首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The addition of CaCO3 and MgCO3 to Yolo loam soil (pH 6) resulted in lower Fe concentrations in shoots of the Fe‐inefficient Ys1/Ys1 corn inbred (Zea mays L.) and higher levels in shoots of the Fe‐efficient WF9 inbred than in controls. When 59Fe with and without carrier FeSO4 was blended with the soil, the specific activity was similar for the two inbreds in nonamended soils, but was increased in the Ys1/Ys1 for the lime amendments. Sulfur acidification of soil decreased the specific activity of 59 Fe in shoots by increasing the pool of available Fe. From 5 to 33% of the Fe in plants came from the FeSO4 source. It was greatest in Ys1/Ys1 with lime‐amended soils and least in S‐acidified soil.  相似文献   

2.
The development of stinging nettle (Urtica dioica L.) grown on culture solution containing with either ammonium or nitrate ions, or urea, was investigated under iron deficiency conditions, and with added FeEDTA or FeCto. Both seed‐cultured and vegetatively‐cultured stinging nettle plants produced normally developed green shoots when nitrate and 4 μM FeEDTA or FeCto were supplied. Stinging nettle plants were able to utilize Fe‐citrate, Fe‐ascorbate, and Fe‐malate effectively at the same concentration as well. When K3Fe(CN)6 was supplied, which is impermeable to the plasmalemma, and therefore is used to measure the reductive capacity of the roots, stinging nettle plants became chlorotic because the complex was stable at the pH of the culture solution. Urea did not induce chlorosis but inhibited growth. The plants died when ammonium was supplied as a sole N source. Applying bicarbonate and ammonium together prevented the plants from dying, but the plants became chlorotic. Total exclusion of iron from the culture solution resulted in iron‐deficiency stress reactions as has been described for other dicotyledonous plants (Strategy II).  相似文献   

3.
Abstract

The Fe‐inefficient corn (Zea mays L.) inbred Ys1/YS1 was compared with the Fe‐efflcient WF9 inbred for ability to take up Fe from solution culture at different P levels. A high level of P depressed Fe uptake more in the Ys1/Ys1 than in the WF9 inbred. The Ys1/Ys1 roots were high in P.  相似文献   

4.
Abstract

Uptake of Co by corn (Zea mays) and bush beans (Phaseolus vulgaris) seedlings was affected by plant species, soil type and soil amendment. Bean leaves preferentially accumulated 60Co in comparison with corn leaves. Both the DTPA and (lime and DTPA) treatments enhanced 60Co uptake by both plant species, notably in the Troup soil which had lower cation exchange capacity (CEC) and lower soil fertility in comparison with Dothan soil. Conversely, soils with lime but without the chelating agent suppressed 60Co uptake. This dictates that farming practices should be closely evaluated if crops for livestock and human consumption are to be raised in fields contaminated by radionuclides.  相似文献   

5.
《Journal of plant nutrition》2013,36(10-11):2069-2079
Abstract

The ferric‐chelate reductase induced by Fe deficiency is also able to reduce other ions such as Cu2+. This Cu(II)‐reduction has been less studied and it has been suggested that Cu2+ ion rather than Cu2+‐chelate serves as the substrate. Ferric‐chelate reductase activity is inhibited by some metals, but the mechanisms implicated are not known. In the present work we use Fe‐deficient cucumber seedlings to study the interactions of Cu2+, Ni2+, Mn4+, and Fe3+ on both Fe(III)‐reduction and Cu(II)‐reduction activities. The response of Cu(II)‐reduction activity to Cu concentration, in the presence or absence of citrate, was also studied. Results showed that inhibition of the ferric‐chelate reductase activity by Cu2+ or Ni2+ could be partially reversed by increasing the concentration of Fe‐EDTA. The Cu(II)‐reduction activity was even stimulated by Fe‐EDTA or Ni2+; it was inhibited by a high concentration of Cu2+ itself; and it was not affected by the absence of citrate. Mn4+ caused a moderate inhibition of both Fe(III)‐reduction and Cu(II)‐reduction activities. Results agree with the hypothesis that free Cu2+ ion is the substrate for Cu(II)‐reduction and suggest that the mechanisms involved in Fe(III)‐reduction and Cu(II)‐reduction could have some differences and be affected by metals in different ways. The mode of action of metals on the reductase activity are discussed, but they are still not well known.  相似文献   

