首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Aluminum tolerant oat cultivars are needed for use on acid soil sites where neutralization of soil acidity by liming is not economically feasible. Oat germplasm in Poland has not been examined for range of Al tolerance. Eleven Polish oat cultivars were screened for Al tolerance in nutrient solutions containing 0, 5 and 15 mg L‐1 Al. Three of these cultivars showing high to moderate tolerance to Al in nutrient solutions were also grown in greenhouse pots of soil and in field plots of soil over a pH range of 3.8 to 5.5 as determined in 1 N KC1.

The eleven oat cultivars differed significantly in tolerance to Al in nutrient solutions. Based on relative root yield (15 mg L‐1 Al/no A1%), the cultivars ‘Solidor’ and ‘Diadem’ were most tolerant and ‘Pegaz’ and ‘B‐20’ were least tolerant. For these three cultivars, the order of tolerance to acid soil agreed with the order of tolerance to Al in nutrient solution ‐ namely, Solidor > Diadem > Leanda. Hence, for these cultivars, the nutrient solution methods used appear adequate for selecting plants that are more tolerant to Al in strongly acid soils. Additional study is needed to assess the value of this method for screening a broad range of germplasm.

Superior tolerance of the Solidor cultivar to acid soil was associated with significantly higher concentrations of N in the grain. Hence, results suggest that selecting for acid soil or Al tolerance may increase N efficiency in oats.  相似文献   

2.
Aluminum toxicity is a major growth limiting factor for plants in many acid soils of the world. Correcting the problem by conventional liming is not always economically feasible, particularly in subsoils. Aluminum tolerant plants provide an alternative and long‐term supplemental solution to the problem. The genetic approach requires the identification of Al tolerance sources that can be transferred to cultivars already having desirable traits. Thirty‐five cultivars and experimental lines of wheat (Triticum aestivum L. em. Thell) were screened for Al tolerance on acid Tatum soil (clayey, mixed thermic, typic Hapludult) receiving either 0 or 3500 mg CaCO3/kg (pH 4.1 vs. pH 7.1). Entries showed a wide range of tolerance to the acid soil. On unlimed soil at pH 4.3, absolute shoot dry weights differed by 5‐fold, absolute root dry weights by 6.5‐fold, relative shoot weights (wt. at pH 4.3/wt. at pH 7.1 %) by 4.7‐fold and relative root dry weights by 7‐fold. Superior acid soil (Al) tolerance of ‘BH‐1146’ from Brazil and extreme sensitivities of cultivars ‘Redcoat’ (Indiana, USA) and ‘Sonora 63’ (Mexico) were confirmed. Seven experimental (CNT) lines from Brazil showed a range of acid soil tolerance but were generally more tolerant than germplasm from Mexico and the USA. One line, ‘CNT‐1’, was equal to BH‐1146 in tolerance and may be useful in transferring Al tolerance to existing or new cultivars. Five durum cultivars (Triticum, durum, Desf.) were extremely sensitive to the acid Tatum subsoil at pH 4.3 compared with pH 7.1.  相似文献   

3.
Kentucky bluegrass, Poa pratensis L., is generally regarded as an acid‐soil‐sensitive species. However, previous studies in our laboratory showed that cultivars within the species differed widely in tolerance to acid Tatum subsoil (pH 4.6) which is used routinely to screen plants for aluminum (Al) tolerance. In the early studies, specific differential Al tolerance was not demonstrated. The objective of the current study was to test the hypothesis of differential Al tolerance more precisely in nutrient solutions. In one experiment, acid‐soil‐tolerant Victa and Fylking and acid‐soil‐sensitive Windsor and Kenblue cultivars were grown for 35 days in nutrient solutions containing 0, 2, 4, 6, 12, and 24 mg Al L‐1, at initial pH 4.5, with no subsequent adjustment. In a second experiment, Victa and Windsor were grown for 30 days in solutions containing 0, 4, and 6 mg Al L‐1, at initial pH 4.5, with no further adjustment. For Victa and Windsor, tolerance to Al in nutrient solution corresponded with tolerance to acid Tatum subsoil, however, the cultivar difference in tolerance, based on relative root dry weight, was only about 2‐fold, compared with 20‐fold in acid Tatum subsoil. Fylking and Kenblue cultivars, which showed a wide difference in tolerance to acid Tatum subsoil, did not show distinct differences in tolerance to Al in nutrient solutions. Possible reasons for this discrepancy are discussed. Superior Al tolerance of Victa (compared with Windsor) was associated with a greater plant‐induced increase in the pH of its nutrient solutions and a corresponding decrease in concentrations of soluble Al in the filtered solutions at the end of the experiments. Greater Al sensitivity in Windsor (compared with Victa) was not related to reduced uptake of phosphorus (P) or excessive uptake of Al; neither cultivar accumulated appreciable Al concentrations in its shoots. The observed differential acid soil and Al tolerance among bluegrass cultivars appears worthy of further study. Improved understanding of Al tolerance mechanisms would contribute to fundamental knowledge of plant mineral nutrition and could aid plant breeders in tailoring plants for greater tolerance to acid subsoils.  相似文献   

