首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In order to clarify the mechanism by which calcium (Ca) alleviates manganese (Mn) phytotoxicity, barley plants were grown under the following conditions: (1) nutrient solution alone (control), (2) nutrient solution + 25 μM Mn (Mn-toxic), and (3) nutrient solution + 25 μ M Mn + 20 mM Ca (Ca-alleviated). Feeding experiments using 54Mn and 59Fe (iron) with 2.0 or 20 mM Ca to the plant roots were also conducted. The absorption and translocation of 54Mn in the control plants were lowered by the high-Ca (20 mM) feeding condition. The translocation of 54Mn to shoots of Mn-toxic or Ca-alleviated plants was also lowered by the high-Ca feeding condition, but 54Mn absorption by roots of the plants was unaffected. The absorption and translocation of 59Fe in the plants was unaffected by the high-Ca feeding condition. Calcium alleviation of Mn phytotoxicity in barley may be induced mainly by the inhibition of Mn translocation to shoots.  相似文献   

2.
A solution culture was conducted to investigate the effects of copper (Cu) and zinc (Zn) toxicity on growth of mung bean (Phaseolus aures Roxb. cv VC‐3762) and accumulation of polyamine. Eight‐day‐old seedlings were grown in diluted nutrient solution with different concentrations of Cu and Zn for 6 days. Results showed that elongation of epicotyl and fresh weight of plants were decreased by 10 μM Cu and 100 μM Zn significantly compared to control (0.03 μMCu and 0.1 μMZn). Accumulation of polyamine, especially putrescine (Put) was found in the epicotyl of mung bean seedlings. Addition of 5 mM calcium (Ca) into nutrient solution improved the growth of 10 μM Cu‐treated seedling, and decreased the concentration of Put and increased concentrations of spermine and spermidine in epicotyl of plants. Moreover, supplying Put did not increase tolerance of plant to Cu or Zn. It was suggested that Put accumulation resulting from toxicity of Cu and Zn might merely be a symptom of stress injury.  相似文献   

3.
Cadmium (Cd) uptake by white lupin (Lupinus albus) was studied at low Cd concentrations (0.05nM to 5 μM) in hydroponic solution. Ten 12‐day old seedlings were pretreated in 0.5 mM CaCl2 solution in presence and absence of metabolic inhibitors (DCCD, DNP or NaN3). Cadmium solutions were labelled with carrier free 109CdCl2. Cadmium uptake was measured after a 2 h desorption in unlabelled CdCl2 solution. In the absence of any metabolic inhibitor and at 5 [μM Cd, roots absorbed 235.23 μg Cd/g root dry weight. Over the range of lnM to 5 μM Cd, exchangeable Cd represented approximately 5% of the absorbed fraction, and about 25 % of the total absorbed Cd was adsorbed to the root. Cadmium was passively absorbed to about 30% as observed in the presence of the inhibitor (DCCD). Ative absorption which represented 70% of Cd uptake involved H+‐ATPase carriers. Cadmium absorption was reduced to 30 and 20% in presence of lanthanum (La3+) and zinc (Zn2+), respectively which suggested that calcium (Ca), Cd, and Zn use the same carriers. Cadmium uptake in presence of DNP or NaN3 was approximately 4‐ fold that in control. Data showed presomption for an excretion of Cd out of root cells which could be the expression of a detoxification process limiting cell contamination.  相似文献   

4.
Cadmium (Cd) uptake by lettuce (Lactuca sativa L.) was studied in a hydroponic solution study at concentrations approaching the total concentration in contaminated soil solutions. Four cultivars of lettuce were tested (Divina, Reine de Mai, Melina, and J.44). Ten 12‐day old seedlings, pretreated in 0.5 μM CdCl2 solution, were labelled with carrier free 109CdCl2 (from 0.05 μM to 5 μM Cd in nutrient solution) in the presence and absence of metabolic inhibitors, DNP and DCCD. Cadmium taken up by the roots was determined after a 30 min desorption in unlabelled CdCl2 solution. In the absence of metabolic inhibitors and at 5 μM Cd, root absorbed from 2.5 to 8 mg Cd/g root dry weight. Exchangeable Cd measured after desorption represented less than 1% of the total Cd absorbed by the root. Cadmium absorption in presence of DNP showed that approximately 80% of the Cd enters the cell through an active process. This mechanism seems to be directly associated with H+‐ATPase as observed with DCCD inhibition. Varietal differences in shoot Cd uptake were only demonstrated at concentrations below 0.1 μM. Screening lettuce cultivars only by the Cd level in the tissue seems not to be possible for these cultivars except at concentrations close to that in the soil solution. But differences in relative contribution of uptake mechanisms in total Cd absorption were observed. High levels of Cd in roots were correlated with high contri‐ butions from H+‐ATPase in the active process of Cd uptake.  相似文献   

