首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract

An experiment was carried out in a controlled temperature (CT) room for five weeks with tomato cvs., Moneymaker, Liberto, and Calypso, to investigate possible relationships between zinc (Zn) deficiency or toxicity and electrolyte leakage in plant leaves. The concentrations of Zn in nutrient solution were 0.01, 0.5, and 5.0 mg L?1, respectively. There were significant reductions in the dry matter and chlorophyll content of all three cultivars grown both at 0.01 (low) and 5 mg L?1 (high) Zn compared to 0.5 mg L?1. The concentration of Zn at 0.01 mg L?1 was not sufficient to provide for optimal plant growth, while 5 mg L?1 in nutrient solution was detrimental to plant growth for all three cultivars. Dry matter production was generally lowest in the plants grown at low (0.01 mg L?1) Zn except for Moneymaker where the lowest biomass was in the high Zn treatment. Zinc concentration was increased in the leaves and roots with increasing Zn concentration in nutrient solution. Phosphorus concentration was toxic in the leaves of the plants grown at low (0.01 mg L?1) and was deficienct at high Zn (5 mg L?1). The electrolyte leakage (%) gradually increased in the plants grown at low and high Zn concentrations and these increases were greatest in the leaves of plants grown at low Zn (except for Moneymaker grown at high Zn where reduction in dry matter was less). The best results for all growth parameters tested were for the plants grown at 0.5 mg L?1 Zn. The results of this short‐term experiment show that electrolyte leakage which is relatively simple and easy to measure may be a good indicator of cultivar tolerance to Zn deficiency and toxicity.  相似文献   

2.
ABSTRACT

Boron (B) toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although of considerable agronomic importance, our understanding of B toxicity is rather fragmented and limited. The effects of increasing levels of B (0, 0.5, 5, 50 mg kg? 1) on plant growth, proline accumulation, membrane permeability, nitrate reductase activity (NRA), and mineral nutrient interactions of tomato and pepper plants were investigated in greenhouse conditions. Increasing levels of B increased the B contents of plants. Boron toxicity symptoms occurred at 5 and 50 mg kg? 1 levels. Fresh and dry weights of the plants clearly decreased with the application of the 50 mg kg? 1 level of B. Membrane permeability and proline accumulation were significantly increased by the 50 mg kg? 1 level of B. Nitrate reductase activity of tomato plants was increased with increasing levels of B. With the exception of potassium (K) and calcium (Ca) in pepper and magnesium (Mg) in tomato, B treatments significantly affected nutrient concentrations of tomato and pepper. Except for sulfur (S) and Ca in tomato, the highest rate of B applied increased the N, phosphorus (P), and K concentrations of tomato and N, P, Mg, and S concentrations of pepper.  相似文献   

3.

Plant growth and mineral element accumulation in Brassica juncea var. crispifolia (crisped-leaf mustard) under exposure to lanthanum (La) and cadmium (Cd) were studied by employing a hydroponic experiment with a complete two-factorial design. Four levels of La (0.05–5.0 mg L?1) and two levels of Cd (1.0 and 10.0 mg L?1) were used in this experiment. Lanthanum did not improve plant growth in this experiment. Addition of La (≥ 1.0 mg L?1) or Cd (≥ 10 mg L?1) to the solution inhibited root elongation. Lanthanum treatments reduced accumulations of iron (Fe), manganese (Mn), and zinc (Zn) in roots, and Mn in shoots. Lanthanum at ≥ 1.0 mg L?1 limited the Cd translocation from roots to shoots and thus decreased the accumulation of Cd in shoots. Cadmium had no influence on La accumulations in roots, but inhibited the accumulation of La in shoots. The study results suggest that applications of rare earth elements in vegetables would be potentially risky to human health.  相似文献   

