首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of sesame (Sesamum indicum L.) was studied at three root temperature regimes (25/25, 20/10 and 15/15°C day/night) factorially combined with three NO3 : NH4 + ratios (mM ratios, 10:0, 8:2, or 6:4), as a source of nitrogen (N), in the irrigation solution. The air temperature was kept constant at 30°C. Transpiration, nutrient composition, and level of root‐born cytokinins and gibberellins in the xylem exudate were monitored. The two low root temperature regimes, 15/15 and 20/10°C, restricted the growth of sesame, reduced transpiration and increased the accumulation of soluble carbohydrates in the shoot and in the roots compared to the 25/25°C regime. The NO3:NH4 + ratios had no effect on growth. Nutrient contents in the shoot at low root temperatures, particularly K+, NO3 , and H2PO4 were decreased markedly, but Na+ increased relative to it's content in the 25/25°C regime. Increasing NH4 + proportion in the irrigation solution raised total N concentration in the plant tissues at all root temperatures. The amounts of cytokinins and gibberellins in the xylem exudate decreased at the low root temperature regimes relative to the 25/25°C regime. Low root temperature reduced xylem transport of nutrients and root born‐phytohormones, most probably because of reduced water flow through the plant relative to the 25/25°C regime.  相似文献   

2.
Tomato (Lycopersicon esculuntum Mill.) grown in open fields in dry land areas or in non‐controlled greenhouses are subjected to substantial daily changes in root temperature. In the field, root‐zone temperatures fluctuate both diurnally and during the growing season. The purpose of this study was to monitor root‐zone temperature effects on tomato initial growth, transpiration, sap flow rate, leaf and air temperatures differences, nitrate accumulation, total nitrogen, and soluble carbohydrates in the shoot and roots as well as levels of endogenous cytokinins and gibberellins in xylem exudate. Tomato seedlings were grown in three growth cabinets with variable control of root temperatures. Three day/night root temperature regimes (12/12, 16/8 and 20/20°C) were employed. Low day root temperatures of 12 and 16°C reduced shoot dry weight by 47 and 26%, root dry weight by 36 and 14%, shoot nitrate by 79 and 50%, root nitrate by 49 and 16%, levels of cytokinins in root xylem exudate by 27 and 13% and gibberellins by 65 and 23%, in relation to the respective values of 20°C day root temperature. Soluble carbohydrates in the shoot and roots were increased significantly (18 and 111%) by 12°C root temperature. The main effects of low root temperatures on shoot growth stem from slow upward transport of plant hormones and nitrate rather than reduction in their rate of biosynthesis or entry to the root, respectively.  相似文献   

3.
Abstract

Pansy (Viola xwittrockiana Gams.) producers often observe nutrient disorders among plants grown during warm periods (>18°C) of the growing season. These disorders typically are not seen when production temperatures are optimal (≥18°C) even though fertility regimes may remain the same. Our objectives were to assess the effects of temperature and nitrogen (N) fertility on growth and nutrition of pansy. Pansies cultivar ‘Crown White’ were grown until lateral branches had open flowers. Treatments consisted of two temperatures (12 and 22°C) and three NO3 ?:NH4 + molar % ratios (100:0, 62:38, and 25:75) with a total concentration of 100 mg N L?1. A modified Hoagland's solution was used with NO3 ?‐N supplied as Ca(NO3)2 and KNO3 and with NH4 +‐N as (NH4)2SO4. Cumulative nutrient absorption and foliar nutrient content were determined when plant lateral branches flowered. Root and shoot growth were limited when NH4 + was present in solutions at high ambient air temperature (22°C), but not at low temperature (12°C). Individual absorption and accumulation of plant nutrients varied with N regimes and temperatures. Overall, pansies absorbed more total N, NH4 +, NO3 ?, calcium (Ca), potassium (K), magnesium (Mg), phosphorus (P), zinc (Zn), and less iron (Fe) and manganese (Mn) at 12°C than at 22°C. In addition, absorption of NO3 ? by pansy was negligible if any NH4 + was present in solutions at 22°C. Results suggest that pansy growers should adjust fertility programs according to production temperatures to avoid possible nutritional disorders and maximize plant growth. If maximum growth is to be obtained in warm temperatures, the use of NH4 +‐containing fertilizers should be reduced or eliminated. However, the choice of NO3 ?:NH4 + ratio for nutrition may be less important under cool growing conditions.  相似文献   

