首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Soils of the peach growing region of the Southeastern Coastal Plain are highly leached and excessively acid, with inherently low concentrations of subsoil magnesium (Mg). A greenhouse experiment was conducted to determine the effects of varying Mg concentrations at low pH on growth and Mg uptake of three peach seedling cultivars commonly used as rootstock in the region. Seedlings of ‘Lovell’, ‘Elberta’, [Prunus persica (L.) Batsch] and ‘Nemaguard’ [Prunus persica (L.) Batsch X Prunus davidiana Carriere] were grown for 36 days in nutrient solution containing 9, 21, 42, 84, 167, 333, and 667 μM Mg. Magnesium concentration in solution did not increase lateral length, number of laterals, trunk cross‐sectional area, or root volume. All terminal growth responses were cultivar related. Magnesium concentration in the leaves, stems, and roots were increased either by quadratic or cubic relationship with solution Mg concentration while Mg uptake rate was increased linearly with solution Mg concentration with all three seedling cultivar. Uptake rates of calcium, manganese, and zinc, and tissue concentrations of phosphorus, manganese, and zinc decreased with increasing Mg concentrations in nutrient solution. Predicted Mg uptake rates by‐regression analysis revealed a cubic uptake isotherm for Nemaguard and a quadratic isotherm for Elberta. Predicted tissue Mg concentration followed similar patterns of accumulation for leaves and stems, but root Mg concentration followed a cubic uptake isotherm for all three seedlings. The linear Mg uptake at low pH may be an important physiological characteristic that enables Lovell seedlings to outperform either Elberta or Nemaguard when used as a rootstock in the southeastern soils.  相似文献   

2.
Mineral element deficiencies and toxicities are common problems associated with sorghum [Sorghum bicolor (L.) Moench] production on acid soils. To better understand some of the mineral element problems and the analysis of plant tissue of sorghum plants grown on acid soils, four sorghum genotypes were grown on an acid Oxisol at Carimagua, Colombia limed with dolomite at 2 and 6 Mg ha‐1.

Samples for mineral element analyses were obtained from leaves at different positions on the four genotypes. Concentrations of P and Mg were highest in the flag leaf (Leaf No. 1) and decreased as the position on the plant declined from the top of the plant for plants grown at 2 Mg lime ha‐1. Similar decreases in P, Mg, K, and Zn concentrations occurred in plants grown with 6 Mg lime ha‐1. Concentrations of Ca, S, Si, Mn, Fe, Cu, and Al increased as leaf position declined from the flag leaf for plants grown at 2 and 6 Mg lime ha‐1. The higher lime supply enhanced Ca and reduced Mn and Fe concentrations in leaves. Differences in mineral element concentrations for the four genotypes used were fairly extensive. The elements to show the greatest range among genotypes were Al and Si and the elements to show the least range among genotypes were P, K, and S. Care should be used in collecting leaf samples for plant analysis and genotypic differences for accumulation of mineral elements should be considered in interpretation of results.  相似文献   

3.
Internal breakdown in mango fruit is a disorder often attributed to a nutrient deficiency, particularly of calcium (Ca), in the fruit. The relationship between internal breakdown in mango fruit and fruit mineral element concentrations and fresh weight was investigated. Fruit were collected weekly from a commercial orchard beginning 4 weeks after fruit set (WAFS) until the fruit were ripe. The concentrations of nitrogen (N), phosphorus (P), potassium (K), Ca, magnesium (Mg), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), and boron (B) and fresh weight of ‘Tommy Atkins’ mango fruit with and without internal breakdown were compared. Disordered fruit weighed more than healthy fruit 4 WAFS. However, when fruit were ripe there were no significant differences in fruit weight between healthy and disordered fruit. Disordered fruit contained significantly higher concentrations of N, P, Ca, and B than the healthy mango fruit, 4 WAFS. When fruit were ripe, there were no differences in N, K, Ca, Mg, Zn, Mn, Fe, and B concentrations between healthy and disordered fruit. Ripe, healthy fruit had higher Cu and lower P concentrations than ripe, disordered fruit. Internal breakdown could not be specifically linked to a Ca deficiency in mango fruit at any stage of fruit ontogeny.  相似文献   