4.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

5.
《Journal of plant nutrition》2013,36(10):2315-2331
ABSTRACT

Split root solution culture experiments were conducted to study the effects of the rare earth element lanthanum (La) on rice (Oryza sativa) growth, nutrient uptake and distribution. Results showed that low concentrations of La could promote rice growth including yield (0.05 mg L?1 to 1.5 mg L?1), dry root weight (0.05 mg L?1 to 0.75 mg L?1) and grain numbers (0.05 mg L?1 to 6 mg L?1). High concentrations depressed grain formation (9 mg L?1 to 30 mg L?1) and root elongation (1.5 mg L?1 to 30 mg L?1). No significant influence on straw dry weight was found over the whole concentration range except for the 0.05 mg L?1 treatment. In the pot and field experiments, the addition of La had no significant influence on rice growth.Lanthanum had variable influence on nutrient uptake in different parts of rice. Low concentrations (0.05 mg L?1 to 0.75 mg L?1) increased the root copper (Cu), iron (Fe), and magnesium (Mg), and grain Cu, calcium (Ca), phosphorus (P), manganese (Mn), and Mg uptake. High concentrations (9 to 30 mg L?1) decreased the grain Ca, zinc (Zn), P, Mn, Fe and Mg, and straw Ca, Mn, and Mg uptake. With increasing La concentration, root Zn, P, Mn, Cu, and Ca concentrations increased, and grain Ca and Fe, and straw Mn, Mg, and Ca concentrations decreased. Possible reasons are discussed for the differences between the effects of La in nutrient solutions and in pot and field experiments.  相似文献   

6.
ABSTRACT

Indian mustard (Brassica juncea Czern) is a promising species for the phytoextraction of zinc (Zn), but the effectiveness of this plant can be limited by iron (Fe) deficiency under Zn-contaminated conditions. Our objectives were to determine the effects of root-applied Fe and Zn on plant growth, accumulation of Zn in plant tissues, and development of nutrient deficiencies for B. juncea. In the experiment, B. juncea was supplied 6 levels of iron ethylenediamine dihydroxyphenylacetic acid (Fe-EDDHA; 0.625 to 10.0 mg L?1) and two levels of Zn (2.0 and 4.0 mg L?1) for 3 weeks in a solution-culture experiment. Nutrient solution pH decreased with decreasing supply of Fe and increasing supply of Zn in solution, indicating that B. juncea may be an Fe-efficient plant. If plants were supplied 2.0 mg Zn L?1, plant growth was stimulated by increases in Fe supply, but plant growth was not influenced by Fe treatments if plants were supplied 4.0 mg Zn L?1. Zinc concentration in roots and shoots was suppressed by increasing levels of Fe in solution. Leaf concentrations of Cu, Mn, and P were suppressed also as Fe supply in solutions increased. Iron additions to the nutrient solution were not effective at increasing the Zn-accumulation potential of B. juncea unless plants were supplied the higher level of Zn in solution culture. Even under these conditions, Fe additions were effective only if supplied at low levels in solution culture (1.25 mg Fe L?1). Results suggest that Fe fertility has limited potential for enhancing Zn phytoextraction by B. juncea, even if plants suffer a suppression in growth from Fe deficiency.  相似文献   

7.
□ Effects of different arsenic (As) concentration (0–30 mg L?1) on seed germination, root tolerance index, relative shoot height, root and shoot biomass, photosynthetic pigments and arsenic accumulation in two wheat varieties were investigated. Low concentrations of arsenic (0–2.5 mg L?1) stimulated germination percentage, shoot and root elongation, plant biomass as well as chlorophyll content as compared with control, however, these factors all decreased gradually at high concentrations of arsenic (5–30 mg L?1). ‘Zarin’ variety had a significantly higher tolerance to arsenic than ‘Sardari.’ Arsenic accumulation by plants root and shoot increased with the increasing arsenic concentrations in medium, which ‘Zarin’ had a higher ability to absorb and translocate arsenic to the shoots. Root accumulated more arsenic than shoot. The similar trend of chlorophyll content and wheat growth under different arsenic concentration suggesting that arsenic toxicity affects the photosynthesis which ultimately results in the reduction of wheat growth and yield.  相似文献   