4.
Nutrient uptake by snapdragon (Antirrhinum majus L. ‘Peoria') was compared at five root‐zone temperatures: 8, 15, 22, 29, and 36°C. Uptake of nitrate (NO3 ‐N), ammonium (NH4 +‐N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), boron (B), iron (Fe), manganese (Mn), and zinc (Zn) responded quadratically to increasing root‐zone temperature. Greatest nutrient uptake temperature varied with nutrient but ranged from 15 to 29°C. Uptake of copper (Cu) and molybdenum (Mo) were unaffected by root‐zone temperature. Dry weight gain and stem length also responded quadratically to increasing root‐zone temperature. Optimal temperatures for nutrient uptake and growth were similar, averaging 22°C. These results indicate increasing or maintaining root‐zone temperatures near 22°C maximizes growth and nutrient uptake of snapdragons.  相似文献   

5.
Solution pH, temperature, nitrate (NO3 )/yammonium (NH4 +) ratios, and inhibitors effects on the NO3 and NH4 + uptake rates of coffee (Coffea arabica L.) roots were investigated in short‐term solution culture. At intermediate pH values (4.25 to 5.75) typical of coffee soils, NH4 + and NO3 uptake rates were similar and nearly independent of pH. Nitrate uptake varied more with temperature than did ammonium. Nitrate uptake increased from 0.05 to 1.01 μmol g‐1 FWh‐1 between 4 and 16°C, and increased three‐fold between 16 to 22°C. Between 4 to 22°C, NH4 + uptake rate increased more gradually from 1.00 to 3.25 μmol g‐1 FW h‐1. In the 22–40°C temperature range, NH4 + and NO3 uptake rates were similar (averaging 3.65 and 3.56 umol g‐1 FW h‐1, respectively). At concentrations ranging from 0.5 to 3 mM, NO3 did not influence NH4 + uptake rate. However, NO3 uptake was significantly reduced when NH4 + was present at 3 mM concentration. Most importantly, total uptake (NO3 +NH4 +) at any NO3 /NH4 + ratio was higher than that of plants fed solely with either NH4 + or NO4 . Anaerobic conditions reduced NO3 and NH4 + uptake rate by 50 and 30%, respectively, whereas dinitrophenol almost completely inhibited both NH4 + and NO3 uptake. These results suggest that Arabica coffee is well adapted to acidic soil conditions and can utilize the seasonally prevalent forms of inorganic N. These observations can help optimizing coffee N nutrition by recommending cultural practices maintaining roots in the temperature range optimum for both NH4 + and NO3 uptake, and by advising N fertilization resulting in a balanced soil inorganic N availability.  相似文献   

6.
This study was designed to determine and compare root growth and nutritional responses of creeping bentgrass cultivars that differ in heat tolerance to differential, supraoptimal, shoot and root temperatures. Shoots and roots of ‘Penncross’ (heat sensitive) and ‘L‐93’ (heat tolerant) were exposed to four air/soil temperature regimes (20/20°C‐control, 20/35°C, 35/20°C, and 35/35°C) in water baths and growth chambers. Exposing roots to supraoptimal root temperature (35°C) while maintaining shoots at normal temperature (20°C) or particularly at 35°C reduced root fresh weight, root number, and contents of nitrogen (N), phosphorus (P), and potassium (K) in shoots and roots and accelerated root death for both cultivars. High root temperature had greater detrimental effects on root growth and nutrient element accumulation than high shoot temperature for both cultivars. A low root temperature at supraoptimal shoot temperature improved root growth, reduced root mortality; and increased N, P, and K contents in shoots and roots. Among the three nutrient elements, K was the most sensitive to changes in root temperature. L‐93 generally maintained higher fresh weight and number of roots and higher N, P, and K contents in shoots and roots, particularly K in roots, under high root (20/35°C) or shoot/root (35/35°C) temperatures. The results indicated that root growth and nutrient element accumulation, particularly of K, played an important role in creeping bentgrass tolerance to heat stress imposed on shoots by high air temperature or to roots by high soil temperatures. The enhanced root growth and nutrient element relations with a low root temperature at supraoptimal ambient temperatures could lead to the improved shoot growth in cool‐season grasses observed under these conditions.  相似文献   