4.
Abstract

Fine fescues (Festuca spp.) are generally considered acid tolerant compared to other cool‐season turfgrasses. However, there is little information on aluminum (Al) tolerance of fine fescues at both the species and cultivar levels. The objectives of this study were to identy cultivars of fine fescues with superior ability to tolerate Al, and compare the Al tolerance of endophyte infected and endophyte‐free cultivars in Al tolerance. A total of 58 cultrvars of fine fescues belonging to five species or subspecies [14 hard fescue (F. longifolia Thuill), 25 Chewings fescue (F. rubra L. ssp. commutata Gaud), 15 strong creeping red fescue (F. rubra L. ssp. rubra), two slender creeping red fescue (F. rubra L. ssp. trichophylla), and two sheep fescue (F. ovina L.)] were selected from the 1993 National Fineleaf Fescue Test and screened under greenhouse conditions using solution culture, sand culture, and acid Tatum soil (Clayey, mixed, thermic, typic, Hapludult). The acid Tatum soil had 69% exchangeable Al and a pH of 4.4. An Al concentration of 640 μM and a pH of 4.0 were used in solution culture and sand culture screening. The grasses were seeded and grown for three weeks before harvesting. Aluminum tolerance was assessed by measuring relative root length, shoot length, root weight, shoot weight, and total dry matter. Differences in Al tolerance were identified at both the species and cultivar level based on relative growth were as follows: i) hard fescue and Chewings fescue were more Al tolerant than strong creeping red fescue; ii) within species or subspecies, significant differences were found among cultvars of Chewings fescue, strong creeping red fescue, slender creeping red fescue, and sheep fescue; whereas no difference was observed among the hard fescue cultivars; and iii) the cultivars containing endophyte exhibited greater Al tolerance compared the eudophyte‐free cultivars. The results indicate that fine fescues vary in Al tolerance and there is potential to improve Al tolerance with breeding and to refine their management recommendations regarding soil pH.  相似文献   

5.
Six cultivars of sunflower (Helianthus annuus L.), were screened under controlled environmental conditions for tolerance to Al stress and water stress imposed separately and in combination with one another. Plants were grown for 4 weeks in waxed cartons containing 1 kg of acid, Al‐toxic Tatum, subsoil (clayey, mixed, thermic, Typic Hapludult) at high (pH 4.3) or low (pH 6.3) Al stress. During the final 2 weeks they were also subjected to low (‐20 to ‐40 kPa) or high (‐60 to ‐80 kPa) water stress. Plant growth responses and symptoms of Al toxicity suggested that a wide range of cultivar sensitivity existed. ‘Manchurian’, ‘S‐212’, ‘S‐254’, and ‘S‐265’ were relatively tolerant to Al toxicity while cultlvars ‘Romania HS‐52’ and ‘RM‐52’ were extremely sensitive. Under high Al stress and high water stress, chloroplasts in cells from the Al‐sensitive cultivar ‘Romania HS‐52’ were smaller and contained less starch than chloroplasts from the Al‐tolerant cultivar ‘Manchurian’. Furthermore, the smaller chloroplasts tended to have fewer grana stacks per unit area than did the chloroplasts from tolerant plants. These differences were not apparent when the Al‐sensitive cultivar was grown either in the absence of Al or water stress. In general, Al‐sensitive cultivars of sunflower were more tolerant to water stress than were Al‐tolerant cultivars. Increasing the soil moisture level reduced Al toxicity in Al‐sensitive cultivars. Similarly, decreasing Al stress partially overcame the detrimental effects of high water stress. Hence, Al stress and water stress are interrelated factors which must be considered in the characterization and breeding of plants for better adaptation to acid soils.  相似文献   