8.
Engineered plant growth media must support plant growth while minimizing environmental impact. The objective of this research was to determine how different growth media influence nutrient leaching. Plant growth media contained varied amounts of soil, sand, compost that did or did not contain manure, and possible sorbents for phosphorus. If the plant growth media included compost derived partly from manure, leaching losses of nutrients were excessive due to the high nutrient load in the compost. Layering compost over the plant media mix resulted in lower nitrate concentrations in effluent (87 mg L?1) compared with mixing compost into the media (343 mg L?1); however, growth of prairie grasses was reduced because of dense media below the compost blanket (0.09 versus 0.31 g). Using lower amounts of compost that did not contain manure resulted in lower mean nitrate concentrations in effluent (101 versus 468 mg L?1). Media that had no soil (13.3 mg L?1) had greater loss of phosphorus after harvest for unsaturated drainage than media with soil (1.8 mg L?1). To reduce nitrate leaching, only small amounts of low-nutrient compost (higher C:N ratio) should be incorporated into the media. If compost is applied as a surface blanket without incorporation, then soil should be added to the sand to reduce density of the media and increase plant growth.  相似文献   

9.
Abstract

Nitrite (NO2 ?‐N) toxicity symptoms have been observed on lettuce (Lactuca sativa) at various locations in California. The objective was to evaluate the symptoms of ammonium (NH4 +‐N) and nitrite (NO2 ?‐N) toxicity on Sundevil iceberg lettuce and Paragon romaine lettuce and to determine lettuce growth and biomass production under different levels of NO2 ?‐N. Hydroponic studies under greenhouse conditions were conducted using nutrient solutions containing nitrate (NO3 ?‐N) and two other forms of nitrogen (NO2 ?‐N and NH4 +‐N) applied at a constant concentration (50 mg NL?1) or using different NO2 ?‐N levels (0, 5, 10, 20, 30, and 40 mg N L?1) and a constant NO3 ?‐N level (30 mg N L?1). Crown discoloration (brownish color) was observed for lettuce grown in both NO2 ?‐N and NH4 +‐N solutions approximately 3 weeks after transplanting into the hydroponic systems. Lettuce grown in NO3 ?‐N solution produced larger biomass and greater number of leaves per plant than lettuce grown in NO2 ?‐N or NH4 +‐N solutions. Increasing the concentration of NO2 ?‐N suppressed plant height, fresh and dry biomass yield, and number of leaves and increased the root vascular discoloration. Lettuce growth was reduced more than 50% at NO2 ?‐N concentrations greater than 30 mg N L?1. Even at 5 mg NO2 ?‐N L?1, growth was reduced 14 and 24% for romaine and iceberg lettuce, respectively, relative to that obtained in nitrate solution. Although concentrations between 5 and 40 mg NO2 ?‐N L ?1 reduced dry biomass similarly for both lettuce types, toxicity symptoms were more severe in iceberg lettuce than in romaine.  相似文献   

10.
Potassium (K) is a major nutrient element that has effects on growth, yield, and quality production of agricultural crops. In the present study, the effects of various K concentrations in a nutrient solution including 150, 235, 300, 400, or 500 mg K L?1 were evaluated on two pepper cultivars; chili pepper (Capsicum annuum Avicolare) and bell pepper (California Wonder) under greenhouse conditions. Hoagland's formula was used for preparation of nutrient solutions. The vegetative growth parameters including plant height, leaf area, SPAD value, and shoot fresh weight were significantly increased by 300 mg L?1 K in both cultivars. The highest yield and fruit quality parameters including fruit length/diameter ratio, fruit dry matter percentage, fruit vitamin C, total soluble solids, and titratable acidity in chili pepper and bell pepper were obtained under application of 300 and 400 mg K L?1 in nutrient solution, respectively. In either cultivar there was increase in leaf K, nitrogen, and zinc concentrations, while in bell pepper calcium was reduced by higher K levels in the nutrient solution. The results indicate that for better growth and quality production of pepper, higher levels of K in nutrient solutions can be beneficial.  相似文献   

11.
Fertilization strategies during stock plant and cutting production are linked in terms of cutting nutrient levels and quality. Objectives were to evaluate (1) the effect of stock plant nutrition on tissue nutrient concentration and growth during vegetative propagation and (2) response to fertilizer during propagation for cuttings with 4 different initial tissue nutrient concentrations. ‘Supertunia Royal Velvet’ petunia stock plants were grown under constant fertigation of 0, 50, 100 or 200 mg nitrogen (N).L?1 for 21 days. The 200 mg N.L?1 solution contained 150 nitrate (NO3-N), 50 ammonium (NH4-N), 24 phosphorus (P), 166 potassium (K), 40 calcium (Ca), 20 magnesium (Mg), 0.7 sulfur (S), 1.0 iron (Fe), 0.5 manganese (Mn), 0.5 zinc (Zn), 0.24 copper (Cu), 0.24 boron (B), and 0.1 molybdenum (Mo). Providing a complete fertilizer during propagation of petunia, beginning immediately after sticking of cuttings, reduces the risk of nutrient deficiency. Particularly in situations where fertilizer is not applied early during propagation, stock plants should be managed to ensure unrooted cuttings have adequate nutrient reserves.  相似文献   