5.
Sour orange (Citrus aurantium L.) seedlings were grown for 3 months in diethylenetriamine pentaacetate (DTPA)‐buffered nutrient solutions to study the effect of Zn stress on the plants’ sensitivity to high boron concentration in the root environment. There were three zinc treatments: 21 μM Zn (LOW Zn‐DTPA), 69 μM Zn (NORMAL Zn‐DTPA) in the nutrient solution, or 12 weekly foliar sprays with ZnSO4 (FOLIAR‐Zn). In the FOLIAR‐Zn treatment, the nutrient solution contained 21 μM Zn. Zn activities calculated with a chemical equilibrium model, Geochem PC, and expressed as pZn=‐log(Zn+2), were 10.2 and 9.7 in the LOW Zn‐DTPA and NORMAL Zn‐DTPA nutrient solutions, respectively. One half of the plants in each Zn treatment were grown in 51 μM B (NORMAL‐B) and the other half in 200 μM B (HIGH‐B) nutrient solution. Seedlings grown in LOW Zn‐DTPA/NORMAL‐B nutrient solution developed Zn deficiency symptoms such as: reduced shoot growth, small and chlorotic leaves, and white roots with visibly shorter and thicker laterals than in Zn sufficient plants. The HIGH‐B treatment decreased shoot growth, leaf and stem dry weight, leaf area, and induced severe leaf B toxicity on seedlings grown in the LOW Zn‐DTPA nutrient solution but the effect was either absent or less pronounced in the NORMAL Zn‐DTPA or FOLIAR‐Zn treatments. Seedlings in the LOW Zn‐DTPA FOLIAR‐Zn treatments but they had lower B concentration on a whole plant basis indicating less B uptake per unit of dry weight. The FOLIAR‐Zn and NORMAL Zn‐DTPA treatments were equally effective in alleviating leaf B toxicity symptoms. The FOLIAR‐Zn treatment, however, was less effective than the NORMAL Zn‐DTPA treatment in alleviating the deleterious effect of high B on leaf dry weight even though the B concentrations in leaves, stems, and roots of the foliar‐sprayed seedlings were similar to the NORMAL Zn‐DTPA seedlings. Leaf concentrations of phosphorus, potassium, magnesium, iron, mangenese, and copper were within the optimal range for citrus with the exception of Ca which was low. Although B and particularly Zn treatments modified the concentration of some of these elements in leaves and roots, these changes were too small to explain the observed growth responses. The observation that B toxicity symptoms in Zn‐deficient citrus could be mitigated with Zn applications is of potential practical importance as B toxicity and Zn deficiency are simultaneously encountered in some soils of semiarid zones.  相似文献   

6.
The influence of the fungal toxin fusicoccin or the quasi‐ionophore gramicidin‐D on Rb+ transport in intact barley seedlings (Hordeum vulgare cv Morex) was studied. Fusicoccin (1 μM) or gramlcidin‐D (3.2 μM) were added to absorption solutions which contained 0.1 mM RbCl and 0.5 mM CaSO4, and the Rb+ content of roots and shoots determined over a 24 hour period. Roots of fusicoccin‐treated seedlings contained greater amounts of Rb+ throughout the entire course of the experiment, and roots of gramlcidin‐D treated seedlings contained greater amounts of Rb+ for the first 10 hours but contained smaller amounts of Rb+ for the rest of the experiment when compared with control seedlings. However, shoots of seedlings treated with fusicoccin or gramicidin‐D contained smaller amounts of Rb+ than the control seedlings throughout the entire course of the experiment. These results are discussed in terms of the interrelationships of the ion transport mechanisms which mediate the vectorial movement of ions from the absorption solution to the stelar apoplasm of the root.  相似文献   