6.
Aluminum toxicity, associated with soil acidity, is a major growth‐limiting factor for plants in many parts of the world. More precise criteria are needed for the identification of potential Al toxicity in acid soils. The objective of the current study was to relate the acid soil tolerances of two wheat cultivars to three characteristics of an acid Tatum subsoil (clayey, mixed, thermic, typic Hapludult): pH in a 1:1 soil to water suspension; KCl‐extractable Al; and degree of Al saturation. Aluminum‐tolerant ‘BH 1146’ (Brazil) and Al‐sensitive ‘Sonora 63’ (Mexico) wheat cultivars were grown in greenhouse pots of soil treated with CaCO3 to establish final soil pH levels of 4.1, 4.6, 4.7, 4.9, 5.2 and 7.3. Soil Al, Ca and Mg were extracted with 1 N KCl, and Al saturation was calculated as KCl‐Al/KCl Al + Ca + Mg%.

Within the soil pH range of 4.1 to 4.9, BH 1146 tops and roots produced significantly more dry matter than did those of Sonora 63; however, at pH 5.2 and 7.3, the top and root yields of the two cultivars were not significantly different. Significant cultivar differences in yield occurred over a range of 36 to 82% saturation of the Tatum soil. Graphs of relative top or root yields against soil pH, KCl‐extractable Al and Al saturation indicated that the two cultivars could be separated for tolerance to Tatum soil under the following conditions: pH less than 5.2 (1:1 soil‐water); KCl‐Al levels greater than 2 c mole kg‐1 and Al saturations greater than 20%. Results demonstrated that any soil test used to predict Al toxicity in acid soils must take into account the Al tolerances of the plant cultivars involved.  相似文献   

7.
Abstract

This paper reports the reaction of 24 Australian wheats and 16 overseas cultivars to high aluminium (Al) in solution culture. These results are compared with those from a rapid haematoxylin stain test. The relationship between the haematoxylin stain test results and performance in the field was also determined.

The dry matter yields in solution culture confirmed tolerances previously reported for the non‐Australian cultivars, with only two exceptions. The Australian varieties vary in tolerance but none were as tolerant as those from Brazil. The tolerances of the Australian varieties were not related to the breeding origins of the varieties. Exposure to Al in solution differentially reduced the concentration of calcium (Ca), magnesium (Mg), and phosphorus (P) in both shoots and roots. The more Al‐tolerant varieties were less affected.

The results obtained in solution culture and in the haematoxylin stain test generally agreed, but more differences between varieties were noted in solution culture results. The haematoxylin stain test was then used to classify cultivars and advanced lines in the breeding programme, and the results were compared with yield performance on acid (8 sites) and non‐acid soils (20 sites). The lines in haematoxylin class 4 had a 20% yield advantage over the acid sites.

We concluded that tolerance was useful in the field, that the haematoxylin stain test is useful as a rapid preliminary assessment of Al tolerance, and that the prospect of breeding cultivars with improved tolerance was rewarding.  相似文献   

8.
Screening cultivars for aluminum (Al) tolerance is often conducted in acid soils or in complete nutrient solutions. The former method lacks precise measurements of Al, and the second requires high Al concentrations because of precipitation and chelation of the Al and is less representative of the actual environmental stresses to which plants must adapt. These experiments were designed to determine Al tolerance of wheat (Triticum aestivum L. em Thell) and sorghum (Sorghum bicolor L. Moench) using incomplete solutions with very low Al concentrations. Six wheat and five sorghum cultivars were screened for Al tolerance in solution culture with 0 to 10 μM Al and only Ca, K, Mg, NO3, and Cl in the solutions. Plants were subjected to the solutions for 4 d, and the change in relative root length was measured. Solution Al levels and pH were measured after the termination of the experiments. ‘Atlas’ 66 and ‘Stacy’ were the most tolerant wheat cultivars ('Atlas 66’ = ‘Stacy’ ≥ ‘Monon’ ≥ ‘Scout 66’ ≥ ‘Arthur 71’ = ‘Oasis'). The wheat cultivars were effectively separated on a genetic response basis at 2 μM Al. Sorghum cultivars were uniform in their Al tolerance, but did show some separation at 1 μM Al (SC56 > Tx430 > ‘Funk GS22DR’ > SC283 = SC599). The pH and Al variations did not account for any of the differences observed, indicating that root length differences were caused by genetic control of response to high Al.  相似文献   