12.
The effects of calcium and humic acid on seed germination, growth and macro- and micro-nutrient contents of tomato (Lycopersicon esculentum L.) seedlings in saline soil conditions were evaluated. Different levels of humic acid (0, 500, 1000 and 2000 mg kg?1) and calcium (0, 100, 200 and 400 mg kg?1) were applied to growth media treated with 50 mg NaCl kg?1 before sowing seeds. Seed germination, hypocotyl length, cotyledon width and length, root size, shoot length, leaf number, shoot and root fresh weights, and shoot and root dry weights of the plant seedlings were determined. Macro- and micro-nutrient (N, P, K, Ca, Mg, S, Cu, Fe, Mn and Zn) contents of shoot and root of seedlings were also measured. Humic acid applied to the plant growth medium at 1000 mg kg?1 concentration increased seedling growth and nutrient contents of plants. Humic acid not only increased macro-nutrient contents, but also enhanced micro-nutrient contents of plant organs. However, high levels of humic acid arrested plant growth or decreased nutrient contents. Levels of 100 and 200 mg kg?1 Ca2+ application significantly increased N, Ca and S contents of shoot, and N and K contents of root.  相似文献   

13.
This study was done to investigate the effects of foliar sprays of zinc (Zn) and copper (Cu) on fruit set, yield, yield components, vegetative growth, and leaf nutrient concentrations of pistachio trees (cv. Owhadi), over two consecutive seasons 2010 (ON) and 2011 (OFF). Tests were done at a commercial orchard in the region of Rafsanjan in Iran. Tests were designed as a 3 × 2 factorial experiment in a randomized complete block with four replications. Treatments tested in the study were three concentration levels of zinc sulfate (0, 1000, and 2000 mg L?1) and two concentration levels of copper sulfate (0 and 200 mg L?1). Results showed that Zn foliar application increased first fruit set, final fruit set, fresh yield, and dry yield. Nut weight was increased by Zn spray by 3 and 4% at the second and third levels of Zn, respectively, compared with the control. However, Cu application increased splitting and vegetative growth. Vegetative growth in the OFF year was greater than that of the ON year. Phosphorus, sodium, and Cu concentrations in leaf were greater in the ON year than in the OFF year, but concentrations of Zn and potassium in leaf were lower in the ON year than they were in the OFF year. These results show that Zn and Cu applications can affect growth and yield of pistachio, especially when the plant is grown in calcareous soils. However, the alternate bearing pattern had a significant effect on vegetative growth and some leaf nutrient concentrations.  相似文献   

14.
Three tomato cvs., Blizzard, Liberto, and Calypso, were grown hydroponically in a controlled temperature (C.T.) room for six weeks at three zinc (Zn) concentrations (0.01, 0.5, and 5.0 mg Zn L‐1) in the nutrient solution. There were significant reductions in the dry matter and chlorophyll contents of all three cultivars grown at both low (0.01 mg L‐1) and high (5 mg L‐1) Zn as compared to 0.5 mg Zn L‐1. The concentration of Zn at 0.01 mg L‐1 was not sufficient to provide for optimal plant growth, while 5 mg Zn L‐1 in the nutrient solution was detrimental to plant growth for all three cultivars. The best results for all parameters tested were for the plants grown at 0.5 mg Zn L‐1. The concentration of phosphorus (P) was at an excess level in leaves of plants grown in 0.01 mg Zn L‐1, while it was deficient in the 5 mg Zn L‐1 treatment. Acid Phosphatase Enzyme [EC.3.1.3.2.] (APE) activity was significantly higher in both the leaves and roots of P‐deficient plants, i.e., plants receiving high (5 mg L‐1) Zn. Acid Phosphatase Enzyme activity was slightly higher in the mature leaves than those in developing leaves, where P concentration was higher. Concentration of P and, in particular Zn, increased in the roots with increasing Zn in the nutrient solution. The APE activity increased in the roots of P‐deficient plants receiving high Zn (5 mg L‐1).  相似文献   