7.
SITS (0, 0.01, 0.1, or 1.0 mM) influence on the absorption (1 hr) by 1‐cm root tips of Sorghum bicolor (L.) Moench cv GP‐10, SC 283, SC 574, or Funk G522DR seedlings of calcium (Ca), boron (B), phosphorus (P), zinc (Zn), manganese (Mn), iron (Fe), magnesium (Mg), and copper (Cu) from an Hoagland and Arnon complete mineral nutrient solution was evaluated by inductively coupled plasma emission spectrophotometry (ICP). Cultivar variation in response to SITS within each element was found. Multiple mechanisms of control for the absorption of each element among cultivars were evident.  相似文献   

8.
Three rice cultivars, IR712, M1–48 and E425 were grown in solution culture for 10 weeks in temperature controlled glasshouses at IRRI, Los Baños, Philippines. Treatments consisted of two Mn levels, 0.5 and 50 μg.cm‐3 and two temperature regimes, 35/27 and 20/20 (day/night) in °C. Dry matter and Mn concentrations were determined at 2‐week intervals. In a second experiment, the M1–48 cultivar was grown in solutions containing 0.5, 1, 40 and 80 μg.cm‐3 Mn at 35/27, 29/21 and 20/20 °C (day/night) temperatures.

It was concluded that rice is more sensitive to excess Mn under cool conditions and that the concentration of Mn in the tissue at which toxicity symptoms appear or growth is decreased depends on the age of the tissues and the environmental conditions under which the plant is growing. Growth of two‐day old seedlings exposed to excess Mn was decreased to a greater degree than was that of 2‐week old seedlings. It is suggested that in screening rice cultivars for tolerance to excess Mn the environmental conditions should be rather rigidly controlled.  相似文献   


9.
The effect of varying solution calcium (Ca) and magnesium (Mg) concentrations in the absence or presence of 10 μM aluminum (Al) was investigated in several experiments using a low ionic strength (2.7 × 10‐3 M) solution culture technique. Aluminium‐tolerant and Al‐sensitive lines of wheat (Triticum aestivum L.) were grown. In the absence of Al, top yields decreased when solution Ca concentrations were <50 μM or plant Ca concentrations were <2.0 mg/g. Top and root yields decreased when solution Mg concentrations were <50 μM or plant Mg concentrations were <1.5 mg/g. There were no differences between the lines in solution or plant concentrations at which yield declined. Increasing solution Ca concentrations decreased plant Mg concentrations in the tops (competitive ion effect) but increased plant Mg concentrations in the roots of wheat. This suggests that Ca is competing with Mg when Mg is transported from the roots. Increasing solution Mg concentrations decreased plant Ca concentrations in the tops and the roots (competitive ion effect). In the roots, increasing solution Mg concentrations decreased plant Ca concentrations at a lower solution Ca concentration in the Al‐sensitive line than the Al‐tolerant line. In the presence of Al, increasing solution Ca and Mg concentrations increased yield (Ca and Mg ameliorating Al toxicity). Yield increased until the sum of the solution concentrations of the divalent cations (Ca+Mg) was 2,000 μM for the Al‐tolerant line or 4,000 μM for the Al‐sensitive line. The exception was that yield decreased when solution Mg concentrations were > 1,500 μM and the solution Ca concentration was 100 μM (Mg exacerbating Al toxicity). The ameliorative effects of solution Ca or Mg on Al tolerance were not related to plant Ca or Mg concentrations per se.  相似文献   

10.
An experiment developed in soilless culture was used to study the effect of several levels of cobalt (Co) (0, 5, 15, and 30 mg.L‐1) on yield and nutrient evolution of the tomato fruits (Lycopersicon esculentum M. cv. Ramy). The incidence of this pollutant in leaf chlorophyll contents was also studied. Increasing concentration of Co in nutrient solution reduced drastically yield in tomato plants. Total, a and b chlorophyll contents were affected by Co level in nutrient solution. A significant increase of nitrogen (N), phosphorus (P), calcium (Ca), and copper (Cu) in the fruit in function of Co treatments were observed. Similar evolution in iron (Fe) and manganese (Mn) fruit content affected by Co presence in higher treatment were obtained. No significant effect of Co presence on potassium (K), magnesium (Mg), sodium (Na), and zinc (Zn) fruit contents were observed. Cobalt absorption was very high, with values of Co in fruit around 250 μg Co g‐1.  相似文献   