9.
Abstract

Shallow rooting and susceptibility to drought are believed to be caused, at least in part, by strongly acidic (pH <5.5, 1:1 soil‐water), aluminum (Al)‐toxic subsoils. However, this hypothesis has not been clearly confirmed under field conditions. The Al toxicity hypothesis was tested on a map unit of Matawan‐Hammonton loam (0–2% slope) on unlimed and limed field plots (pH range 5.1 to 5.8) at Beltsville, MD, during 1994 to 1998. Aluminum‐tolerant and sensitive pairs of barley (Hordeum vulgare L.), wheat [Triticum aestivum (L.)], snap bean (Phaseolus vulgaris L.), and soybean [Glycine max (L.) Merr.] cultivars were used as indicator plants. Eastern gamagrass [Tripsacum dactyloides (L.) L.], cultivar ‘Pete’, reported to tolerate both chemical and physical stress factors in soils, was grown for comparison. Shoots of Al‐sensitive ‘Romano’ snap beans showed a significant response to liming of the 0–15 cm surface layer, but those of Al‐tolerant ‘Dade’ did not, indicating that Al toxicity was a growth limiting factor in this acid soil at pH 5.1. Lime response of the Al‐tolerant and sensitive cultivars of barley, wheat, and soybean were in the same direction but not significant at the 5% level. Aluminum‐tolerant and sensitive cultivars did not differ in abilities to root in the 15–30 cm soil depth. Only 9 to 25% of total roots were in this layer, and 75 to 91% were in the 0–15 cm zone. No roots were found in the 30–45 cm zone which had a pH of 4.9. Soil bulk density values of 1.44 and 1.50 g cm?3 in the 15–30 and 30–45 cm zones, respectively, indicated that mechanical impedance was a primary root barrier. Results indicated that restricted shoot growth and shallow rooting of the Al‐indicator plants studied in this acid soil were due to a combination of Al toxicity and high soil bulk density. Confounding of the two factors may have masked the expected response of indicator plants to Al. These two growth restricting factors likely occur in many, if not most acid, problem subsoils. Studies are needed to separate these factors and to develop plant genotypes that have tolerance to multiple abiotic stresses. Unlike the Al indicator cultivars, eastern gamagrass showed high tolerance to acid, compact soils in the field and did not respond to lime applications (pH 5.1–5.8).  相似文献   

10.
Ozone (O3) toxicity is a potential yield‐limiting factor for soybean (Glycine max L. Merr.) in the United States and worldwide. The most economical solution to the problem is to use O3‐tolerant cultivars. Thirty‐four cultivars and 87 near‐isogenic lines (NILS) of soybean were screened for O3 tolerance in a fumigation chamber (250 ppb for three hrs). Most tolerant cultivars tested were ‘Cloud’, ‘T‐276’, ‘T263’, and ‘Kindu’. Moderately tolerant cultivars included ‘Davis’, ‘T‐210’, and ‘Elton’. Most sensitive cultivars were ‘Corsoy 79’, ‘Noir’, and ‘Midwest’. The original ‘Clark’ cultivar was not tested, but ‘Clark 63’ tended to be more tolerant than ‘Harosoy’. The aluminum (Al)‐tolerant ‘Perry’ cultivar also tended toward greater O3 tolerance than the Al‐sensitive ‘Chief’, as observed earlier. Our rankings of ‘Hark’ as moderately sensitive and ‘Davis’ as moderately tolerant are also in agreement with earlier reports. Among NILS, the order of O3 tolerance was generally Williams>Clark>Harosoy, but differences were also observed within these parental groups. For example, L68–560 was more tolerant than some other NILS of ‘Harosoy’. ‘L76–1988’ appeared more tolerant to O3 than other NILS of ‘Williams’, but all ‘Williams’ NILS were more tolerant than most NILS of ‘Harosoy’ and ‘Clark’. Ozone‐tolerant and ‐sensitive soybean cultivars or NILS identified in our study may be useful tools in studies on mechanisms of 03 tolerance and differential 03 tolerances in plants and in the development of ameliorative measures.  相似文献   

