首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many state highway departments in the USA must use native plants for revegetating roadsides. We conducted two field studies in West Virginia to assess native plant establishment under two different conditions. On newly‐constructed sites, native species were seeded alone or combined with non‐native species. On older roadsides, native species were seeded in disturbed existing vegetation. In the first study, we used four seed mixtures comprised of seeds of native and non‐native species, and two N‐P‐K fertilizer treatments at three newly‐constructed sites. Native, warm‐season grasses were slow to establish and only contributed 25 per cent cover in some plots after three years. Indiangrass (Sorghastrum nutans [L.] Nash), big bluestem (Andropogon gerardii Vitman), Brown‐Eyed Susan (Rudbeckia triloba L.), and wild senna (Cassia hebecarpa Fernald) were the only seeded native species found. Fertilizer at 150 kg ha−1 of 10‐20‐10 showed little influence on increasing plant cover. In the second study, we disturbed three different‐aged established stands of vegetation composed of tall fescue (Festuca arundinacea Screb.) and crownvetch (Coronilla varia L.) by mowing, herbicide, or tillage, and native plants were seeded with and without fertilizer. Native cover was <10 per cent in all plots during the first year, but greatly increased by the second year to as much as 45 per cent in tilled plots, indicating that disturbance was necessary for natives to become important contributors within 2 years. Only switchgrass (Panicum virgatum L.), little bluestem (Andropogon scoparius Vitman), partridge pea (Chamaecrista fasciculate Michx.), and Brown‐Eyed Susan were observed in plots. Fertilizer at 300 kg ha−1 of 10‐20‐10 did not increase native plant cover on these sites. Based on our results, introducing or increasing the cover of native species along roadsides requires (1) reducing competition from non‐native species, and (2) longer time periods for these slower‐establishing species to be observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
It is unknown if nitrogen (N) fertilizer application will ameliorate the yield loss associated with severe defoliation of soybean [Glycine max (L.) Merr.] at the R5 stage of growth. The objective of this field study was to investigate the interaction of N fertilization rate and extent of defoliation on soybean yield, seed weight, seed N concentration, and nodule activity. Field experiments were conducted in 1988 and 1989 on a Drummer silty clay loam (Typic Haplaquolls). Treatment variables were three cultivars: BSR 101, Chamberlain, and Elgin 87; three N fertilizer rates applied one day after defoliation: 0, 84, and 168 kg N ha‐1 as urea; and three levels of defoliation: 0, 50, and 75%. Grain yield was not significantly affected by N rate but did decrease with defoliation. Fertilizer N did not ameliorate the yield reduction associated with defoliation. Seed weight decreased linearly with increasing defoliation. Plants exposed to the most severe defoliation produced seed which weighed 1 g 100‐1 seed less than seed from nondefoliated plants. In 1989 seed weight of only the nondefoliated plants increased slightly with N rate, seed weight was not affected by N rate for any other year by defoliation treatment combination. Seed N concentration was not affected by N rate. Seed N concentration increased with defoliation in 1988 but not in 1989. Seed N concentration was not affected by defoliation in 1989. N fertilizer application and defoliation decreased nodule activity. Defoliated plants utilized nitrates in preference to dinitrogen fixation. Fertilizer N increased the concentration of nitrates in the plant, but the increase did not ameliorate the yield loss. Developing pods and seed are the predominate sink. The additional energy presumably required for dinitrogen fixation did not exacerbate the yield loss.  相似文献   