6.
《Journal of plant nutrition》2013,36(10-11):2009-2021
Abstract

A collaborative assay among three laboratories was made in order to compare both the ion (CEN. EN 13368‐2:2001 E. Determination of chelating agents in fertilizers by ion chromatography. Part 2: EDDHA and EDDHMA, 2001a) and the ion‐pair (Lucena, J.J.; Barak, P.; Hernandez‐Apaolaza, L. Isocratic ion‐pair high‐performance liquid chromatographic method for the determination of various iron(III) chelates. J. Chromatogr. A 1996, 727, 253–264) high performance liquid chromatography (HPLC) methods as well as the soluble and complexed Fe (CEN. EN 13366:2001 E. Treatment with a cation exchange resin for the determination of the chelated micronutrient content and of the chelated fraction of micronutrients, 2001b) methods. Fifteen and ten samples of commercial fertilizers of Fe‐EDDHA, Fe‐EDDHMA, respectively were analysed by three laboratories using these methods. No significant differences were observed between the results obtained for the Fe‐EDDHA content using the Lucena et al. or CEN method. The first method makes it possible to distinguish between the meso and DL‐racemic diasteroisomers of Fe‐o, o‐EDDHA. For the Fe‐EDDHMA formulations, the CEN method gives higher values than the ion‐pair method, since in the first one Fe‐EDDH4,6MA coelutes with FeEDDHMA. Also the CEN method does not makes it possible to distinguish between Fe‐EDDHMA and Fe‐EDDH5MA products. The variability among laboratories was larger for the CEN method than for the Lucena et al. method.  相似文献   

7.
Abstract

A field investigation was conducted to compare the efficacy of plowed‐down and disked‐in Zn as ZnSO4.H2O in correcting Zn deficiency of corn (Zea mays L.). The soil, Buchanan fine sandy loam, was nearneutral in pH and contained 0.7 ppm of EDTA‐extractable Zn and 1.4 ppm of dilute HCl‐H2SO4 extractable P. Application of 6.72 kg Zn/ha as ZnSO4.H2O corrected Zn deficiency of corn plants on the soil. Corn grain yields and Zn concentrations in tissue samples indicated that the plowed‐down and disked‐in Zn were about equally effective in correcting Zn deficiency where the level of Zn application was 6.72 kg/ha.  相似文献   

8.
Abstract

The frequent concentration‐ranges of various nutrient elements in soils and in plants are compared. Iron is different from almost all other nutrient elements in the fact that its optimal concentration range in plants is much lower than its frequent concentration range in soils. It is suggested that this observation is related to a chemical‐physiological mechanism of control on the uptake of iron by plants which in turn may explain the situations in which iron deficiency conditions in plants arise.  相似文献   

9.
The beneficial effect of titanium (Ti) on plant metabolism can result in more profitable use of fertilizer applied to a crop. A crop chamber experiment with paprika pepper (Capsicum annuum L., cv. Bunejo) seedlings under differential nitrogen (N) concentration levels in a nutrient solution (100% N, 75% N, 50% N, and 25% N) was performed. A third of the seedlings growing under each N support level remained Ti‐untreated and were used as the reference. Another third of the seedling received one and two 0.042 mM Ti(TV) ascorbate, pH 6.0, leaf spray treatments, respectively. The biomass production of the Ti‐untreated plants was only affected by the N supply of 50% or less. The Ti(IV) leaf spray treatments produced a biomass production greater than that of the corresponding reference plants, and both the 100% N+Ti and 75% N+Ti treatments had the highest biomass production. Seedlings receiving 50% N+Ti had a level of biomass production similar to that for the 100% N without Ti reference plants. In the same way, the 25% N+Ti treatment resulted in a plant fresh weight greater than that for the Ti‐untreated reference plants, although their biomass yields were not significantly lower than that for the corresponding 100% N and 75% N Ti‐untreated reference plants. Only the 50% N and 25% N Ti‐untreated plants had definite total‐N and nitrate‐nitrogen (NO3‐N) unbalances as compared to the other N rate‐Ti treatments.  相似文献   