11.
Durum wheat, Triticum durum Desf., is reportedly more sensitive to aluminum (Al) toxicity in acid soils than hexaploid wheat, Triticum aestivum L. em. Thell. Aluminum‐tolerant genotypes would permit more widespread use of this species where it is desired, but not grown, because of acid soil constraints. Durum wheat germplasm has not been adequately screened for acid soil (Al) tolerance. Fifteen lines of durum wheat were grown for 28 days in greenhouse pots of acid, Al‐toxic Tatum subsoil at pH 4.5, and non‐toxic soil at pH 6.0. Aluminum‐tolerant Atlas 66 and sensitive Scout 66 hexaploid wheats were also included as standards. Based on relative shoot and root dry weight (wt. at pH 4.5/wt. at pH 6.0 X 100), durum entries differed significantly in tolerance to the acid soil. Relative shoot dry weight alone was an acceptable indicator of acid soil tolerance. Relative dry weights ranged from 55.1 to 15.5% for shoots and from 107 to 15.8% for roots. Durum lines PI 195726 (Ethiopia) and PI 193922 (Brazil) were significantly more tolerant than all other entries, even the Al‐tolerant, hexaploid Atlas 66 standard. Hence, these two lines have potential for direct use on acid soils or as breeding materials for use in developing greater Al tolerance in durum wheat. Unexpectedly, the range of acid soil tolerance available in durum wheat appears comparable to that in the hexaploid species. Hence, additional screening of durum wheat germplasm for acid soil (Al) tolerance appears warranted. Durum lines showing least tolerance to the acid soil included PI 322716 (Mexico), PI 264991 (Greece), PI 478306 (Washington State, USA), and PI 345040 (Yugoslavia). The Al‐sensitive Scout 66 standard was as sensitive as the most sensitive durum lines. Concentrations of Al and phosphorus were significantly higher in shoots of acid soil sensitive than in those of tolerant lines, and these values exceeded those reported to cause Al and phosphorus (P) toxicities in wheat and barley.  相似文献   

12.
High‐performance liquid chromatography (HPLC) was used to determine aluminum (Al)‐induced changes in organic acid (OA) concentrations of Al‐tolerant ‘Dade’ and Al‐sensitive ‘Romano’ snapbean cultivars. Two week old ‘Dade’ and ‘Romano’ snapbean were grown in 1/5‐strength Steinberg nutrient solution for 10 days and then subjected to 0, 2, 4, 6, and 8 mg L‐1 Al treatments at pH 4.5 for an additional 3–15 days. Current studies confirmed earlier findings that the Dade cultivar was significantly more tolerant to Al than the Romano variety. Organic acid analyses were performed on extracts of root and leaf, and on stem exudates. The organic acids were separated on an ion exclusion column using a mobile phase of 0.01 N H3PO4. Individual OA were quantified with a variable wavelength detector operating at 210 nm. Aluminum stress tended to reduce the concentrations of citric, malonlc, malic, glycolic, fumaric, and acetic acids in the roots and increased the OA concentrations in stem exudates. In the presence or absence of Al stress, the Al tolerant Dade cultivar contained higher OA concentrations than did the Al‐sensitlve Romano. Aluminum stress reduced total OA levels in root extracts from Al‐sensltive Romano plants to a greater extent than in those of the Al‐tolerant Dade. Malic and citric acid concentrations were decreased more than those of the other organic acids examined. Results indicate that the Al‐tolerant Dade snapbean cultivar has a higher potential for Al‐chelation and detoxification than does the Al‐sensitive Romano. Hence, an Al‐chelation mechansism may be involved in differential Al tolerance within this species.  相似文献   

13.
Nineteen bush bean cultivars were screened for tolerance to excess Mn in nutrient solution and sand culture experiments. Seven‐day‐old seedlings were treated with full strength Hoagland No. 2 nutrient solution containing different Mn concentrations for 12 days in the greenhouse.

Cultivars showing the greatest sensitivity to Mn toxicity were ‘Wonder Crop 1’ and ‘Wonder Crop 2'; those showing the greatest tolerance were ‘Green Lord’, ‘Red Kidney’ and ‘Edogawa Black Seeded’.