3.
Defoliation-induced changes in grass growth and C allocation are known to affect soil organisms, but how much these effects in turn mediate grass responses to defoliation is not fully understood. Here, we present results from a microcosm study that assessed the role of arbuscular mycorrhizal (AM) fungi and soil decomposers in the response of a common forage grass, Phleum pratense L., to defoliation at two nutrient availabilities (added inorganic nutrients or no added nutrients). We measured the growth and C and N allocations of P. pratense plants as well as the abundance of soil organisms in the plant rhizosphere 5 and 19 d after defoliation. To examine whether defoliation affected the availability of organic N to plants, we added 15N-labelled root litter to the soil and tracked the movement of mineralized 15N from the litter to the plant shoots.When inorganic nutrients were not added, defoliation reduced P. pratense growth and root C allocation, but increased the shoot N concentration, shoot N yield (amount of N in clipped plus harvested shoot mass) and relative shoot N allocation. Defoliation also reduced N uptake from the litter but did not affect total plant N uptake. Among soil organisms, defoliation reduced the root colonization rates of AM fungi but did not affect soil microbial respiration or the abundance of microbe-grazing nematodes. These results indicate that interactions with soil organisms were not responsible for the increased shoot N concentration and shoot N yield of defoliated P. pratense plants. Instead, these effects apparently reflect a higher efficiency in N uptake per unit plant mass and increased relative allocation of N to shoots in defoliated plants. The role of soil organisms did not change when additional nutrients were available at the moment of defoliation, but the effects of defoliation on shoot N concentration and yield became negative, apparently due to the reduced ability of defoliated plants to compete for the pulse of inorganic nutrients added at the moment of defoliation.Our results show that the typical grass responses to defoliation—increased shoot N concentration and shoot N yield—are not necessarily mediated by soil organisms. We also found that these responses followed defoliation even when the ability of plants to utilize N from organic sources, such as plant litter, was diminished, because defoliated plants showed higher N-uptake efficiency per unit plant mass and allocated relatively more N to shoots than non-defoliated plants.  相似文献   

4.
Nutritional status affects the processes of flowering and fruiting of plants. This study was conducted to determine the effects of fertilizer application on flowering, fruiting, and leaf nutrient content of Vanilla planifolia (Jacks. ex Andr). Treatments consisted of the application of grade 10-20-20 nitrogen, phosphorus, and potassium (NPK) fertilizer to the substratum in annual doses of 20, 50, and 100 g/plant plus a monthly application of foliar fertilizer. Two more treatments were foliar fertilization and no fertilization (control). Treatments increased the number of inflorescences and flower buds per plant, as well as the number and weight of fruits per plant, and decreased the abortion of flowers and immature fruits. These effects depended on the type of fertilizer, the amount applied, and the time of evaluation. The best results were obtained with the 100 g/plant/year treatment with an annual production of 1.5 kg of fruits per plant in the second year. Unfertilized plants produced 0.55 kg/plant/year. Differences were also found in foliar content of N, P, K, and copper (Cu) between vegetative and reproductive branches. Application of fertilizer to the substratum appears to improve reproductive parameters of vanilla plants and the production of beans, while foliar fertilization alone was ineffective in increasing crop productivity. Nutrients also seem to translocate from mature leaves to fruit racemes.  相似文献   

5.
Nitrogen (N) deposition has been increasing in alpine ecosystems, but its fate in soils and plants remains unclear. We assumed that the increased N load will be efficiently retained in alpine ecosystems but that the degree of N use efficiency changes with elevation. Thus, we performed a 3‐year 15N tracer experiment, in which we added 1 g m?2 of either NH415NO3 or 15NH4NO3 fertilizer to a plot of 1 m2 in size at three elevations. Composite soil samples and aboveground plant material from lichens, dwarf shrubs, and graminoids were collected annually for three years and analyzed for their 15N accrual. We found a cumulative and plateauing rise in 15N concentration in soils and plants at all sites. However, overall recovery of the tracer decreased with time, amounting to 71% of fertilizer recovered in the soils in the first year, 69% recovered in soils and plants in the second year, and 37% in soils and plants in the third year. Moreover, the fertilizer use efficiency varied among fertilizer types and plant functional types. This utilization pattern appears to be modulated by elevation.  相似文献   

6.
Abstract

Recent studies showing a lack of response by alfalfa (Medicago sativa L.) to phosphorus (P) fertilization have raised concerns about the efficacy of commonly used P fertilizer materials in the southwestern United States. Studies were conducted between 1982 and 1985 in southeastern New Mexico to evaluate (i) alfalfa yield response to different P sources, (ii) the effect of P fertilizer source on forage total nitrogen (N) content and leafiness, and (iii) the effect of P fertilizer source on soil test P. Nine P sources were applied annually from 1982 through 1984 at a rate of 58 kg P/ha. Alfalfa was grown during 1985 without fertilization to examine the residual effect of P sources. Triple superphosphate (TSP) and monoammonium phosphate (MAP) gave the highest alfalfa forage yields over the 3‐year application period, but no residual fertilizer effects were observed when fertilization was discontinued. Fertilization did not affect forage leafiness. Except for a small N response in forage total N content in 1984, neither P nor concomitant applied N had a significant effect on forage N content over the 3‐year period. Phosphorus fertilization significantly increased average soil test P for the 3‐year period, but there were no significant differences between treatments. Currently used P materials (TSP and MAP) still appear to be the most efficacious for alfalfa production.  相似文献   