10.
Roots of iron (Fe)‐efficient dicots react to Fe‐deficiency stress by strongly enhancing the ferric (Fe3+)‐reductase system and by lowering the rhizo‐sphere pH. In this study, we tested whether such adaptation mechanisms characterize pear and quince genotypes known to have differential tolerance to calcareous and alkaline soils. Two trials were performed using micropagated plants of three quince rootstocks (BA29, CTS212, and MC), three Pyrus communis rootstocks (OHxF51 and two selections obtained at the Bologna University: A28 and B21) and of two pear cultivars (Abbé Fétel and Bartlett, own‐rooted). In the first trial, plants were grown in a nutrient solution with [Fe(+)] and without [Fe(‐)] Fe for 50 days. Their root Fe‐reducing capacity was determined colorimetrically using ferrozine and FeEDTA, and Fe uptake of Fe(+) plants was estimated. In the second trial, the rhizosphere pH of plants grown in an alkaline soil was measured by a micro‐electrode. With the only exception of pears OHxF51 and A28, whose Fe‐reduction rates were similar in Fe(+) and Fe(‐) plants, the Fe‐deficiency stress resulted in a significant decrease in Fe reduction. Among the Fe(‐) plants, the two pear cultivars, OHxF51 and A28, had a higher Fe‐reducing capacity than the quince rootstocks and the cv. Abb6 F. When plants were pre‐treated with Fe, reduction rate was highest in the P. communis rootstocks, intermediate in the own‐rooted cultivars, and lowest in the quinces. Root Fe‐reducing capacity of Fe(+) plants proved to be linearly and positively correlated with Fe uptake and root proton release. Rhizosphere pH was highest in quince MC, intermediate in the other two quinces and in the cv. Abbe F., and lowest in the pear rootstocks and in the cv. Bartlett. Our results indicate that roots of pear and quinces do not increase their ability to reduce the Fe under Fe‐deficiency stress. The genotypical differential tolerance to Fe chlorosis likely reflects differences in the standard reductase system and in the capacity of lowering the pH at the soil/root interface. The determination of the root Fe‐reducing capacity is a promising screening technique for selecting pear root‐stocks efficient in taking up Fe.  相似文献   

11.
Abstract

Although sunflower (Helianthus annus L.) is an Fe efficient plant, tumorous crown gall tissue development and tissue ability to reduce Fe3+ to Fe2+ were both diminished by Fe‐deficiency stress. Crown gall also develops readily on Fe‐efficient and Fe‐inefficient tomato cultivars (Lycopersicon esculentum Mill.). The objective of this study was to determine if the effect of a limited Fe supply on the growth, nutrition and reduction of Fe3+ to Fe2+ by tumorous crown gall would differ between Fe‐efficient T3238FER and Fe‐inefficient T3238fer tomato. Healthy green 25‐day‐old plants were either stem‐inoculated with Agrobacterium tumefaciens to induce tumorous crown gall tissue development or were left uninoculated for comparison. Plants were grown in modified Hoagland nutrient solutions containing 0.0, 0.15, 0.6 and 2.0 mg Fe L?1. Yield of tumorous crown gall tissue was not diminished by low solution Fe in T3238FER, but was in T3238fer. This was attributed to inability of the T3238fer tomato to make Fe available to itself. Tumor tissue from both cultivars contained more Fe, Cu and P than normal stem tissues, which confirms a modified metabolism in these tissues previously observed in sunflower. An abundant supply of Fe enhances the development and growth of the tumorous crown gall tissue, but a deficient supply of Fe retards its growth.  相似文献   