Leaf Mn concentration of plants grown in sand culture was higher than that for plants grown in solution culture. The lowest leaf Mn concentration at which Mn toxicity symptoms developed, was higher in tolerant than in sensitive cultivars. The Fe/Mn ratio in the leaves at which Mn toxicity symptoms developed, was higher in the sensitive cultivars than in the tolerant ones.

We concluded that Mn tolerance in certain bush bean cultivars is due to a greater ability to tolerate a high level of Mn accumulation in the leaves.  相似文献   


14.
Abstract

Toxic levels of aluminum can cause severe yield reduction in alfalfa (Medicago sativa L.), especially in the presence of drought stress. Reactions to Al stress of alfalfa cultivars and germplasms, representing a broad genetic base and the entire range of dormancy types, were evaluated in a Monmouth soil study [26.2% Al saturation (pH 4.8) vs 2.8% Al saturation (pH 5.7)] and in two nutrient solution experiments (0 vs 111 μmol Al; pH 4.5). The soil study, Experiment 1, and Experiment 2 were harvested 28, 40, and 25 d after seeding, respectively.

In all studies, entries differed significantly in vigor and yields were reduced significantly by Al stress. In the soil study, only ‘Lahontan’ was not affected significantly by Al stress, although Lahontan, ‘Atlantic’, ‘B13‐A14’ (tolerant check), ‘Ladak 65’, and ‘Mesa‐Slrsa’ had comparable relative weights (dry weight stressed/dry weight unstressed). There were no statistically significant differential responses to Al stress in Experiment 1, however the relative weight of B13‐A13 (tolerant check) was considerably larger that those of the other entries. Many entries were not affected significantly by Al stress in Experiment 2; B13‐A14, ‘Moapa 69’, ‘Saranac’, and ‘Teton’ had the largest relative weights. Relative weights for Experiment 1 and Experiment 2 were significantly correlated (r=0.46?) as was mean dry matter production in the soil study and Experiment 2 (r=0.73??).  相似文献   

15.
Abstract

Barley, Hordeum vulgare L., is extremely sensitive to excess soluble or exchangeable aluminum (Al) in acid soils having pH values below about 5.5. Aluminum tolerant cultivars are needed for use in rotations with potatoes which require a soil pH below 5.5 for control of scab disease. They are also potentially useful in the currently popular “low input, sustainable agriculture (LISA)”; in which liming even the plow layer of soil is not always possible or cost effective, or in situations where surface soils are limed but subsoils are acidic and Al toxic to roots. Ten barley cultivars were screened for Al tolerance by growing them for 25 days in greenhouse pots of acid, Al‐toxic Tatum subsoil (clayey, mixed, thermic, typic Hapludult) treated with either 750 or 4000 μg?g‐1 CaCO3 to produce final soil pH values of 4.4 and 5.7, respectively. Based on relative shoot dry weight (weight at pH 4.4/weight at pH 5.7 X 100), Tennessee Winter 52, Volla (England), Dayton and Herta (Denmark) were significantly more tolerant to the acid soil than Herta (Hungary), Kearney, Nebar, Dicktoo, Kenbar and Dundy cultivars. Relative shoot dry weights averaged 28.6% for tolerant and 14.1% for sensitive cultivar groups. Comparable relative root dry weights were 41.7% and 13.7% for tolerant and sensitive cultivars, respectively. At pH 4.4, Al concentrations were nearly three times as high in shoots of sensitive cultivars as in those of the tolerant group (646 vs. 175 μg?g‐1), but these differences were reduced or absent at pH 5.7. At pH 4.4, acid soil sensitive cultivars also accumulated phosphorus concentrations that were twice as high as those in tolerant cultivars (1.2% vs. 0.64%). At pH 5.7, these P differences were equalized at about 0.7% for both tolerant and sensitive groups. At pH 4.4, shoots of the Al‐sensitive cultivar Nebar contained 1067 μg?g‐1 Al and 1.5% P. Concentrations of Al and P in the shoots of acid soil sensitive cultivars grown at pH 4.4 exceeded levels reported to produce toxicity in barley. The observed accumulation of such concentrations of Al and P in the shoots of plants grown under Al stress is unusual and deserves further study.  相似文献   