7.
Numerous studies have examined the nutritive quality of fodder plants in different seasons but few have related this seasonal response to long‐term grazing intensity. Our objective was to examine the effect of long‐term grazing on the concentrations of total nitrogen, δ15N, and total phosphorus in selected forage species from the fescue grassland near Stavely, Alberta. Plants were selected from paddocks that had been stocked at 0 (control), 2.4 (moderate grazing), and 4.8 (heavy grazing) animal unit months ha–1 for 58 years. Plant material from ten species was sampled and analyzed at monthly intervals from May to September in 2007. Total N and P concentrations were not (p > 0.05) affected by grazing for most species, but total N and P concentrations in Poa. pratensis L. were higher (p < 0.05) in grazed treatments than in the control. These results reflect an altered plant phenology through defoliation and illustrate delayed phenology in P. pratensis when grazed. The higher δ15N concentration for most species in the grazed treatments than the control is an indication of accelerated nitrogen cycling through dung and urine deposition.  相似文献   

8.
Abstract

Pearl millet (Pennisetum americanum L. Leeke) has an inherent rapid growth rate that often presents management problems to achieve optimum utilization by livestock throughout the growing season. Both the rapid spring–summer growth rate and photoperiodism that diminishes growth in late summer—early fall creates the need to use both grazing and mechanical defoliation to have efficient use of forage production. The objectives of this 2‐year field study were to evaluate the effects of a growth regulator, mefluidide (N‐[2, 4‐dimethyl‐5‐([(trifluoromethyl) sulfonyl] amino) phenyl] acetamide), on growth characteristics and nutritive parameters of “Millex 24” pearl millet. Mefluidide was broadcast applied at different rates to determine the effect on dry matter (DM) yield and nutritive value of leaves and stems of pearl millet. Mefluidide reduced DM biomass at each weekly harvest, and at three weeks post‐treatment DM was reduced 3‐fold in Year 1 and 2‐fold in Year 2. Percent leaf, however, was nearly doubled by mefluidide application. Crude protein (CP) of leaves was not affected by mefluidide, however, CP of treated stems was significantly higher (P < 0.05) than untreated pearl millet. Fiber components were lowered (P < 0.05) in treated leaves and stems compared to untreated pearl millet. The 2‐year study showed that mefluidide enhanced nutritive value of pearl millet, but at the expense of DM.  相似文献   

9.
The effects of defoliation on soybean [Glycine max (L.) Merr.] growth and yield have been well studied, but relatively little is known about its nitrogen (N) accumulation after defoliation. An experiment was conducted to examine soybean recovery and N accumulation following defoliation. The indeterminate cultivar (‘Tousan 69’) was planted in a greenhouse, and two defoliation treatments (no defoliation and 67% defoliation) were imposed at the R2 stage when plants had at least one flower in the two uppermost nodes. At 0, 15, 30 and 45 days after defoliation (DAD), plants were destructively sampled to measure dry mass production, nitrogen accumulation and nitrogen fixation. Seed yield and N concentration also were measured at maturity. Neither the seed yield nor its N concentration was affected by defoliation. Although defoliation temporarily reduced soybean dry weight and N accumulation during 15 DAD, defoliated plants completely recovered their dry weight and N accumulation 30 DAD. There was little difference in N concentration between defoliated and non defoliated plants, indicating that N acquisition was restored during the recovery process. Recovery of N accumulation in defoliated plant was due to complete recovery of N2-fixing ability and maybe related to improvement in N absorption after defoliation.  相似文献   