12.
Abstract

Fertilizers that contain zinc (Zn)‐EDTA and Zn‐lignosulfonate (Zn‐LS), which can also be coated with rosin, were placed at the top of columns of an acid Calcic Palexeralf soil which were periodically irrigated. The liberated Zn remained mostly on the top of the column when the source of Zn was Zn‐LS but Zn migrated through the column when Zn‐EDTA was applied. The use of a coating on the Zn‐EDTA fertilizer diminished the loss of Zn by leaching from 52% to 20% at the end of the experiment at the highest coating percentage (36%). The distribution of the Zn in the soils was studied by fractionation and showed that added Zn remained in the soils in more favorable forms for uptake by plants in comparison with the control soil. The labile fraction (F1) and especially that organically complexed increased, and the percentage corresponding to the residual fraction that was 89% in the native soil diminished in all cases being in the most favorable case by 25%. Correlations between the extracted fractions (r=0.57–0.99, P<0.01%) showed that, in general, a dynamic equilibrium existed between them. The DTPA‐extractable Zn also correlated positively with the most labile Zn fractions, although the significance level depended on the depth.  相似文献   

13.
Abstract

Fertilizer placement for corn (Zea mays L.) has been a major concern for no‐tillage production systems. This 3‐yr study (1994 to 1996) evaluated fertilizer phosphorus (P) or potassium (K) rates and placement for no‐tillage corn on farmers’ fields. There were two sites for each experiment involving fertilizer P or K. Treatments consisted ofthe following fertilizer rates: 0,19,and 39 kg P ha‐1 or 0, 51, and 102 kg K ha‐I. The fertilizer was broadcast or added as a subsurface band 5 cm beside and 5 cm below the seed at planting. Early plant growth, nutrient concentrations, and grain yields were measured. At the initiation of the study, soil test levels for P and K at the 0–1 5 cm depths ranged from optimum (medium) to very high across sites. Effects of added fertilizer and placement on early plant growth and nutrient concentrations were inconsistent. Added fertilizer had a significant effect on grain yields in two of twelve site‐years. Therefore, on no‐tillage soils with high fertility, nutrient addition, and placement affected early plant growth and nutrient utilization, but had limited effect on grain yield. Consequently, crop responses to the additions of single element P or K fertilizers under no‐tillage practices and high testing soils may not result in grain yield advantages for corn producers in the Northern cornbelt regardless of placement method.  相似文献   

14.
Abstract

The responses of corn and soybean to seed‐placed fertilizer were compared over NaHCO3‐extractable soil phosphorus (P) levels ranging from 3 to 35 ppm in a two‐year experiment. Early season corn and soybean shoot‐P concentrations were increased with increasing soil test P and were increased with seed‐placed P regardless of soil test P, although the increases were greater for corn than soybean. Corn grain yield increased with increasing soil test P to a plateau level and increased with seed‐placed P regardless of soil test P. A side‐band (5 cm × 5 cm) application of 39 kg P ha‐1 at a low soil test P increased yield more (P<0.15) than application of 7 kg P ha‐1 with the seed. A side‐band application of 9 kg P ha‐1 at a medium soil P test did not increase yield. Soybean yield was increased with increasing soil test P one year out of two, but did not respond to seed‐placed P in either year. The yield response of corn was attributed to the increased P concentration prior to the 6‐leaf stage.  相似文献   

15.
Abstract

Knowledge of relationships between variation in early plant growth and soil nutrient supply is needed for effective site‐specific management of no‐till fields. This study assessed relationships between soil test phosphorus (STP) and potassium (STK) with early plant growth and P or K content of young corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] plants in eight no‐till fields. Composite soil (0–15 cm depth) and plant (V5‐V6 growth stages) samples were collected from 400‐m2 areas at the center of 0.14‐ha cells of a 16‐cell square grid and from 2‐m2 areas spaced 3 m along each of two 150‐m intersecting transects. Correlation, regression, multivariate factor analyses were used to study the relationships between the variables. Variability was higher for samples collected from the transects. Plant dry weight (DW), P uptake (PU), and K uptake (KU) usually were correlated with STP and STK but the correlations varied markedly among fields. Relationships between soil and plant variables could not always be explained by known nutrient sufficiency levels for grain production. Plant P concentration (PC) was not always correlated with STP and sometimes it increased linearly with STP, but other times increased curvilinearly until a maximum was reached. Plant K concentration (KC) usually was correlated with STK, however, and increased linearly with increasing STK even in fields with above‐optimum STK. The results suggest greater susceptibility of early growth to STP than to STK and greater plant capacity to accumulate K compared with P over a wide range of soil nutrient supplies. Variation in STK likely is a major direct cause of variation in KC over a wide range of conditions but variation in STP is not likely a major direct cause of variation in PC when high STP predominates.  相似文献   

