorophyll meter measurement of specific leaves were measured over several sites and years. Nitrogen-concentration measurements indicated that whole-plant N status can be represented by the N concentration of the topmost fully expanded leaf. A quantitative relationship between N concentration and chlorophyll meter measurement on the uppermost expanded leaf was established and validated. 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(3):571-588
Extraction of soil nitrate nitrogen (NO3 ?-N) and ammonium nitrogen (NH4 +-N) by chemical reagents and their determinations by continuous flow analysis were used to ascertain factors affecting analysis of soil mineral N. In this study, six factors affecting extraction of soil NO3 ?-N and NH4 +-N were investigated in 10 soils sampled from five arable fields in autumn and spring in northwestern China, with three replications for each soil sample. The six factors were air drying, sieve size (1, 3, and 5 mm), extracting solution [0.01 mol L?1 calcium chloride (CaCl2), 1 mol L?1 potassium chloride (KCl), and 0.5 mol L?1 potassium sulfate (K2SO4)] and concentration (0.5, 1, and 2 mol L?1 KCl), solution-to-soil ratio (5:1, 10:1, and 20:1), shaking time (30, 60, and 120 min), storage time (2, 4, and 6 weeks), and storage temperature (?18 oC, 4 oC, and 25 oC) of extracted solution. The recovery of soil NO3 ?-N and NH4 +-N was also measured to compare the differences of three extracting reagents (CaCl2, KCl, and K2SO4) for NO3 ?-N and NH4 +-N extraction. Air drying decreased NO3 ?-N but increased NH4 +-N concentration in soil. Soil passed through a 3-mm sieve and shaken for 60 min yielded greater NO3 ?-N and NH4 +-N concentrations compared to other treatments. The concentrations of extracted NO3 ?-N and NH4 +-N in soil were significantly (P < 0.05) affected by extracting reagents. KCl was found to be most suitable for NO3 ?-N and NH4 +-N extraction, as it had better recovery for soil mineral N extraction, which averaged 113.3% for NO3 ?-N and 94.9% for NH4 +-N. K2SO4 was not found suitable for NO3 ?-N extraction in soil, with an average recovery as high as 137.0%, and the average recovery of CaCl2 was only 57.3% for NH4 +-N. For KCl, the concentration of extracting solution played an important role, and 0.5 mol L?1 KCl could fully extract NO3 ?-N. A ratio of 10:1 of solution to soil was adequate for NO3 ?-N extraction, whereas the NH4 +-N concentration was almost doubled when the solution-to-soil ratio was increased from 5:1 to 20:1. Storage of extracted solution at ?18 °C, 4 °C, and 25 °C had no significant effect (P < 0.05) on NO3 ?-N concentration, whereas the NH4 +-N concentration varied greatly with storage temperature. Storing the extracted solution at ?18 oC obtained significantly (P < 0.05) similar results with that determined immediately for both NO3 ?-N and NH4 +-N concentrations. Compared with the immediate extraction, the averaged NO3 ?-N concentration significantly (P < 0.05) increased after storing 2, 4, and 6 weeks, respectively, whereas NH4 +-N varied in the two seasons. In conclusion, using fresh soil passed through a 3-mm sieve and extracted by 0.5 mol L?1 KCl at a solution-to-soil ratio of 10:1 was suitable for extracting NO3 ?-N, whereas the concentration of extracted NH4 +-N varied with KCl concentration and increased with increasing solution-to-soil ratio. The findings also suggest that shaking for 60 min and immediate determination or storage of soil extract at ?18 oC could improve the reliability of NO3 ?-N and NH4 +-N results. 相似文献
8.
《Communications in Soil Science and Plant Analysis》2012,43(19):2860-2874
When carrots (Daucus carota L.) are mechanically harvested, sufficient nitrogen (N) must be balanced between the roots and carrot tops; weak tops reduce yield. A 2-year study was conducted in Montcalm County, Michigan, where four replications of four N treatments (45, 90, 135, and 180 kg ha?1), were arranged in a randomized complete block design. Results showed the importance of determining pre-existing N sources, in as much as the deep taproot of carrot accessed unmeasured N in the subsoil and nitrate concentrations in irrigation water added N. The greatest yield occurred at 153–189 kg ha?1 available N while tops continued to take up N through 200–232 kg ha?1. When the last N application was made less than 35 days before harvest, the rate of N uptake exceeded dry-matter accumulation rate. 相似文献
9.