10.
Abstract

In arid and semiarid regions of northern China, there is an increasing interest in using reduced rates of chemical fertilizer along with water-saving superabsorbent polymer for field crop production. Field experiments were conducted during the year 2009 and 2010 to study the growth performance and yield characteristics of forage oat (Avena sativa L.) as well as soil moisture and nutrient status of the experimental field under different fertilizer (standard, 300; medium, 225; and low, 150 kg ha?1) treatments with (60 kg ha?1) or without application of superabsorbent polymer. Our results show that above-ground biomass accumulation fell by 14.8% under medium and 32.6% under low fertilizer levels whereas application of superabsorbent polymer increased it significantly by 39.7%. Similarly plant height, tiller fertility rate, grain yield, relative water content in the leaves as well as quality of forage also increased for superabsorbent polymer treatment. Considering the trends of growth reduction (qualitative and quantitative) due to fertilizer reduction and progressive influence of superabsorbent polymer on those parameters, it was clear that application of superabsorbent polymer plus only half the conventional fertilizer rate (150 kg ha?1) would be a more appropriate practice for forage oat production under arid and semiarid conditions of northern China or in areas with similar ecologies.  相似文献   

11.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

12.
Kura clover (Trifolium ambiguum M. Bieb.) is a rhizomatous perennial legume that is native to Caucasia, is extremely persistent in North America, but its performance has not been adequately evaluated in Europe. The objective of this research was to compare forage yield and nutritive value of Kura clover to lucerne (Medicago sativa L.), red clover (Trifolium pretense L.) and white clover (Trifolium repens L.) at two locations in Poland. All clover stands thinned markedly by spring of the second production year because of infection by Sclerotinia crown and stem rot, but lucerne stands remained dense and this legume produced the highest total yield over 3 or 4 production years. Kura clover yields of 7.2–8.3?Mg?ha?1 were second to lucerne by the third production year but long-term performance was diminished by stand thinning. Kura clover and white clover had lower fiber concentrations and greater protein concentrations and forage digestibility than red clover and lucerne. Kura clover can be a source of high-quality forage in Europe, but cannot be recommended for use in areas with known Sclerotinia trifoliorum presence until resistance to this pathogen is developed.  相似文献   

13.
Intercropping cereal crops with perennial legumes for forage has been demonstrated as a means to improve nutritive value compared to cereal crops alone. Our objective was to determine whether sowing winter rye (Secale cereale L.) or winter triticale (x Triticosecale Wittmack) into living Caucasian clover (Trifolium ambiguum M. Bieb.) improves yield or nutritive value compared to monoculture cereal crop forage in northern Europe. The experiments were conducted near Moche?ek and Fal?cin, Poland. In autumn 2010 and 2011, winter rye was sown into existing Caucasian clover or in monoculture at Moche?ek, and winter triticale was sown into Caucasian clover or in monoculture at Fal?cin, with monoculture clover as a third crop treatment at both locations. The following spring, first harvest of forage from the three crop treatments was taken at two maturities: when monoculture cereals reached heading (BBCH 51) or grain milk stage (BBCH 71), and two additional harvests were taken from mixture plots and monoculture clover before autumn. First harvest forage yields of mixtures were similar to monoculture cereal at Fal?cin, less than monoculture cereal at Moche?ek, and greater than monoculture clover at both locations. Full season forage yields of mixtures were greater than both monoculture cereal and clover crops at both locations. The proportion of clover in mixtures was 20–31% in the first harvest, resulting in slightly lower neutral detergent fiber concentrations than in monoculture cereal crop at Fal?cin, but no improvement in nutritive value at Moche?ek. By spring 2012, most Caucasian clover had died from Sclerotinia trifoliorum infection at both locations, so forage was not harvested in the second year of the experiment. Although total season forage yields were greater for mixtures than for either monoculture cereal or Caucasian clover, this system cannot be recommended for northern Europe because of failure for Caucasian clover to persist.  相似文献   