16.
Cool white fluorescent (CWF) light reduces Fe3+ to Fe2+ while low pressure sodium (LPS) light does not. Cotton plants grown under CWF light are green, while those yrown under LPS light develop a chlorosis very similar to the chlorosis that develops when the plants are deficient in iron (Fe). It could be that CWF light (which has ultra violet) makes iron more available for plant use by maintaining more Fe2+ in the plant. Two of the factors commonly induced by Fe‐stress in dicotyledonous plants‐‐hydroyen ions and reductants released by the roots‐‐were measured as indicators of the Fe‐deficiency stress response mechanism in M8 cotton.

The plants were grown under LPS and CWF light in nutrient solutions containing either NO3‐N or NH4‐N as the source of nitrogen, and also in a fertilized alkaline soil. Leaf chlorophyll concentration varied significantly in plants grown under the two light sources as follows: CWF+Fe > LPS+Fe > CWF‐Fe ≥ LPS‐Fe. The leaf nitrate and root Fe concentrations were significantly greater and leaf Fe was generally lower in plants grown under LPS than CWF light. Hydrogen ions were extruded by Fe‐deficiency stressed roots grown under either LPS or CWF light, but “reductants”; were extruded only by the plants grown under CWF light. In tests demonstrating the ability of light to reduce Fe3+ to Fe2+ in solutions, enough ultra violet penetrated the chlorotic leaf of LPS yrown plants to reduce some Fe3+ in a beaker below, but no reduction was evident through a yreen CWF grown leaf.

The chlorosis that developed in these cotton plants appeared to be induced by a response to the source of liyht and not by the fertilizer added. It seems possible that ultra violet liyht could affect the reduction of Fe3+ to Fe2+ in leaves and thus control the availability of this iron to biological systems requiring iron in the plant.  相似文献   

17.
The effects on two‐week‐old plants of a salt‐tolerant line (Euroflor) and a salt‐sensitive (SMH‐24) line of sunflower, of varying sodium/calcium (Na/ Ca) ratios in a saline growth medium were assessed after three weeks growth in sand culture under greenhouse conditions. The different Na/Ca ratios of the salt treatment were 36.5, 74.0, and 149, at a constant concentration of 150 mol m‐3 NaCl. Euroflor was superior to SMH‐24 in fresh and dry matters of shoots and roots at varying external Na/Ca ratios. The leaf Na+ concentration in SMH‐24 increased consistently with increase in external Na/Ca ratio, whereas that in Euroflor remained almost unaffected. Although leaf chlorine (Cl) was significantly greater in SMH‐24 than Euroflor, there was no effect of decreasing Ca2+ concentration of the saline growth medium on the leaf Cl concentrations of both lines. The lines did not differ in K+, Ca2+ or Mg2+ concentrations of both shoots and roots. The leaf K/Na and Ca/ Na ratios, K versus Na selectivity were considerably higher in Euroflor than in SMH‐24. The lines also did not differ in leaf water potential and gas exchange and these variables were not affected due to decreasing Ca2+ concentration of the saline growth medium. Stomatal conductance and transpiration remained unchanged in Euroflor, whereas those in SMH‐24 decreased significantly at the highest external Na/Ca ratio. Euroflor had significantly greater stomatal conductance and transpiration than those of SMH‐24 at almost all external Na/Ca ratios, whereas the reverse was true for water use efficiency. It was established that Euroflor was tolerant to low Ca2+ concentrations of the saline growth medium as compared with SMH‐24. This was mainly attributable to accumulation of relatively low Na+ and Cl in the leaves, and maintenance of high leaf K/Na and Ca/Na ratios and K versus Na selectivity in Euroflor.  相似文献   

