首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During a six‐year period (1980, 1985–1989), 20 different calcium (Ca) materials were sprayed at an early (3X; June to July), late (3X; July to August), and an early plus late (5X; June to August) timing on 25‐year‐old ‘Anjou’ pear (Pyrus communis L.) trees. Calcium chloride (CaCl2) sprays increased fruit Ca in the cortex by an average of 10.5% greater than in unsprayed controls and cork spot was reduced by an average of six‐fold. Yield from trees sprayed with Ca materials averaged greater than 13% more crop load than the unsprayed control trees. Leaf and fruit injury from CaCl2 sprays in 1980 were near borderline acceptability, but injury was reduced slightly by halving the spray concentration rate to 681 g CaCl2 per 379 liters of water in 1985 to 1989. Due to temperatures above 26°C, leaf and fruit injury from Ca sprays, particularly calcium nitrate [Ca(NO3)2], were more severe for the late or early plus late sprays than for the early sprays. Fruit size was slightly larger on trees sprayed only three times (early or late sprays) versus trees sprayed five times during the season (early plus late sprays). Best control of cork spot occurred with early plus late sprays. Best control of alfalfa greening and black end occurred with late or early plus late sprays. The importance of fruit Ca for controlling cork spot is illustrated when triiodobenzoic acid (TIBA) was sprayed on trees which resulted in reduced fruit Ca and increased incidence of fruit disorders, alfalfa greening, black end, and cork spot. Sprays containing nitrates or sulfates were frequently associated with a higher incidence of fruit disorders. Although fruit quality was not significantly influenced by Ca treatments or spray time, it was related to Ca in fruit peel or cortex due to annual variations in Ca concentrations.  相似文献   

2.
Calcium chloride (CaCl2), increased Ca concentrations in fruit cortex and peel of ‘Anjou’ pears (Pyrus communis L.). Calcium sprays reduced the fruit disorders: brown core, cork spot and superficial scald. Fruit size (weight) increased while fruit Ca concentrations decreased with fruit at the later harvest dates. The earliest harvest date was associated with a lower incidence of fruit disorders. Superficial scald increased in fruit held longer in cold storage and in ripened fruit. Shelf‐life and fruit quality of Ca‐sprayed fruit was improved due to higher Ca concentrations in fruit peel and cortex resulting in overall enhancement of fruit appearance, and in improvement in the control of the incidences of cork spot, scald, brown core, and external and internal rots, and in amelioration of fruit juiciness and fruit color.  相似文献   

3.
Calcium (Ca) spray materials improved fruit quality as measured by control of bitter pit, fruit finish (appearance), increased red skin color, reduced incidence of scald, increased juiciness, texture, and fruit firmness of ‘Red’ and ‘Golden Delicious’ apples (Malus domestica, Borkh.). Concentrations of Ca in leaf and fruit tissues were increased by Ca sprays, especially calcium chloride (CaCl2)‐containing spray materials. Improved fruit firmness and control of bitter pit occurred for either standard recommended or high rates of Ca spray materials. At high rates of application, the only significant difference that occurred between early and late applications of Ca spray materials was that less leaf injury occurred with the early applications. Unsprayed ‘Red Delicious’ fruit from M.7 rootstocks had greater fruit peel Ca concentrations and a lower incidence of bitter pit but smaller fruit than fruit from trees on M.26 rootstocks. The above information is strong evidence that Ca sprays are important for the improvement of apple quality.  相似文献   

4.
Abstract

Influence of two rootstocks and five levels of hand thinning (fruit spacing) on yield, fruit quality at harvest and after storage, and leaf and fruit elemental composition of ‘Redspur Delicious’ apple (Malus domestica Borkh.) were studied. Trees on M.7 rootstock had a higher yield with heavier and firmer fruit at harvest than those on M.26. Trees on M.7 had significantly lower leaf and fruit N which resulted in a darker fruit color than those on M.26 rootstock. Fruit from trees on M.26 had a higher soluble solids concentration (SSC) at harvest than those on M.7. Leaf and fruit potassium (K) increased but fruit calcium (Ca) decreased with an increase in fruit spacing. Thinning fruit to 10 cm or 18 cm spacing, depending on market demand for fruit size, is recommended for improvement of fruit quality. Fruit weight and quality was improved with 18 cm fruit spacing without a significant decrease in yield, while thinning fruit further than 18 cm apart reduced yield without a significant change in the fruit weight or quality.  相似文献   