14.
Abstract

The objectives of this investigation were to study the effects of marginal site conditions and hybrid on plant development, agronomic performance and nutritive characteristics of forage maize (Zea mays L.) at high latitudes. Field experiments were conducted in 2008 and 2009 at three experimental sites, Kristianstad, Skara and Västerås, at increasing latitudes from 55°–60° N. Experimental design used two replicated randomized complete blocks at each site with three maize hybrids, Avenir (FAO 180), Isberi (FAO 190) and Burli (FAO 210), which were continuously assessed for plant development and harvested at various levels of maturity. The chemical composition and nutritional characteristics of harvested plant materials were analysed and hybrid responses to advancing maturity in terms of yield and nutritional qualities were evaluated. Results showed that maize hybrids required different numbers of accumulated thermal units at sites on varying latitudes to achieve developmental stages. Lowest thermal unit requirements among hybrids were observed for hybrid Avenir, and for sites it was highest for plants grown in the most northern site, Västerås. The most southern site, Kristianstad, was the only site at which all hybrids reached the dent stage (c. 450 g kg?1 kernel DM), a recommended maturity for ensiling. The DM yields of early maturing hybrid Avenir were consistently lower than those for Isberi and Burli at all the sites. Results also revealed nutritional differences among maize hybrids at a given maturity (DM, g kg?1), indicating that the effects of maturation should be factored into design of hybrid performance trials. This study highlights the effects of marginal site conditions and hybrids on plant development, agronomic performance and nutritional characteristics of maize hybrids at high latitudes. Further studies on marginal sites are recommended to enlighten the understanding of interaction between environmental and genetic factors on the performance of forage maize.  相似文献   

15.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

16.
Hard red winter wheat (Triticum aestivum L. emend. Thell.) is an important cool‐season winter forage used primarily for increasing weight gain on growing beef cattle in the southern Great Plains. ‘Karl’ hard red winter wheat grown alone or grown with either hairy vetch (Vicia villosa Roth) or pea [(Pisum sativum L. subsp. arvense) var. ‘Austrian winter'] was sampled for forage nutritive value. The interplanted legume forage was also sampled for forage nutritive value. Ruminally degradable nitrogen (RDN):ruminally degradable organic matter (RDOM) ratios were highest for legume forage and exceeded the National Research Council (NRC) recommendation of 26.13 g RDN: 1 kg RDOM for peak ruminai microbial efficiency during March, April, and May sample periods over the 2‐year study. Wheat grown alone met the NRC requirement only during March. Wheat grown with either hairy vetch or pea had higher (P<0.05) RDN:RDOM ratios and crude protein (CP) values when compared to wheat grown alone during May. There were no differences (P>0.05) in dry matter (DM) yield between wheat grown alone or grown with the legumes except when analyzed by individual date, and then only for 1 of 6 sample dates. Undegraded intake protein (UIP) was generally higher (PO.05) for wheat compared to the legumes and higher (PO.05) for wheat grown alone during May compared to wheat grown with the legumes during May. The decline of the RDN:RDOM values to 40% below the NRC recommendation of wheat grown alone during May indicates a possible need for protein supplementation for growing beef cattle grazing wheat during this period. These data also indicate that interplanting legumes with wheat may enhance animal performance by providing forage of higher nutritive value. More information regarding grazing tolerance of these selected cool‐season annual legumes and subsequent animal performance is required.  相似文献   

17.
Abstract

Sustaining agricultural productivity and environmental quality requires efficient use of nitrogen (N) fertilizer by crops. A zero‐tillage study was conducted over a 9‐yr period in southwestern Saskatchewan to determine the influences of snow trapping and N fertilizer management, on efficiencies of N uptake and of N utilization for annually grown spring wheat (Triticum aestivum L.). We assessed the effects of rates (0–100 kg/ha), placement (deep banding, broadcast), and time of application of N (fall, spring). Multiple regression, was used to relate the N in grain, straw, and plant (above‐ground), the efficiencies of N uptake and N utilization, and N harvest index (NHI) to water use by the crop (WU), soil nitrate‐N (NO3‐N) in 0–60 cm depth measured in fall (SN), rate of fertilizer N(FN), and years of study (Yr). The relationships for N in grain and plant were highly significant (R2 = 0.85***); those for straw N (R2 = 0.68 ***) and N utilization efficiency (R2 = 0.60***) were significant but less precise, while that for NHI (R2 = 0.40***) had poor precision. Plant N was greater for springthan for fall‐applied N, and for deep‐banded than for broadcast‐N. Nitrogen utilization efficiency ranged between 20–42 kg grain/kg plant N, was inversely related to FN, and lower for spring‐applied than fall‐ applied N, but placement had little effect. Available water and FN had greater influence on characteristics studied than placement or timing of N application. Uptake efficiency of N increased with SN but decreased with FN, probably indicating more efficient uptake of SN in this zero‐tillage continuous wheat study. The relationships developed should be useful to modellers for estimating the characteristics studied, on medium‐textured, aridic and typic borolls.  相似文献   