15.
Abstract

In this research the effect of foliar application of selenium (Se) at four levels (Na2OSe4; 0, 5, 10 and 20?mg L?1) was evaluated on some phytochemical characteristics of Sultana grapevine under different salinity levels (NaCl; 0 or 75?mM). The vines were fed twice a week with Hoagland nutrient solution and Se was foliar applied twice with 24 intervals. During growing period, plant height, leaf number and leaf area were recorded. Moreover, at the end of experiment, mature leaves from middle nods of canes were used for measurement of some phytochemical indices. According to results, Se application had a positive effect on plant height, leaf numbers, leaf area and photosynthetic pigments content especially at 5?mg L?1 and to some extent 10?mg L?1 Se levels. Under salinity stress, foliar application of Se at 5?mg L?1 considerably decreased vines leaves electrolyte leakage and lipid peroxidation values compared to non se-treated plants under salinity stress condition. Selenium had an additive effect on salinity stress (75?mM NaCl) induced accumulation of total phenol, total flavonoid, soluble sugars and proline content in leave of vines. Moreover, the interaction of salinity and Se at 5 and 10?mg L?1 improved leaves antioxidant enzymes activities in Sultana grapevine. Likewise, foliar application of Se improved leaf mineral content in 75?mM NaCl -treated vines. Totally, foliar application of selenium (Se at 5 or 10?mg L?1) increased salt tolerance through improvement in nutritional balance and by enzymatic and non-enzymatic antioxidant capacity in grapevine leaves.  相似文献   

16.
Abstract

To clarify the mechanism of Magnesium (Mg) in alleviating cadmium (Cd) phytotoxicity, Japanese mustard spinach (Brassica rapa L. var. pervirdis) was grown for 10 days after treatment in hydroponics in a growth chamber under natural light. The treatments were: (1) nutrient solution alone (Control), (2) 10 mmol L?1 Mg (High-Mg), (3) 2.5 µmol L?1 Cd (Cd-toxic), (4) 2.5 µmol L?1 Cd plus 10 mmol L?1 Mg (Mg-alleviated). The Cd-toxic treatment showed substantial growth retardation and chlorosis of young leaves, such symptoms were not observed in Mg-alleviated plants. Magnesium-alleviated plants showed higher shoot growth, more than twofold, and decreased shoot Cd concentration, approximately 40%, compared with Cd-toxic plants. This increase in shoot growth and simultaneous decrease in shoot Cd concentration may explain the alleviation of Cd toxicity with Mg in Japanese mustard spinach. In Cd-toxic plants, concentrations of K in shoots and Zn in both shoots and roots increased compared with the other three treatments. Concentrations and accumulations of Fe and Mn in shoots decreased significantly in the Cd-treated (Cd-toxic and Mg-alleviated) plants compared with the control and High-Mg plants. Thus, the application of high amounts of Mg in the nutrient solution can alleviate Cd toxicity in plants.  相似文献   

17.
Interactive effects of silicon (Si) and high boron (B) on growth and yield of tomato (Lycopercison esculentum cv. ‘191 F1’) plants were studied. Treatments were: 1) control (B1), normal nutrient solution including 0.5 mg L?1 B (boron), 2) B1 +Si treatment: 0.5 mg L?1 boron plus 2 mM Si, 3) B2 treatment: 3.5 mg L?1 B, 4) B2 +Si treatment: 3.5 mg L?1 B plus 2 mM Si, 5) B3 treatment: 6.5 mg L?1 B, and 6) B3 +Si: 6.5 mg L?1 B plus 2 mM Si. High B reduced dry matter, fruit yield and chlorophyll (Chl) in tomato plants compared to the control treatment, but increased the proline accumulation. Supplementary Si overcame the deleterious effects of high B on plant dry matter, fruit yield and chlorophyll concentrations. High B treatments increased the activities of superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC. 1.11.1.7) and polyphenol oxidase (PPO; EC 1.10.3.1). However, supplementary Si in the nutrient solution containing high B reduced SOD and PPO activities in leaves, but POD activity remained unchanged. These data suggest that excess B-induced oxidative stress and alterations in the antioxidant enzymes. Boron (B) concentrations increased in leaves and roots in the elevated B treatment as compared to the control treatment. Concentrations of calcium (Ca) and potassium (K) were significantly lower in the leaves of plants grown at high B than those in the control plants. Supplementing the nutrient solution containing high B with 2 mM Si increased both nutrients in the leaves. These results indicate that supplementary Si can mitigate the adverse effects of high B on fruit yield and whole plant biomass in tomato plants.  相似文献   