5.
An experiment was conducted at Mizoram University, Aizawl, India during 2015-2017 to study the effect of integrated nutrient management on yield and quality of lemon cv. ‘Assam lemon’ (Citrus limon Burm.). The experiment was comprised of nine treatments viz. T1: 100% recommended dose of fertilizers (RDF) through inorganic fertilizers (IF); T2: 100% N through Farm Yard Manure (FYM); T3: 75% N through FYM + 25% through IF; T4: 50% N through FYM + 50% through IF; T5:75% N through FYM +25% through IF + Azotobacter + phosphate solubilizing bacteria (PSB)+ potash solubilizing bacteria (KSB); T6: 50% N through FYM + 50% through IF+ Azotobacter + PSB?+?KSB; T7: 75% N through FYM + 25% through IF?+?Azospirillum + AMF?+?KSB; T8: 50% N through FYM + 50% through IF+ Azospirillum + arbuscular mychorrhizal fungi (AMF) + KSB; T9: control. Among all treatments, T5 recorded highest value with respect to growth, yield and soil quality. While, T7 showed superiority in quality characters.  相似文献   

6.
Abstract

Pearl millet and annual ryegrass were continually doubled‐cropped on Olivier silt loam soil for seven years at six levels of N, applied as ammonium nitrate in three applications to millet and in two applications to ryegrass. Forage yields increased as N application rates increased. During seven years at the 0 and 448 kg/ha N rate, millet produced 35% and 95%, respectively, as much yield as it produced at the 800 kg/ha N rate, while comparable values for ryegrass were 19% and 83%. At 448 kg/ha of N the two grasses produced a combined yield of over 20 Mg/ha of dry forage per year. Ryegrass yields following millet were consistently lower than yields previously obtained at this site.

Nitrogen applications consistently increased concentrations of N, Ca, and Mg in both forage grasses, while effects on P and K were variable and S concentrations were unaffected. The amounts of all nutrients removed in the forages were increased as yields increased with N application rates. Nitrate‐N levels considered to be toxic to ruminant animals occurred only where N applications exceeded 170 kg/ha at any one time. In vitro digestibility of each grass was consistently increased by N applications.

The percentage of fertilizer N that was removed in the crops ranged from 66% to 68% for millet and from 35 to 52% for ryegrass as N applications increased up to 448 kg/ha. Residual ammonium and nitrate levels in the top 1.2 m of soil were not increased by N rates of 448 kg/ha or lower. At the 800 kg/ha N‐rate, the apparent N recovery rate decreased and residual ammonium and nitrate levels increased throughout the soil profile.  相似文献   

7.
The objective of this study was to evaluate the effect of fertilizer and irrigation application methods on plant quality of Dianthus ‘Telstar? White’ and ‘Telstar? Red’ grown in the greenhouse. Fertilizer treatments of 0, 10, and 20 g of 16 nitrogen (N)-3.9 phosphorus (P)-10 potassium (K) controlled release fertilizer were topdressed or incorporated. Pots were drip irrigated or hand watered. Irrigation interacted with treatment (P = 0.037) and irrigation interacted with cultivar (P = 0.013) for plant survival. Plant survival was greater for both irrigation treatments using 10 g of fertilizer incorporated. Fewer ‘Telstar? Red’ plants survived with hand irrigation than drip irrigation. ‘Telstar? White’ plants averaged 53% survival regardless of irrigation method. For all treatments drip irrigated plants had greater height, width, and number of flowers than hand watered plants. For fall greenhouse production of dianthus, irrigation and fertilizer application method, cultivar, as well as leaching fraction should be considered.  相似文献   