18.
To determine the effects of defoliation on microbial community structure, rhizosphere soil samples were taken pre-, and post-defoliation from the root tip and mature root regions of Trifolium repens L. and Lolium perenne L. Microbial DNA isolated from samples was used to generate polymerase chain reaction–denaturing gradient gel electrophoresis molecular profiles of bacterial and fungal communities. Bacterial plate counts were also obtained. Neither plant species nor defoliation affected the bacterial and fungal community structures in both the root tip and mature root regions, but there were significant differences in the bacterial and fungal community profiles between the two root regions for each plant. Prior to defoliation, there was no difference between plants for bacterial plate counts of soils from the root tip regions; however, counts were greater in the mature root region of L. perenne than T. repens. Bacterial plate counts for T. repens were higher in the root tip than the mature root region. After defoliation, there was no effect of plant type, position along the root or defoliation status on bacterial plate counts, although there were significant increases in bacterial plate counts with time. The results indicate that a general effect existed during maturation in the root regions of each plant, which had a greater impact on microbial community structure than either plant type or the effect of defoliation. In addition there were no generic consequences with regard to microbial populations in the rhizosphere as a response to plant defoliation.  相似文献   

19.
An experiment was conducted to determine if salinity stress alters the response and tolerance of soybean to defoliation. Four soybean [Glycine max(L.) Merr.] cultivars (‘Tachiutaka,’ ‘Tousan 69,’ ‘Dare’ and ‘Enrei’) in a growth chamber were exposed to two salinity treatments (0 and 40 mM NaCl) and two defoliation treatments (with and without defoliation). The interactive effects of salinity stress and defoliation on growth rate, leaf expansion, photosynthetic gas exchange, and sodium (Na+) accumulation were determined. The decrease in growth rate resulting from defoliation was more pronounced in plants grown under salinity stress than in those grown without the stress. Without salinity stress, defoliated plants of all four cultivars had leaf-expansion similar rates to those of the undefoliated ones, but the photosynthetic rates of their remaining leaves were higher than those of undefoliated plants. However, with salinity stress, defoliated ‘Tachiutaka’ and ‘Tousa 69’ had lower leaf expansion and photosynthetic rates than undefoliated plants. For cultivars ‘Dare’ and ‘Enrei,’ the defoliated plants had leaf-expansion rates similar to undefoliated ones, but the photosynthetic rate of the remaining leaves did not increase. Except for cultivar ‘Dare,’ defoliated plants grown under salinity stress had higher Na+ accumulation in leaves than undefoliated ones, and this result may be related to slow leaf expansion and photosynthesis. Salinity stress negatively affects soybean response and tolerance of defoliation, and the effects varied according to the salt tolerance of the cultivar.  相似文献   

20.
Elevated CO2 and defoliation effects on nitrogen (N) cycling in rangeland soils remain poorly understood. Here we tested whether effects of elevated CO2 (720 μl L−1) and defoliation (clipping to 2.5 cm height) on N cycling depended on soil N availability (addition of 1 vs. 11 g N m−2) in intact mesocosms extracted from a semiarid grassland. Mesocosms were kept inside growth chambers for one growing season, and the experiment was repeated the next year. We added 15N (1 g m−2) to all mesocosms at the start of the growing season. We measured total N and 15N in plant, soil inorganic, microbial and soil organic pools at different times of the growing season. We combined the plant, soil inorganic, and microbial N pools into one pool (PIM-N pool) to separate biotic + inorganic from abiotic N residing in soil organic matter (SOM). With the 15N measurements we were then able to calculate transfer rates of N from the active PIM-N pool into SOM (soil N immobilization) and vice versa (soil N mobilization) throughout the growing season. We observed significant interactive effects of elevated CO2 with N addition and defoliation with N addition on soil N mobilization and immobilization. However, no interactive effects were observed for net transfer rates. Net N transfer from the PIM-N pool into SOM increased under elevated CO2, but was unaffected by defoliation. Elevated CO2 and defoliation effects on the net transfer of N into SOM may not depend on soil N availability in semiarid grasslands, but may depend on the balance of root litter production affecting soil N immobilization and root exudation affecting soil N mobilization. We observed no interactive effects of elevated CO2 with defoliation. We conclude that elevated CO2, but not defoliation, may limit plant productivity in the long-term through increased soil N immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号