11.
Soils of the peach growing region of the Southeastern Coastal Plain are highly leached and excessively acid, with inherently low concentrations of subsoil magnesium (Mg). A greenhouse experiment was conducted to determine the effects of varying Mg concentrations at low pH on growth and Mg uptake of three peach seedling cultivars commonly used as rootstock in the region. Seedlings of ‘Lovell’, ‘Elberta’, [Prunus persica (L.) Batsch] and ‘Nemaguard’ [Prunus persica (L.) Batsch X Prunus davidiana Carriere] were grown for 36 days in nutrient solution containing 9, 21, 42, 84, 167, 333, and 667 μM Mg. Magnesium concentration in solution did not increase lateral length, number of laterals, trunk cross‐sectional area, or root volume. All terminal growth responses were cultivar related. Magnesium concentration in the leaves, stems, and roots were increased either by quadratic or cubic relationship with solution Mg concentration while Mg uptake rate was increased linearly with solution Mg concentration with all three seedling cultivar. Uptake rates of calcium, manganese, and zinc, and tissue concentrations of phosphorus, manganese, and zinc decreased with increasing Mg concentrations in nutrient solution. Predicted Mg uptake rates by‐regression analysis revealed a cubic uptake isotherm for Nemaguard and a quadratic isotherm for Elberta. Predicted tissue Mg concentration followed similar patterns of accumulation for leaves and stems, but root Mg concentration followed a cubic uptake isotherm for all three seedlings. The linear Mg uptake at low pH may be an important physiological characteristic that enables Lovell seedlings to outperform either Elberta or Nemaguard when used as a rootstock in the southeastern soils.  相似文献   

12.
The effect of increasing aluminum (Al) concentrations on root nutrient contents along with the concurrent translocation to the shoot of C4 plants prompted this study. Two‐week‐old maize (Zea mays cv XL‐72.3) plants were therefore submitted for 20 days to Al concentrations ranging from 0 to 3.00 mM in a medium with low ionic strength were used as a test system. Aluminum concentrations in root tissues showed a 3‐fold increase between 0 and 3.00 mM Al treatment, and was not detected in the shoot. Root plasma membrane‐H+ ATPase activity decreased after the 0.33 mg L‐1 Al treatment, while membrane permeability increased up to 1.00 mM Al treatment. Root and shoot biomass decreased after the 0.33 mM Al treatment. All elements in the roots, except potassium (K), manganese (Mn), and zinc (Zn) were highest for plants treated with 0.33 mM Al. Potassium increased continuously between 0 and 3.00 mM Al treatments, and iron (Fe) decreased above 0.33 mM. Only a slight decrease in nitrogen (N) was observed. All the measured nutrients in shoots, except N, Mn, and Fe decreased above 0.33 mM, but calcium (Ca) and magnesium (Mg) had little variation as Al varied. Data indicated that maximum net uptake for mineral nutrients, except Mn, occurred up to 0.33 mM Al. Translocation of phosphorus (P), K, Mn, and Zn decreased above 0.33 mM Al, N, and Ca decreased when any Al was added, and no clear trend was observed for Mg and Fe. Between the 0 and the 3.00 mM Al treatments, electrolytic conductance did not increased significantly indicating that the observed inhibitions of translocation from roots to shoots were not directly related to increasing membrane degradation.  相似文献   

13.
Seedling sorghum [Sorghum bicolor (L.) Moench. cv GP‐10, SC283, SC574, and Funk G522DR] primary root tips (1‐cm) content of calcium (Ca), phosphorus (P), zinc (Zn), boron (B), manganese (Mn), iron (Fe), magnesium (Mg), and copper (Cu) in response to a Ca2+‐channel blocker (nifedipine 0, 0.01, 0.1, or 1 μM) was measured after a 1‐hr exposure to Hoagland and Arnon complete mineral nutrient solution. Content of ions was significantly different among the cultivars. Responses to nifedipine were element‐cultivar‐blocker concentration dependent.  相似文献   