4.
Plant mineral nutrient element status is an important factor influencing cotton (Gossypium hirsutum L.) growth, development, metabolism, and yield. A field study was conducted to determine changes in mineral nutrient element concentrations in leaves, bracts, and floral buds of field‐grown cotton plants during development of squares (floral bud with three bracts) as affected by fruiting position within the plant canopy. During square ontogeny, the nitrogen (N), phosphorous (P) and potassium (K) concentrations of sympodial leaves and floral bracts decreased, whereas the calcium (Ca) and magnesium (Mg) increased, and sulfur (S) concentration exhibited little change (leaves) or increased (bracts) with increasing square age. The N, P, Ca, and S concentrations in floral buds declined synchronously; K and Mg concentrations showed an increasing trend within the first 20 days, peaked at about 25‐day square age, and then sharply decreased three to five days before flowering. During square development, the effect of main‐stem node (MSN) and sympodial branch fruiting position in the plant canopy on mineral nutrient element concentrations of bracts was greater than on those of floral buds. Differences in the mineral nutrient element concentrations existed among the sympodial leaves, bracts, and floral buds. This study provides the patterns of mineral nutrient element concentrations in these plant tissues during the square development phase in relation to MSNs and branch fruiting positions in the cotton plant canopy.  相似文献   

5.
Abstract

Sorghum [Sorghum bicolor (L.) Moench] seedlings were grown in nutrient solutions in a growth chamber to investigate the effects of different ratios of NO3 and NH4 + on nutrient solution pH, dry matter yield, and N uptake. Nutrient solutions and plant tissues were assayed throughout the time plants grew in the nutrient solutions.

Nutrient solution pH depended on source of N. The pH rose to near 8 with NO3 as the sole source of N and decreased to near or below 4 with NH4 + added to the solutions. Upon depletion of NH4 + from solution, pH values rose abruptly to near 8 and remained near this value throughout the duration of the experiments. Dry matter yield was generally higher for plants grown with some NH4 + compared to plants grown with NO3 alone. Nitrogen uptake was generally higher in plants grown with the higher proportions of NH4 +. Nitrogen concentrations remained unchanged with plant age as NO3 / NH4 + ratio varied. For solutions low in NH4 +, N concentrations in roots increased with plant age. Severe Fe deficiency appeared in plants when solution pH reached and remained above 7.  相似文献   

6.
In an open woodland in Portugal, the nature of interactions between Quercus ilex trees and herbaceous plants was assessed during 2 years by studying how manipulation of incident solar radiation, water and nutrient supply affect the herbaceous biomass and N, K, P, Ca, Mg, and Mn concentrations. Measurements were carried out in three environments consisting of (1) open grassland, (2) beneath the tree canopy, and (3) under artificial shade. Each of these environments was subjected to two regimes of fertilization and two water levels in a factorial design. The fertilizer treatment consisted of application of no fertilizer or a combination of 200 kg calcium ammonium nitrate ha–1 (26% N) and 350 kg superphosphate ha–1 (8% P), while the water‐supply treatment consisted of either no irrigation or irrigation fortnightly from February 1 to April 30. Grasses showed significantly lower nutrient concentrations than forbs. However, nutrient concentrations of the whole herbaceous community were within the recommended ranges for cattle nutrition. A negative effect of shade on herbaceous biomass production was observed. The effect of watering on herbaceous biomass was less prominent than the effect of fertilization, irrespective of the environment, suggesting that Q. ilex does not compete for soil‐water resources with herbaceous biomass in this ecosystem. Fertilization increased total biomass by 106%, 49%, and 97% in the open grassland, beneath the tree canopy, and under artificial shade, respectively. During the first and second year, fertilization increased herbaceous P concentrations by 24% and 83%, respectively, if compared with concentrations obtained at the unfertilized plots. Higher K and Mg concentrations were observed in herbaceous plants beneath the tree canopy than in the open areas, indicating a positive effect of trees on pasture quality. The positive and negative effects of trees on understory forage are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号