ABSTRACT Leguminous crops, particularly winter annuals, have been utilized in conservation systems to partially meet nitrogen (N) requirements of succeeding summer cash crops. Previous research also highlights the benefits of utilizing summer annual legumes in rotation with non-leguminous crops. This study assessed the N contribution of peanut (Arachis hypogaea L.) residues to a subsequent cotton (Gossypium hirsitum L.) crop in a conservation system on a Dothan sandy loam (fine-loamy, kaolinitic, thermic Plinthic Kandiudults) at Headland, AL during the 2003–2005 growing seasons. Treatments were arranged in a split plot design, with main plots of peanut residue retained or removed from the soil surface, and subplots as N application rates (0, 34, 67, and 101 kg ha? 1) applied in fall and spring. Peanut residue did not influence seed cotton yields, leaf N concentrations, or plant N uptake for either growth stage or year of the experiment. There was a trend for peanut residue to increase whole plant biomass measured at the first square in two of three years. Seed cotton yields and plant parameters measured at the first square and mid-bloom responded favorably to spring N applications, but the recommended 101 kg N ha? 1 did not maximize yields. The results from this study indicate that peanut residue does not contribute significant amounts of N to a succeeding cotton crop, however, retaining residue on the soil surface provides other benefits to soils in the southeastern U.S. 相似文献
10.
不同施氮水平对春玉米氮素利用及土壤硝态氮残留的影响 总被引:1,自引:0,他引:1
过量施用氮肥造成的环境问题日益严重,氮肥合理使用成为了人们研究的热点。通过研究不同施氮水平对春玉米氮素利用及土壤硝态氮残留的影响,为氮肥的合理利用提供依据。通过在北京市通州区农业技术推广站进行田间小区试验,研究了不同施氮量(0、50、100、200和300kg·hm^-2)对春玉米产量及氮素利用效率、氮平衡和土壤硝态氮累积量的影响。结果表明:(1)春玉米在施氮量为200kg·hm^-2时达到最高产量,为9006.4kg.hm^-2,不同氮肥水平的氮肥利用率在19.7%-25.8%之间,在100kg·hm^-2时的利用效率最高,达到25.8%。(2)作物吸氮量随输入量的增加而增加,氮盈余主要以土壤残留为主,表观损失在氮盈余中的比例虽小,但随施氮量的增加而增加的趋势更加明显。(3)硝态氮在180cm土层中的累积量随氮素输入量的增加而显著增加,在300kg·hm^-2时达到最高值,为195kg·hm^-2,在施氮水平为100kg·hm^-2时作物生长的需要就基本上能够得到满足,而在高施氮水平下(200和300kg·hm^-2)时土壤中的硝态氮出现富集现象,对环境形成一定的威胁。 相似文献
11.
《Communications in Soil Science and Plant Analysis》2012,43(7):878-886
Reliable and quick methods for measuring nitrogen (N)–supplying capacities of soils (NSC) are a prerequisite for using N fertilizers. This study was conducted to develop a routine method for estimation of mineralizable N in two calcareous soils (sandy loam and clay soils) treated with municipal waste compost or sheep manure. The methods used were anaerobic biological N mineralization, mineral N released by 2 M potassium chloride (KCl), ammonium (NH4 +) N extracted by 1 N sulfuric acid (H2SO4), NH4 +-N extracted by acid potassium permanganate (KMnO4), and NH4 +-N released by oxidation of soil organic matter using acidified potassium permanganate. The results showed that oxidizable N extracted by acid permanganate, a simple and rapid measure of soil N availability, was correlated with results of the anaerobic method. Oxidative 0.05 N KMnO4 was the best method, accounting for 78.4% of variation in NSC. Also, the amount of mineralized N increased with increasing level of organic materials and was greater in clay soil than sandy loam soil. 相似文献
12.
Upland cotton (Gossypium hirsutum) requires adequate nitrogen (N) for optimum yields. Foliar applications of urea to supplement soil applied N have been tried for many years across the Cotton Belt, but responses have been highly variable. No published information is available regarding response by irrigated cotton to foliar applied N in subtropical South Texas. This study investigated the response of cotton to foliar applied urea and triazone N over a three-year period near Weslaco, Texas. In all years, foliar applied urea tended to increase seed cotton yield when soil applied N was limiting. In the absence of soil applied N, the increase due to foliar urea was significant in two of the three years (28.7 and 15.7% increases). Foliar applied triazone N was ineffective at increasing seed cotton yields. 相似文献
13.
《Communications in Soil Science and Plant Analysis》2012,43(9):761-771
Abstract A field crop of 3‐month old cabbages was sampled every 2 h from 0600 h until 2000 h. At each sampling, an upper, middle and lower leaf were taken from four plants, and their petiole nitrate status measured by three methods (a) “Merckoquant”; test strips (b) specific ion electrode on a fresh macerated extract and (c) the same electrode on an extract of oven dry tissue. All three methods led to similar conclusions: a. there were very big differences in concentration with leaf position, the middle leaf having the highest; b. there were large concentration differences between plants, especially for the lower leaves; c. the effect of time of day was not significant. The test strips are capable of giving satisfactory results provided that sufficient plants are sampled, but values thus obtained for sap may be lower than for macerated fresh tissue, especially at the low end of the concentration range. 相似文献
14.