18.
The effects of selenium (Se) cadmium (Cd) interactions on plant growth and metabolism are not fully clear. In the present study, we assessed whether Se could alleviate the toxic effects of Cd on growth and metabolism of maize. Seeds of maize variety FH-985 were sown in pots filled with sand treated with CdCl2 (0, 50 and 100 µM) and Se (0, 2 and 4 mg L?1) through Hoagland’s nutrient solution. Low Se (2 mg L?1) increased germination percentage and rate, while high Se (4 mg L?1) increased fresh and dry biomass under Cd stress. Interestingly, all Se concentrations were effective in alleviating the toxic effects of Cd on photosynthetic pigments, whereas higher Se mitigated the Cd-induced oxidative stress and increased flavonoids both in the shoots and roots while phenolics in the roots. The results demonstrated that root zone Se altered tissue-specific primary metabolism in maize. Furthermore, low Se mitigated the Cd-induced decrease in total proteins in the root. Overall, Se-mediated decrease in the oxidative stress in the shoots while increase of secondary metabolites in the roots helped the plants to grow faster at early growth stage and caused increase in the biomass under different Cd regimes.  相似文献   

19.
Ammonium toxicity in hydroponically grown crops can affect tomato development. However, it has been shown that the silicon (Si) attenuates ammonium toxicity in plants depending on the plant species, the stage of development and the ammonium concentration in the nutrient solution. Thus, in order to investigate how Si attenuates stress caused by ammonium in tomato, a study was carried out involving plants cultivated up to 40 days after seed germination using nutrient solutions containing ammonium concentrations (1, 2, 4, 6 and 8?mmol?L?1), in the absence or presence of Si (1?mmol?L?1). The accumulation and efficiency of nitrogen and Si use, as well as the concentrations of chlorophyll, carotenoids, malondialdehyde, hydrogen peroxide and growth parameters was assessed. At a concentration of 1?mmol?L?1 ammonium, Si increases the accumulation of nitrogen and Si, the nitrogen use efficiency, the root area and dry biomass of the shoot. At concentrations of 1 and 2?mmol?L?1 ammonium, Si increases the leaf area and root dry biomass, and in higher concentrations, there was no effect of Si after the supply of ammonium. It was observed that the addition of Si mitigates ammonium toxicity by 1?mmol?L?1 ammonium, and we can recommend its use in the nutrient solution (Si?=?1?mmol?L?1) to grow tomato cropsthat employs ammonium concentration of 1?mmol?L?1.  相似文献   

20.
The increasing number of cases of soil contamination by heavy metals has affected crop yields, and represents an imminent risk to food. Some of these contaminants, such as cadmium (Cd) and lead (Pb), are very similar to micronutrients, and thus can be absorbed by plants. This study evaluated the translocation of increasing amounts of cadmium and lead and the effects of these metals in the production of beans. Bean plants were grown in nutrient solution Clark and subjected to increasing levels of Cd (from 0 to 0.5 mg L?1) and Pb (from 0 to 10 mg L?1). Cadmium concentration of 0.1 mg L?1 translocated 39.8% to the shoot, and dry matter production was reduced by 45% in shoots and 80% in roots, compared to the control treatment. Lead showed impaired movement in the plant, however the concentration of 1.0 mg L?1 was observed in 5.7% of metal translocation to the leaves. The concentration of 10 mg L?1 Pb reduced dry matter production of roots and shoots in 83% and 76%, respectively, compared to the control treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号