8.
Whole fruit mineral element analysis is used commercially in Great Britain to predict postharvest apple fruit quality and storage life. Similar commercial programs are under development in Washington State; however, mineral element concentration guidelines are not available for important Washington‐grown cultivars. The current study used fruit respiration rate as a criterion for evaluating optimal whole fruit mineral element concentration. ‘Wellspur Delicious’ apple trees (Malus domestica Borkh.) were treated with four biweekly sprays of D, 4.1 and 13.5 kg CaCl2/ha. Fruit of uniform diameter (7.65 to 8.05 cm) were harvested. Four intact single‐fruit samples per treatment were placed into individual respiration chambers maintained at 20°C. Humidified CO2‐free air was continuously pumped into the chambers. Evolved C02 was trapped in NaOH and analyzed by titration. Evolution of C02 was measured for 38 days after which the fruits were analyzed for whole fruit Ca, N, Mg, P and K concentrations. The C02 evolution data was analyzed by linear regression to generate average respiration rates. The preharvest CaCl2 spray treatments did not influence whole fruit Ca concentrations or respiration rates. The respiration rates were not influenced by mineral element concentration or selected ratios of concentrations. The Ca concentrations in the fruit (> 300 mg/kg dry mass) appear to have been sufficiently high to produce uniform low respiration rates and to mask possible influences of the other elements. The results suggest that whole fruit mineral element analysis may not be a sensitive indicator of average respiration rates of ‘Delicious’ apples during ripening.  相似文献   

9.
Abstract

Field studies were made to determine the yield and quality of wheat at different landscape positions managed with uniform vs. variable rates of nitrogen (N). A moderately‐eroded wheat farm near Thana (Swat) was divided into four parallel transects which were further divided into two strips each. On one strip, fertilizer was applied at a uniform rate of 120 kg N ha‐1, and along the other strip, three different rates of N (80, 110, and 125 kg N ha‐1) were applied to match the crop productivity patterns. A basal dose of 90 kg P2O5 and 60 kg K2O ha‐1 was applied to the whole field. Soil profiles were described for the three different zones, i.e., low, medium, and high productivity zones. Soil in Zone I was Pirsabak, moderately deep variant, and in Zones II and III, Badwan soil series. Although uniformly fertilized strip (120 kg N ha‐1) received 40 and 10 kg N ha1 more than Zone I and Zone II (variable management strategy), there were no significant differences in yield. The differences in three fertilizer management zones were due to differences in moisture content at sowing, infiltration rate, lime content, steepness, and soil depth. Test weight of wheat grains was not significantly affected. Protein content of wheat was significantly higher in variably fertilized strips than in uniformly treated strips. Based on these results, it is suggested that farms with spatially‐variable soils should be fertilized according to the crop productivity and soil fertility patterns.  相似文献   

10.
Abstract

The objective of this study was to investigate the effects of long-term application of ammoniacal N fertilizer for 43?years on the availability of 10 essential elements (B, N, Mg, K, Ca, Mn, Fe, Ni, Cu, and Zn) and Al in root-zone soils and their supply to ‘Jonathan’ apple trees. To achieve this objective, we used simultaneous multi-element analysis. To estimate the soil depth from which the apple trees took up these elements, we calculated the ratios of their concentrations in the N fertilized plot (N plot) to those in the no N plot (0?N plot) (N/0N ratio). Long-term N fertilization significantly increased the fruit and leaf N/0N ratios of N and Mn and significantly decreased that of K. These ratios in the fruits and leaves were similar to those in the 20–90?cm soil layer. This result suggests that N, K, and Mn in the fruits and leaves were supplied from the 20–90?cm soil layer. The N/0N ratios of all 11 elements in the fruits and leaves were significantly positively correlated with those in the 20–90?cm soil layer, but not in the 0–20?cm soil layer. Our findings indicate that long-term N fertilization altered the tree nutrition of not only N, but also K and Mn. These changes in the tree nutrition were ascribed to the fertilizer-induced changes in the availability of elements in the subsoils.  相似文献   