16.
Literature suggests that nitrogen (N) metabolism is involved in differential acid soil (Al) tolerances among wheat (Triticwn aestivum L. en Thell) genotypes. Atlas 66 wheat is characterized by acid soil and aluminum (Al) tolerance, nitrate (NO3 ) preference, pH increase of the rhizosphere, high nitrate reductase activity, and high protein in the grain. Atlas 66 has been used as a high protein gene donor in the development of new high protein wheat lines at Lincoln, NE. The objective of our study was to determine the acid soil tolerances of such lines and to relate such tolerances to their abilities to accumulate grain protein when grown on near‐neutral, non‐toxic soils. Twenty‐five experimental lines, nine cultivars not previously classified as Al‐tolerant or ‐sensitive and three cultivars previously classified according to acid soil tolerance, were grown for 28 days in greenhouse pots of acid, Al‐toxic Tatum subsoil. Relative shoot dry weight (pH 4.35/pH 5.41%) varied from 83.2% for Atlas 66 to 19.3% for Siouxland. Atlas 66 was significantly more tolerant to the acid soil than all other entries except Edwall. Yecorro Roja and Cardinal were intermediate in tolerance. None of the high protein lines approached Atlas 66 in tolerance, but two lines (N87U106 and N87U123) were comparable to Cardinal (relative shoot yield = 54%) which is used on acid soils in Ohio. At pH 4.35, the most acid soil tolerant entries contained significantly lower Al and significantly higher potassium (K) concentrations in their shoots than did sensitive entries. Shoots of acid soil sensitive entries, Scout 66, Siouxland, Plainsman V, and Anza contained deficient or near deficient concentrations of K when grown at pH 4.35. Acid soil tolerance was not closely related to calcium (Ca), magnesium (Mg), phosphorus (P), manganese (Mn), or iron (Fe) concentrations at pH 4.35. Liming the soil to pH 5.41 tended to equalize Al and K concentrations in shoots of tolerant and sensitive entries. Results indicated that acid soil tolerance and grain protein concentrations were not strongly linked in the wheat populations studied. Hence, the probability of increasing acid soil tolerance by crossing Atlas 66 with Nebraskan wheat germplasm is low. However, the moderate level of acid soil tolerance in N87U106 and N87U123 (comparable to that of Cardinal) may be useful in further studies.  相似文献   

17.
Nineteen soybean genotypes (ten from the former USSR, two from Brazil and seven from USA) were tested for aluminum (Al) tolerance by growing them for 21 days in greenhouse pots of acid, Al‐toxic, unlimed Tatum (Typic Hapludult) subsoil at pH 4.0 and in limed subsoil at pH 5.1. Aluminum tolerance ranking depended upon the plant traits used in the screening process. Based on absolute dry shoot weights at pH 4.0, Giessener, Brunatna, and St.‐59 (USSR), and Biloxi (USA) were most tolerant; least tolerant entries included Yantarnaya and Smena (USSR), and Davis (USA). Based on relative shoot dry weights (pH 4.0/pH 5.1 %), Giessener, Brunatna, and St.‐59 (USSR) were among the most tolerant, Bossier, Biloxi, Essex, and Perry were intermediate, and Salute 216 (USSR), Chief (USA), and Santa Rosa and IAC‐9 (Brazil) were more sensitive to the acid soil. Based on absolute root dry weights, Giessener, and St.‐59 (USSR), and Biloxi (USA) were among the most tolerant and Smena, Yantarnaya and Salute 216 (USSR), and Chief (USA) were most sensitive. Based on relative root dry weights (pH 4.0/ pH 5.1 %), Giessener was most tolerant and Smena and Salute 216 least tolerant.