7.
Information about the mineralization rate of compost at various temperatures is a precondition to optimize mineral N fertilization and to minimize N losses in compost‐amended soils. Objectives were to quantify the influence of the temperature on the mineralization rate and leaching of dissolved organic carbon (DOC) and nitrogen (DON), NO3, and NH4+ from a fresh (C : N = 15.4) and a mature (C : N = 9.2) organic household waste compost. Compost samples were mixed with quartz sand to ensure aerobic conditions, incubated at 5, 10, 15, 20, and 25°C and irrigated weekly for 112 days. For the fresh compost, cumulative CO2 evolution after 112 days ranged from 36% of the initial C content at 5°C to 54% at 25°C. The CO2 evolution was only small in the experiments with mature compost (1 to 6% of the initial C content). The data were described satisfactorily by a combined first‐order (fresh compost) or a first‐order kinetic model (mature compost). For the fresh compost, cumulative DOC production was negatively related to the temperature, probably due to leaching of some of the partly metabolized easily degradable fractions at lower temperatures. The production ratios of DOC : CO2‐C decreased with increasing temperature from 0.094 at 5°C to 0.038 at 25°C for the fresh and from 1.55 at 5°C to 0.26 at 25°C for the mature compost. In the experiments with fresh compost, net release of NO3 occurred after a time lag which depended on the temperature. Cumulative net release of NO3 after 112 days ranged from 1.8% of the initial N content at 5°C to 14.3% at 25°C. Approximately 10% of the initial N content of the mature compost was released as NO3 after 14 days at all temperatures. The DOC : DON ratios in the experiments using fresh compost ranged from 11.5 to 15.7 and no temperature dependency was observed. For the mature compost, DOC : DON ratios were slightly smaller (7.4 to 8.9). The DON : (NH4+ + NO3) ratio decreased with increasing temperature from 0.91 at 5°C to 0.19 at 25°C for the fresh compost and from 0.21 at 5°C to 0.12 at 25°C for the mature compost. The results of the dynamics of C and N mineralization of fresh and mature compost can be used to assess the appropriate application (timing and amount) of compost to soils.  相似文献   

8.
Abstract

This research was conducted with Biscayne marl soil and Krome gravelly loam from Florida and Quincy fine sand and Warden silt loam from Washington to determine ammonia (NH3) volatilization at various temperature and soil water regimes. Potassium nitrate (KNO3), ammonium nitrate (NH4NO3), ammonium sulfate [(NH4)2SO4], or urea were applied to the soil at a rate of 75 kg N ha?1. Soil water regime was maintained at either 20% or 80% of field capacity (FC) and incubated at 11, 20, or 29°C, which represented the minimum, average, and maximum temperatures, respectively, during the potato growing season in Washington. Results indicated that the ammonia volatilization rate at 20% FC soil water regime was two‐ to three‐fold greater than that at 80% FC. The cumulative volatilization loss over 28 days was up to 25.7%. Results of this study demonstrated that ammonia volatilization was accelerated at low soil water regimes.  相似文献   

9.
《Journal of plant nutrition》2013,36(12):1975-1985
Production temperatures can affect the marketability of pansies (Viola × wittrockiana Gams.) by influencing plant growth, the presence of nutrient disorders, and the rate of floral development. The choice of nitrogen (N) form in fertility can also influence pansy growth and nutrition, but the effect of fertility on pansy flowering is not clear. Whether or not temperature and N fertility work together to influence nutrient absorption at different stages of the pansy life cycle is unknown. Our objectives were to determine the influence of temperature and N form on pansy floral development, and to identify the peak nutrient demand periods at different temperatures and ratios of NO3 ? to NH4 + in fertility. Pansies cv. ‘Crown White’ were grown in nutrient solution cultures until lateral branches had open flowers. Treatments consisted of two temperatures (12°C and 22°C) and three stages of floral development (five true leaf stage until visible bud, visible bud until first flower, first flower until flowering on lateral branches), and three NO3 ? :NH4 + molar % ratios (100:0, 62:38, 25:75) with a total concentration of 100 mg N L?1. A modified Hoagland's solution was used with NO3 ??N supplied as Ca(NO3)2 and KNO3 and with NH4 +?N as (NH4)2SO4. The effects of temperature and N form on the time required for development of different floral stages were assessed. In addition, the influence temperature and N form on nutrient absorption was determined for three pre‐determined stages of floral development to identify peak nutrient demand periods. The timing of flower bud development and first flower was not influenced by treatments. At 22°C, pansies flowered earlier on lateral branches than at 12°C, but these plants also suffered a loss in quality due to unfavorable growth characteristics and the development of nutritional disorders. Individual absorption of plant nutrients at different stages of development varied with temperature and N regime. Overall, pansies absorbed the greatest quantity of magnesium (Mg) before flower bud development, calcium (Ca) after flower bud development, and NH4 +, NO3 ? phosphorus (P), and potassium (K) after anthesis. In addition, pansies absorbed more NO3 ?, Ca, Mg, and P at 12°C than at 22°C. At times, the absorption of NO3 ? was dramatically decreased with increasing NH4 + in solutions. Results suggest that nutrient absorption by pansy in different stages of development is influenced by production temperatures and the choice of N form in fertilization. Adjusting fertility programs according to peak demand periods and production temperatures will help prevent periodic nutrient disorders during the life cycle, and may reduce fertilization costs.  相似文献   