11.
A field experiment was conducted in 2011 and 2012 to study the effect of fertigation on yield, fruit quality and nutrient uptake of ‘Nabbut-Ahmar’ date palm cultivar grown in sandy loam soil. Three fertigation treatments were compared with traditional application. In traditional treatment (CT), the recommended dose [2300 g nitrogen (N), 1200 g phosphorus (P) and 1400 g/tree] was applied as a soil broadcast in three equal doses. The fertigation treatments, (T2), (T3) and (T4), represent all nitrogen, phosphorus and potassium (NPK) amounts of CT, 2/3 CT and 1/3 CT, respectively that were injected in twelve equal doses. The results showed that compared to CT, the fertigation treatments increased yield/palm by 41%, 31% and 18% for T3, T2 and T4, respectively. Beside the increase in yield, 33% and 66% of the applied fertilizers were saved by T3 and T4, respectively, compared with CT. Feritgation treatments had no negative impact on the overall fruit quality characteristics and even increased total soluble solids (TSS), soluble tannins and total phenols concentrations compared to the conventional fertilization. Availability of NPK increased by fertigation but without further increase in leaves and fruit. In conclusion applying 2/3 of the recommended dose of NPK fertilizers under dry land condition through fertigation maximize yield, quality and fertilizer use efficiency.  相似文献   

12.
Abstract

Six different methods for measuring total sulphur concentrations in plant material were applied to orchardgrass samples derived from three cuts of a field trial with combinations of sulphur and nitrogen fertilizer applications. The results from the methods were grouped into three pairs of high, intermediate and low measured total sulphur concentrations. Highest concentrations were obtained using an oxygen flask and the LECO CNS‐2000 automated dry combustion methods, intermediate concentrations with an alkaline digestion and the Fisher automated dry combustion instrument, and lowest with two perchloric acid digestion methods. The low results with the two perchloric acid methods likely occurred from sulphur volatilization and incomplete organic sulphur compound destruction. The results from the pairs of methods with similar total concentrations did not yield the same significant cut, sulphur and nitrogen main and interaction effects when analysis of variance was applied to the treatment results. The two dry combustion methods agreed reasonably closely regarding the main and interaction effects, but calculated recovery of applied sulphur varied. It is apparent that current methods do not agree precisely in their ability to measure total sulphur in plant material types, and for the same type of plant grown under different climate conditions and fertilizer treatments. It was concluded that values by LECO CNS‐2000 instrument provided the best measurement of total sulphur for fertilizer response trials.  相似文献   

13.
Abstract

In intensive agricultural systems, efficient nutrient use is necessary for high crop yields as well as for sustainable environmental management. Recent studies in temperate regions indicate that non-exchangeable NH4 +-N (NEA), which is fixed in clay minerals, may affect crop productivity and soil N dynamics more than previously thought. To estimate the quantity and plant availability of NEA in Swedish soils, ryegrass (Lolium perenne) was grown in a pot experiment using 18 soils that were collected (0–20?cm depth) from two long-term agricultural experiment series at five locations. Initial NEA, total N and soil K contents were measured, as well as NEA content 56, 112 and 168?days after planting of ryegrass. The results show that the soils (0–20?cm) contained 21–217?mg?NEA?kg?1 sieved soil (5–300?kg?NEA?ha?1) estimated as corresponding to 0.1–5.1% of the total soil N. Long-term application of farmyard manure (FYM) did not increase contents of soil NEA. Long-term application of K fertilizer increased soil contents of AL-extractable K, but there was no significant correlation with NEA content. Concurrent with ryegrass growth, NEA content decreased on average by 16% between day 0 and day 112, indicating that NEA was released from the soil and taken up by the plants.  相似文献   

14.
A five-season experiment was initiated to study the effects of the recycling of some organic residues on a soil–crop system of a guar–wheat rotation in a sandy clay loam soil located in the semi-arid tropics of Sudan. Treatments included: incorporation of crop residues alone after harvest (Cr+), with (FCr+) or without (FCr?) inorganic fertilizer, sewage sludge (SS) and humentos (H). Grain yield of wheat in FCr+ and Cr+ treatments was significantly higher than that obtained in FCr? and control plots by ~22?62% and 116?119%, respectively. When crop residues were incorporated with inorganic fertilizer, the priming effect of crop residues on straw yield (106%) was almost double that of the priming effect of inorganic fertilizer (56%). The sustainable yield index of wheat straw dry matter for the control, crop residue, humentos, inorganic fertilizer, combined fertilizer and crop residue and sewage sludge was 28, 27, 8, 35, 21 and 38%, respectively. In general, N, P and K of straw dry matter (SDM) was in the order of FCr+ > FCr? > SS > Cr+> H > C. The findings suggest that repeated incorporation of crop residues with inorganic fertilizer and applications of SS could both sustain wheat performance in the dryland ecosystems.  相似文献   