Preliminary evidence indicated that soybean entries screened for Al tolerance on acid Tatum soil also differed in tolerance to naturally occurring levels of ambient ozone in greenhouses at Beltsville. The Russian entries VNIIS‐2, Giessener, and Brunatna appeared more sensitive than USA entries Perry, Biloxi, Davis, and Bossier (USA), and Santa Rosa (Brazil). Aluminum tolerance and ozone tolerance appeared to coincide in the Perry genotype. Studies on Al‐ozone‐soybean genotype relationships are being continued at Beltsville.  相似文献   

18.
The effects of increased salinity [NaCl + CaCl2] on seedling of three tepary and four common bean cultivars/lines, of known resistance and susceptibility at germination stage, grown for thirty‐eight‐days in salinized hydroponic and sand cultures were assessed at electrical conductivity (EC) of 1.89 (control), 4.00, 8.00, and 12.00 dS/m of half strength Hoagland solution inside a glasshouse at 30/25±2°C day/night temperature. The hydroponic culture screening method was more severe than the sand culture method. Common bean cultivars/lines expressed genetic variability to salinity stress at thirty‐eight‐days old seedlings. ‘Badrieh’ was tolerant to salinity as the tolerant tepary bean T#l line under sand culture. However, this was not evident under hydroponic culture. T#l showed salinity injury symptoms at EC = 4 dS/m, while ‘Badrieh’ showed’ no salinity injury symptoms at EC = 4 dS/m. These results indicate that the mechanisms involved for tolerating salinity in the tepary could be different from that involved in common beans. Inverse and significant correlations between salinity injury symptoms and several root and shoot characters were evident from the data, indicating that variation in whole‐plant foliar injury symptoms to salinity would thus seem to provide the best means of initial selection of salinity tolerant genotypes by plant breeders.  相似文献   

19.
An estimated 30% of the world's arable soils are acidic and aluminum (Al) toxicity is often the primary growth‐limiting factor. Excess Al is especially undesirable in sub‐soils because it reduces rooting depth and branching and predisposes plants to drought injury. Liming the plow layer does not generally neutralize subsoil phytotoxicity and Al‐tolerant cultivars offer an alternative or supplemental solution to the problem. Genetic diversity for acid soil tolerance in alfalfa (Medicago sativa L.) is limited and a better understanding of the basic tolerance mechanisms would facilitate the design of more efficacious breeding procedures. Evidence is accumulating that organic acids and proteins elicited by Al stress may complex and detoxify Al either within, or external to, the root. Because Al is a paramagnetic element that can reduce T2 relaxation times (inter‐proton interactions) markedly, the mechanism of Al tolerance in alfalfa was investigated through T2‐based Magnetic Resonance Imaging (MRI) of young lateral root sections of an Al‐sensitive and an Al‐tolerant alfalfa clone grown in nutrient solution (0 or 111 μmol Al; pH 4.5). Root sections that developed under phytotoxic levels of Al accumulated considerable Al in the epidermis and internal root tissue. Aluminum may have been complexed by low molecular weight proteins and organic acids in the tolerant clone whereas the sensitive clone appeared to have abundant free Al; however, variation among replications indicates that free Al may still have been present in tolerant roots and that other tolerance mechanisms may also be important. Root buds accumulated little Al compared to the remainder of the root, indicating that the pronounced effects of Al on lateral root development are indirect. Magnetic Resonance Imaging images evaluated in this study provided clues to the basic mechanisms of Al tolerance in alfalfa and, with further refinement, could be used as one criterion for selecting Al‐tolerant plants.  相似文献   

20.
Two cultivars of barley (Hordeum vulgare L.), Al‐sensitive ‘Dayton’ and Al‐tolerant ‘Kearney’, were grown under controlled environmental conditions to determine the influence of Al stress and water stress imposed separately and in combination with one another. Plants were grown for 4 weeks in polyethylene‐lined, waxed cartons containing 1 kg of acid, Al‐toxic, Tatum subsoil (clayey, mixed, thermic, Typic Hapludult) at high (pH 4.7) or low (pH 6.6) Al stress. During the final 2 weeks they were also subjected to low (‐20 to ‐40 kPa) or high (‐60 to ‐80 kPa) water stress. Under low water stress, little difference in the growth or appearance of the two cultivars was found, even in the presence of low Al stress (pH 6.6). When high water stress treatment was superimposed on low Al stress treatment, however, significant differences between the two cultivars in biomass production, leaf enlargement, and tillering resulted. When high water stress was combined with high Al stress (pH 4.7), these differences in vegetative growth were further magnified. Thus, drought exacerbates the stress effects of Al toxicity in plants and may account for a significant portion of the reduction in yield commonly observed in acid soils under field conditions and formerly attributed to Al toxicity alone. By increasing soil moisture level, the growth suppressive effect of Al toxicity was significantly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号