18.
Solution culture with four pH levels was employed in this experiment to evaluate root and rhizosphere responses of Malus xiaojinensis [iron (Fe)‐efficient species] and M. baccata (Fe‐inefficient species) in order to pursue some of their physiological mechanism for Fe absorption. The results showed that M. xiaojinensis had a higher fresh weight per seedling than M. baccata at any of the solution pH levels tested and the differences were significant between the two species with increasing of the solution pH levels, particularly at the pH of 7.4 or 8.4. The reducing abilities of root exudates for the two species under test were decreased with increasing of the solution pH from 5.4 to 8.4, in which the reducing abilities for M. xiaojinensis were always more than two times higher than those for M baccata. The significant decrease of the reducing ability was found only at pH of 8.4 for M. xiaojinensis or at both 7.4 and 8.4 for M. baccata, respectively. Malus xiaojinensis had significantly higher respiration rates than M. baccata at the higher solution pH levels. Both rhizosphere pH and rhizosphere redox potential were influenced by the solution pH levels remarkably in distances of 0–4 mm to root surface or in distances of 5–10 mm along the root from the root tip, respectively. Genotypic differences in these two parameters were clearly showed at the solution pH of 7.4, in which rhizosphere pH of M xiaojinensis was clearly lower than that of M. baccata, while the rhizosphere redox potential of the former was much higher than that of the latter.  相似文献   

19.
《Journal of plant nutrition》2013,36(10-11):2243-2252
Abstract

A research was carried out to evaluate the leaves' ability to utilize Fe supplied as a complex with water‐extractable humic substances (WEHS) and the long‐distance transport of 59Fe applied to sections of fully expanded leaves of intact sunflower (Helianthus annuus L.) plants. Plants were grown in a nutrient solution containing 10 µM Fe(III)‐EDDHA (Fe‐sufficient plants), with the addition of 10 mM NaHCO3 to induce iron chlorosis (Fe‐deficient plants). Fe(III)‐WEHS could be reduced by sunflower leaf discs at levels comparable to those observed using Fe(III)‐EDTA, regardless of the Fe status. On the other hand, 59Fe uptake rate by leaf discs of green and chlorotic plants was significantly lower in Fe‐WEHS‐treated plants, possibly suggesting the effect of light on photochemical reduction of Fe‐EDTA. In the experiments with intact plants, 59Fe‐labeled Fe‐WEHS or Fe‐EDTA were applied onto a section of fully expanded leaves. Irrespective of Fe nutritional status, 59Fe uptake was significantly higher when the treatment was carried out with Fe‐EDTA. A significant difference was found in the amount of 59Fe translocated from treated leaf area between green and chlorotic plants. However, irrespective of the Fe nutritional status, no significant difference was observed in the absolute amount of 59Fe translocated to other plant parts when the micronutrient was supplied either as Fe‐EDTA or Fe‐WEHS. Results show that the utilization of Fe complexed to WEHS by sunflower leaves involves an Fe(III) reduction step in the apoplast prior to its uptake by the symplast of leaf cells and that Fe taken up from the Fe‐WEHS complexes can be translocated from fully expanded leaves towards the roots and other parts of the shoot.  相似文献   

20.
Reports relating the separate and combined influences of soil aeration, nitrogen and saline stresses on the germination, growth and ion accumulation in sunflowers are lacking in the literature. The sunflowers of this report were grown in sand culture in the greenhouse. Separate and combined treatments of two levels of aeration, three levels of nitrogen and three levels of NaCl were applied to plants which were harvested at 40 and 56 days. Seed germination was excellent in all treatments. Plant height and dry weight decreased with each type of stress. Low oxygen (0.20 μg O2 cm‐2 min‐1) and nitrogen (10 ppm) combined with 70 meq/1 NaCl caused the greatest reduction of plant growth. Leaf number was reduced by low nitrogen and excess salt. Low oxygen reduced the accumulation of K, Ca and Mg and increased the Na and N‐NO3 content of sunflower leaves. Potassium to sodium ratios in plant on sunflower growth could be partially ameliorated with the tissue were decreased by greater EC values of the nutrient solution and low soil ODR. The adverse effects of salt and oxygen stresses addition of nitrogen. Ion accumulation was an earlier indicator of plant stress than plant growth and both parameters provided excellent methods for assessing plant tolerance to soil aeration, nitrogen and saline stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号