15.
Abstract

Fertilizer placement for corn (Zea mays L.) has been a major concern for no‐tillage production systems. This 3‐yr study (1994 to 1996) evaluated fertilizer phosphorus (P) or potassium (K) rates and placement for no‐tillage corn on farmers’ fields. There were two sites for each experiment involving fertilizer P or K. Treatments consisted ofthe following fertilizer rates: 0,19,and 39 kg P ha‐1 or 0, 51, and 102 kg K ha‐I. The fertilizer was broadcast or added as a subsurface band 5 cm beside and 5 cm below the seed at planting. Early plant growth, nutrient concentrations, and grain yields were measured. At the initiation of the study, soil test levels for P and K at the 0–1 5 cm depths ranged from optimum (medium) to very high across sites. Effects of added fertilizer and placement on early plant growth and nutrient concentrations were inconsistent. Added fertilizer had a significant effect on grain yields in two of twelve site‐years. Therefore, on no‐tillage soils with high fertility, nutrient addition, and placement affected early plant growth and nutrient utilization, but had limited effect on grain yield. Consequently, crop responses to the additions of single element P or K fertilizers under no‐tillage practices and high testing soils may not result in grain yield advantages for corn producers in the Northern cornbelt regardless of placement method.  相似文献   

16.
The present study was carried out on Kinnow mandarin trees (Citrus reticulata Blanco) to study the effect of urea, zinc (Zn) and boron (B) foliar sprays either alone or in combinations on fruit yield and quality. Trees were grown in alkaline sandy loam soil at Dirab, Riyadh, Saudi Arabia. All trees were sprayed twice: before full bloom (February) and after fruit set (April) during two growing seasons. The obtained results showed a significant increase in tree yield and enhancement in fruit physical characteristics (fruit weight, pulp, juice, volume, length and diameter), as well as fruit chemical characteristics [soluble solids content, acidity, pH, total sugars and ascorbic acid] by all foliar treatments in comparison with the control (water only) in both seasons. Spraying urea in combinations with B and Zn resulted in higher fruit yield and better physico-chemical characteristics as compared with urea only, urea + B or urea + Zn.  相似文献   

17.
High quality fruit production is the cornerstone of marketability. Optimum plant performance depends on the balanced and timely availability of mineral nutrients. In addition to element concentrations, the ratio of nutrient elements in solution plays a determinative role in growth, productivity, quality, and nutrients uptake. In this experiment, the effects of different Potassium:Calcium (K:Ca) ratios (1.6, 1.4, 1.2, 1, 0.85, and 0.6) in nutrient solution were studied on quality attributes of strawberry ‘Selva’. The highest and lowest leaf number and leaf area were observed in K:Ca 1.4 and 1, respectively. The highest fruit pH, electrical conductivity, total soluble solids/titratable acidity ratio, vitamin C content, ellagic acid, and color were resulted in K:Ca (1.4) ratio. K:Ca (1.6) ratio produced the highest content of protein. Moreover, K:Ca (0.85) ratio was the most effective treatment on fruit firmness. The increased quality attributes were observed in high K:Ca ratios, hence low K:Ca ratio resulted in increased fruit firmness. In conclusion, nutrient solution containing K:Ca ratios between 1 and 1.6 were suitable for producing strawberry ‘Selva’. Taken together, K:Ca (1.4) was an appropriate ratio for producing strawberry ‘Selva’ in soilless culture with coconut fiber: perlite medium.  相似文献   