14.
Application of most waste or by‐product material increases the zinc (Zn) concentration in soils markedly. This investigation was conducted to determine if enhanced sulfur (S) supplied as sulfate (SO4) would modify the toxic effects of excess Zn. Soybean (Glycine max [L.] Merf. cv. Rarisorri) was grown for two weeks in nutrient solutions containing ranges in Zn (0.8 to 80 μM) and S (0.02 to 20 mM). Root and shoot conditions were observed, dry weights measured, and Zri concentration determined. Zinc‐toxicity symptoms started about one week after transplanting young plants to nutrient solutions. Symptoms including chlorosis, especially in the trifoliate leaves, and change in orientation of unifoliate leaves were mild in 20 μM‐, intermediate in 40 μM‐, and severe in 80 μM Zn‐containing solutions. Dry weight was reduced in plants exposed to 20, 40, and 80 μM Zn. Plants grown in 40 μM Zn and 20 mM S survived longer than those grown in lower S concentrations and showed alleviation of the chlorosis in trifoliate leaves. The change in the orientation of the unifoliate leaves due to Zn toxicity, however, was not affected by S. Zinc contents in shoots grown at toxic Zn levels were higher in 20 mM‐ than in lower S‐containing nutrient solutions. High S supply (20 mM) increased Zn translocation from roots to shoots. Besides increasing the Zn translocation from roots to shoots, it seems that S nutrition may also be a factor helping the plants to cope with high levels of Zn in their tissues.  相似文献   

15.
Phosphorus‐Zn interaction was studied in Gaudiniafragilis plants grown in culture solution. The effect of different P supplies on 65Zn uptake was measured in 21 days‐old seedlings. Zinc as 65Zn absorbed during 24 h decreased when P concentration in the nutrient solution was increased from 0 to 10 mM. The longer the period in high P concentration, the stronger the 65Zn uptake inhibition. The time course of 65Zn uptake showed that both Zn‐influx and net Zn‐uptake were inhibited in 10 mM with respect to 0.1 mM P. The partitioning of the 65Zn absorbed between shoot and root was not affected by P supply. However total 65Zn transported to the shoot was higher in 0,1 than in 10 mM phosphate due to the higher 65Zn absorption. The time course of the inhibition of 65Zn influx by high P concentration showed a rapid initial decrease, probably due to a direct effect of external P concentration, followed by a slower decrease, which was atributed to the increase in the internal P concentration.  相似文献   

16.
The growth responses of buffalograss [Buchloe dactyloides (Nutt.) Engelm.] to elevated micronutrient levels in the fertilizer solution were investigated. Seedling plants established in peat‐lite mix in 11‐cm (0.6 L) pots in the greenhouse were irrigated with solutions containing 0.5, 1, 2, 4, 6, 8, or 12 mM of boron (B), chlorine (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), or zinc (Zn). The control solution contained (in μM): 20 B, 0.5 Cu, 40 Fe, 10 Mn, 0.5 Mo, and 4 Zn. A standard macronutrient concentration was used for all treatment solutions. Boron and Mo induced visual toxicity symptoms more readily than other micronutrients. Boron toxicity was characterized by chlorosis often accompanied by bleached leaf tips, while Mo toxicity resulted in leaf necrosis. The lowest levels that induced visual foliar toxicity were 0.5 mM B, 2 mM Cu, 4 mM Fe, 6 mM Mn, 1 mM Mo, and 4 mM Zn. Chloride did not induce foliar abnormalities in the concentration range tested. Biomass yield was reduced when the nutrient solution contained 2 mM B, 6 mM Cu, or 2 mM Mo. Elevated levels of Cl, Fe, Mn, and Zn did not alter dry matter yield. The relationship between the nutrient and tissue concentrations was determined for each microelement.  相似文献   

17.
Associations between vesicular‐arbuscular mycorrhizal (VAM) fungi and manganese (Mn) nutrition/toxicity are not clear. This study was conducted to determine the effects of excess levels of Mn on mineral nutrient uptake in shoots and roots of mycorrhizal (+VAM) and non‐mycorrhizal (‐VAM) sorghum [Sorghum bicolor (L) Moench, cv. NB9040]. Plants colonized with and without two VAM isolates [Glomus intraradices UT143–2 (UT1 43) and Gl. etunicatum UT316A‐2 (UT316)] were grown in sand irrigated with nutrient solution at pH 4.8 containing 0, 270, 540, and 1080 μM of added Mn (as manganese chloride) above the basal solution (18 μM). Shoot and root dry matter followed the sequence of UT316 > UT143 > ‐VAM, and shoots had greater differences than roots. Shoot and root concentrations and contents of Mn, phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and copper (Cu were determined. The +VAM plants generally had higher mineral nutrient concentrations and contents than ‐VAM plants, although ‐VAM plants had higher concentrations and contents of some minerals than +VAM plants at some Mn levels. Plants colonized with UT143 had higher concentrations of shoot P, Ca, Zn, and Cu and higher root Mg, Zn, and Cu than UT316 colonized plants, while UT316 colonized plants had higher shoot and root K concentrations than UT143 colonized plants. These results showed that VAM isolates differ in enhancement of mineral nutrient uptake by sorghum.  相似文献   