In a three-year field experiment in Toulouse (in Southwest France), two indicators of plant nitrogen (N) status were compared on five durum wheat cultivars: the normalized SPAD index and the nitrogen nutrition index (NNI). SPAD value is a non-destructive measurement of chlorophyll content from the last expanded leaf. The normalized SPAD index is expressed relative to SPAD reading on a fully fertilized crop. The NNI is calculated from the crop biomass and total plant N content using a universal N-dilution curve for wheat. The normalized SPAD index and NNI were closely related irrespective of year, cultivar, and growth stage. When N was a limiting factor, the SPAD index measured at anthesis predicted grain yield and protein content accurately. Unlike NNI, SPAD index cannot be used to predict these variables when wheat is over-fertilized. 相似文献
15.
《Communications in Soil Science and Plant Analysis》2012,43(10):1223-1235
Nitrogen (N) fertilizer use in cotton (Gossypium hirsutum L.) production is a potential source of nitrate (NO3 ?) contamination of soils, groundwater, and streams. The McConnell–Mitchell plots, a long-term study of cotton responses to N-fertilization and irrigation methods, were utilized to determine the NO3 ?-N in soil cropped to continuous cotton. The McConnell–Mitchell plots had a split-block experiential design. The main blocks of this test were irrigation methods. Each block of plots was irrigated using a single irrigation method for the entirety of the testing. Nitrogen fertilization rates were tested within each irrigation block. The soil NO3 ?-N content of two irrigation blocks, furrow flow (FI) and center pivot (CP), were compared to the dryland (DL) control block. Nitrogen treatments tested within each irrigation block ranged from 0 to 168.0 kg N ha?1 in 33.6-kg N ha?1 increments. Nitrogen treatments were tested for 18 years (1982 through 1999), discontinued for 4 years (2000 through 2003), and resumed in 2004. Soil samples were taken in the early spring (2000 and 2004) to a depth of 1.50 m in 0.15 m increments and analyzed for NO3 ?-N. Soil samples taken in 2004 were prior to any fertilization treatment. Irrigation method was found to influence the distribution of soil NO3 ?-N. Little accumulation of soil NO3 ?-N was observed in either irrigation block or under dryland production when N rates were less than 67.2 kg N ha?1. Distribution of soil NO3 ?-N in the FI block was significantly different with sample depth and N treatment but not the interaction of depth and treatment in both 2000 and 2004. Presumably, the small and close values of the means and the greater variability of interactions compared to main effects precluded significant interactions. Differences in soil NO3 ?-N in the FI block after suspending N treatments for 4 years were similar to those found in 2000, although the soil NO3 ?-N was generally depleted in 2004 compared to 2000. The distribution of soil NO3 ?-N in the CP-irrigated block was dependent on the interaction of sample depth with N treatment in both 2000 and 2004. Soil NO3 ?-N values and differences tended to be too small to be of discernable or practical importance under CP irrigation. The distribution of soil NO3 ?-N in the DL block was dependent on the interaction of sample depth with N treatment in 2000 and 2004. Soil NO3 ?-N was minimal in the three lowest N treatments (0, 33.6, and 67.2 kg N ha?1) in 2000. Greatest amounts of soil NO3 ?-N were found in conjunction with the 134.4 and 168.0 kg N ha?1 treatments both years. Depletion of soil NO3 ?-N was evident in the surface 0.45 m of the 100.8, 134.4, and 168.0 kg N ha?1 treatments under DL conditions in 2004. 相似文献
16.
H. A. Souza D. E. Rozane D. A. Amorim V. C. Modesto W. Natale 《Journal of plant nutrition》2016,39(2):235-243
Studies of the effect of organic fertilization of perennial crops are scarce due to the time necessary for the plants to present the first results. The objective of this study was to assess the leaf nitrogen (N) content, the direct and indirect measures of chlorophyll content, fruit yield and their correlations in an orchard of adult guava trees of the Paluma cultivar, through five consecutive harvests, in function of application of a byproduct of guava processing. The following doses of the byproduct were applied: 0, 9, 18, 27 and 36 t ha?1. The material was applied on the surface, without incorporation, once a year between 2006 and 2010. The byproduct doses influenced the nitrogen concentrations, SPAD index, chlorophyll b level and fruit production. 相似文献
17.