18.
‘Helleri’ holly (Ilex crenata Thunb. ‘Helleri') plants were grown in solution culture at aluminum (Al) concentrations of 0, 6, 12, 24, and 48 mg.L‐1 for 116 days. Aluminum did not affect root or crown index, stem length growth, plant dry weight, or leaf area. Aluminum treatments significantly increased Al uptake and reduced nutrient uptake of magnesium (Mg), calcium (Ca), zinc (Zn), and copper (Cu) on some sampling dates. Iron (Fe) and manganese (Mn) uptake decreased on most sampling dates but increased on some with Al treatments. Potassium (K), phosphorus (P), and boron (B) uptake were significantly affected by Al, decreasing and increasing at different sampling dates. Although plants preferentially took up ammonium‐nitrogen (NH4 +‐N) in all treatments (including 0 Al controls), neither NH4 +‐N nor nitrate‐nitrogen (NO3 ‐N) uptake were affected by Al. Tissue concentrations of P, K, B, Zn, and Al increased with Al treatment; whereas tissue Ca, Mg, and Cu concentrations decreased with increasing Al. Iron and Mn tissue concentrations exhibited increases and decreases in different tissues. Results indicated that ‘Helleri’ holly was tolerant of high concentrations of Al.  相似文献   

19.
Abstract

Field experiments were conducted for periods of 14 or 15 years at four sites on Thin Black Chernozemic soils in south‐central Alberta to determine the effect of source and time of N application on dry matter yield (DMY), protein yield (PY), protein concentration, N use efficiency and recovery of N applied to bromegrass (Bromus inermis Leyss.) grown for hay. Two sources of N (urea and ammonium nitrate ‐ A.N.) were applied at four times (early fall, late fall, early spring and late spring) at a rate of 112 kg N ha1. Urea was generally less effective in increasing DMY, PY, protein concentration, N use efficiency and % N recovery than A.N. The average, DMY, PY, protein concentration, N use efficiency and % N recovery with A.N. were 4.38 t ha‐1, 445 kg ha‐1, 104 g kg‐1, 21.2 kg DM kg‐1 N ha‐1 and 40.2%, respectively. In the same order, the values with urea were 3.90 t ha‐1, 376 kg ha‐1, 99 g kg‐1, 16.9 kg DM kg‐1 N ha‐1 and 30.2%, respectively. The DMY was greatest with early spring application for A.N., while the protein concentration, PY and % N recovery were greatest with the late fall application for both urea and A.N. The increase in DMY or recovery of applied N with urea as a percentage of the increase with A.N., was greatest with application in late spring and least with application in early fall. In conclusion, urea was less effective than A.N. as a forage fertilizer and early spring application was most effective for increasing DMY.  相似文献   

20.
Abstract

The ‘FHIA-18’ hybrid banana is an alternative for producers as it is resistant to Black Sigatoka and Panama disease. However, few studies report the nutritional requirement of this hybrid, especially phosphorus. It is known that the efficiency of phosphorus use can be improved, reducing the need for application, depending on the genotype cultivated. Therefore, this study aimed to evaluate the yield and mineral nutrition of ‘FHIA-18’ hybrid banana on phosphate fertilization. A banana orchard with the cultivar ‘FHIA-18’ was conducted on a Typical Red Latosol. Then, triple superphosphate fertilizer was applied on plants at 0, 20, 30, 40, 50, and 60?kg ha?1?year?1, over three productive seasons. At the time of flowering the macro and micronutrient contents of the leaves were evaluated. Subsequently, the nutrient contents of the fruits were evaluated. For this, fruit pulp samples from the third and fourth hands were collected. In addition, yield was estimated considering cluster mass and plant density. The following dose 36?kg ha?1 of P2O5 year?1 increased the content of phosphorus in the leaf, despite that banana hybrid cultivar FHIA 18 demanded 50% of the recommended fertilizer to achieve its maximum yield (29.4 t ha?1?year?1). Phosphate fertilization promoted significant changes in P, Ca, Cu, and Zn contents of leaves and fruits. Therefore, it is concluded that the mineral nutrition of banana ‘FHIA-18’ is affected by phosphate fertilization, as well as requiring less P than recommended to achieve higher yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号