18.
The absorption and transport of Na and Cl from 0.1 mM and 10 mM 22Na labelled NaCl or 36Cl labelled KCl were examined in 15 days old seedlings of 3 cultivars of rice differing in their tolerance to salinity. Furthermore, the effects of 10, 100 and 1000 ppm (N)2S on their uptake were studied. It was found that in general, the salt‐tolerant cultivars BR and PNL‐1 absorbed more Na and translocated a lesser proportion of it to the shoot, compared to the salt‐sensitive IR‐8, from 0.1 mM NaCl. The presence of (N)2S reduced the uptake of Na in all the cultivars. It was also found that the presence of 100 ppm K, KN or NNreduced Na absorption from 0.1 mM NaCl significantly in all the cultivars, and the translocation to shoot in BR‐ Chloride transport from 0.1 mM NaCl was reduced by (N)2S in all the cultivars. The 3 cultivars differed significantly in the rates of absorption and transport of Na and Cl. The results indicate that PNL‐1 which is a cross of IR‐8 X BR, has inherited the salt tolerance trait from BR. Lower rates of Na translocation to the shoot can be used as an index of salt tolerance in rice.  相似文献   

19.
In a series of preliminary experiments, the effect of varying solution concentrations of several nutrients on yield in ryegrass (Lolium perenne L. cv Grasslands Nui) or white clover (Trifolium repens cv Grasslands Huia) were investigated using a still low ionic strength (2.7 x 10‐3M) nutrient solution culture technique. The concentration of the nutrients in the basal solution was (μM): 500 calcium (Ca); 100 magnesium (Mg); 300 potassium (K); 600 nitrogen (N) [150 ammonium (NH4), 450 nitrate (NO3)]; 2.5 phosphorus (P); 600 sulfur (S); 3 boron (B); 2.5 iron (Fe); 0.5 zinc (Zn); 0.5 manganese (Mn), and 0.1 copper (Cu) at pH 4.7. The solution concentrations required for 95% maximum yield in ryegrass (μM) were: < 240 for total N, 2 for P, < 240 for S, < 40 for Mg, < 200 for Ca, and < 100 for K. The < symbol indicates that yield did not decrease nor increase, suggesting that the lowest solution concentration used (shown after < symbol) was adequate for 95% maximum yield. In white clover, solution concentrations required for 95% maximum yield (μM) were: < 38 for NH4, 10 for P,< 150 for S, 150 for Mg, < 125 for Ca, and 300 for K. Yield also declined for white clover when additional trace nutrients [Mn, Zn, Cu, iron (Fe), and boron (B)] were added, although the trace nutrient that was toxic could not be determined.  相似文献   

20.
Possible mechanisms of the effects of silicon (Si) on arsenic (As) uptake were explored using a wild‐type rice and its low‐Si mutant (lsi1). Hydroponic experiments were carried out to investigate the effects of internal and external Si on the As accumulation and uptake by rice in excised roots (28 d–old seedlings) and xylem sap (61 d–old plants). The presence of Si significantly decreased the As concentrations in both shoots and roots of the wild type but not in the mutant with 13.3 μM–arsenite or 10/20 μM–arsenate treatments. The Si‐defective mutant rice (lsi1) also showed a significant reduction in arsenite or arsenate uptake. Moreover, As concentrations in xylem sap of the wild type were reduced by 51% with 1 mM Si– and 15 μM–arsenate treatments, while Si had no effect on As concentrations in the xylem sap of the mutant. Arsenic‐species analysis further indicated that the addition of 1 mM Si significantly decreased As(III) concentrations but had little effect on As(V) concentrations in the xylem sap of the wild type with 15 μM–arsenate treatments. These results indicated that external Si‐mediated reduction in arsenite uptake by rice is due to the direct competition between Si and arsenite during uptake. This is because both share the same influx transporter Lsi1. In addition, internal Si‐mediated reduction in arsenite uptake by rice is due to competition of the Si/arsenite efflux transporter Lsi2 during the As(III)‐transportation process. Silicon also inhibited arsenate uptake by rice. It is proposed that this could actually be due not to the inhibition of arsenate uptake per se but rather the inhibition of arsenite transformed from arsenate, either in the external solution or in rice roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号