玉米叶片SPAD值、全氮及硝态氮含量的品种间变异 总被引:9,自引:2,他引:9
研究比较两种土壤肥力条件下,4个春玉米品种在喇叭口期至成熟期间叶片SPAD值、全氮及硝态氮含量的变异程度、及其与氮素积累和产量形成的关系,以期为不同品种植株的氮素营养测试指标的优化提供依据。结果表明,叶片SPAD值与产量、吸氮量及生物量呈显著相关,该值主要受氮肥水平影响,并因土壤肥力而变异。从喇叭口期至灌浆期间平均变异幅度为17.7%,但品种间变异很小,平均仅为4.3%。说明利用SPAD值诊断玉米氮素营养时,其诊断指标不需要因品种而调整,但需要因不同肥力而调整。在新立城低肥力条件下,喇叭口期(V12)和抽雄期(VT)的SPAD临界值指标分别为46.1和57.8;在德惠高肥力条件下,两个时期的SPAD值临界值较为接近,分别为59.9和60.3。植株叶片硝态氮含量在土壤肥力间及品种间变异均较大,变异幅度分别为43.1%和29.3%,且与产量、吸氮量及生物量的相关性均较差,不适于在大面积范围内单独作为玉米氮素营养状况的评价指标。 相似文献
18.
几种控释氮肥的饲料玉米肥效及其生理效应研究 总被引:10,自引:1,他引:10
通过田间试验研究了几种控释氮肥对饲料玉米分蘖、叶片叶绿素含量、光合速率及氮肥利用率的影响,并探讨了这些生理指标与饲料玉米生物量之间的关系。结果看出,控释氮肥处理,玉米分蘖数在分蘖前期比等养分尿素略低,分蘖后期明显高于尿素处理;叶片叶绿素含量、叶片光合速率与等养分尿素相比,都有明显提高。相关分析表明,各处理饲料玉米后期分蘖数、叶片叶绿素含量、叶片光合速率与其生物量达到显著相关,相关系数(r)分别为0.9677、0.8967、0.8979。控释氮肥可明显降低饲料玉米硝酸盐含量,比施同等养分尿素,其硝酸盐降低幅度为73.37~709.41mg/kg;与等重量尿素相比,其硝酸盐降低幅度为469.26~1150.00mg/kg,控释氮肥的降硝效果明显。控释氮肥处理比尿素处理明显提高氮肥利用率,且保肥效果好。 相似文献
19.
《Journal of plant nutrition》2013,36(7):1133-1144
Abstract The evolution of both leaf expansion and chlorophyll content was assessed in potted sweet pepper plants subjected to four different levels of nitrogen (mg N/kg of soil): N1 = 25 (basal dressing); N2 = 50 (basal dressing); N3 = 100 (basal dressing and one side dressing); and, N4 = 150 (basal dressing and two side dressings). In each plant, the first leaves (numbered 1–5) were chosen at the main stem and the next four ramifications. The relative chlorophyll content of leaves 1 to 5, from all treatments, was obtained by a portable chlorophyll meter, SPAD-502, twice a week. The SPAD readings were subsequently converted into total chlorophyll (μ g cm? 2). The plant dry weight, the number of fruits per plant, and the N content of leaves were measured at final harvest (70 d after transplantation, DAT). Until the first side dressing (35 DAT), the increase in chlorophyll content was similar in all treatments, decreasing afterward under the N1 and N2 treatments (leaves 1 and 2), while under the N3 and N4 treatments the increase in the chlorophyll content continued after the first side dressing. The application of the second side dressing (53 DAT) under the N4 treatment induced a subsequent increase in chlorophyll content in all leaves compared with those of N3. An early senescence was observed under the N1 and N2 treatments compared with the others. Applied N in side dressing led to an increase in leaf width (leaves 2–5) and longevity, mainly in leaves 2 and 3, and a subsequent increase under fruit number and fruit dry weight under the N3 and N4 treatments. 相似文献
20.
Nitrate leaching depending on N fertilization and different crop rotations was studied at two sites with sandy soils in N Germany between 1995 and 2000. The leaching of NO was calculated by using a numerical soil‐water and N model and regularly measured Nmin values as input data. Also the variability of Nmin values on the sandy soils was determined along transects. They reveal the high variability of the Nmin values and show that it is not possible to confirm a significant Nmin difference between fertilizer treatments using the normal Nmin‐sampling intensity. Nitrate‐leaching calculations of five leaching periods showed that even strongly reduced N‐fertilizer applications did not result in a substantially lower NO leaching into the groundwater. Strong yield reductions of even more than 50%, however, were immediately measured. Mean NO concentrations in the groundwater recharge are >50 mg L–1 and are mainly due to mineralization from soil organic matter. Obviously, the adjustment of the N cycle in the soil to a new equilibrium and a reduced NO ‐leaching rate as a consequence of lower N inputs need a much longer time span. Catch crops are the most efficient way to reduce the NO concentrations in the groundwater recharge of sandy soils. Their success, however, strongly depends on the site‐specific development possibilities of the catch crop. Even with all possible measures implemented, it will be almost impossible to reach NO concentrations <50 mg L–1 in sandy soils. The only way to realize this goal on a regional scale could be by increasing areas with lower nitrate concentrations in the groundwater recharge like grassland and forests. 相似文献