10.
Abstract

Seedlings of four maize hybrids were grown hydroponically to investigate the impact of different N sources (Ca(NO3)2, (NH4)2SO4 and a 1:1 mixture of both) on (i) production and partitioning of root and shoot dry matter, (ii) concentration of soluble carbohydrates in roots and shoots and their partitioning to these plant parts, (iii) concentration of starch in the shoot, and (iv) N uptake. During the main phase of the experiments (duration 14d), the plants were grown in a greenhouse at 25/22°C day/night temperatures and a photoperiod of 16h. Nitrogen was supplied at three concentrations (2.8, 28, and 280 ppm). The root‐zone pH was 6.5. Under the lowest N supply, the N sources produced similar root and shoot dry matters. At the highest N level (280 ppm), NO3‐fed plants were superior. In contrast, the mixture of NH4 and NO3 ? was optimum at 28 ppm. More or less pronounced N form by N concentration interactions were also found in the concentration and distribution of soluble carbohydrates and in all remaing traits. There were almost statistically significant cultivar by N form interactions in shoot dry matter (P = 0.07) and total dry matter (P = 0.06), indicating the existence of considerable genotypic variation in sensivity to NH4‐N.  相似文献   

11.
Abstract

Simple microdiffusion methods are described for determination of NH4 +, NO3 , and NO2 in soil extracts. These methods involve diffusion of NH3 in a 473‐mL (1‐pint) wide‐mouth Mason jar, the diffused NH3‐N being collected in 3 mL of boric acid‐indicator solution in a 60 mm (dia.) Petri dish suspended from the Mason jar lid, for quantitative determination by titrimetry (0.0025 M H2SO4). Magnesium oxide is used to liberate NH4 +; Devarda's alloy is used to reduce NO3‐ and NO2 to NH4 +; and sulfamic acid is used to eliminate NO2 . Depending upon the volume of soil extract (10–50 mL), diffusion at room temperature (a20°C) was complete in 18–72 h with orbital shaking, and in 24–86 h without shaking. The methods gave quantitative recovery of NH4 +, NO3 , and NO2 added to soil extracts. A potential source of interference in the methods involving use of Devarda's alloy is the liberation of NH4 +‐N from alkali‐labile organic‐N compounds.  相似文献   

12.
Maize (Zea mays L. cv. Anjou 256) seedlings were grown hydroponically for 10 d in a split‐root system (3mM N; pH 5.5) under either a homogeneous supply (HS) or a simultaneous, but spatially separated supply (SS) of NH4 + andNO3 . Treatments comprised three NH4 +:NO3 ratios (1:4, 1:1, 4:1). Shoot dry matter and various root traits (dry matter, number of laterals, length of main axes, total root length and total root surface area) were determined. For all NH4 +:NO3 ratios, shoot dry matter, root dry matter, total root length, and root surface area, were greater under HS than under SS. Under both SS and HS, increasing NH4 +:NO3 ratios resulted in decreased shoot and root dry matter production, but did not alter the shoot:root dry matter ratio. Under SS, root dry matter, root length, and root surface area was greater on the NO3 ‐fertilized side than on the NH4 + ‐fertilized side. The allocation of root dry matter, root length, and root surface area to the NH4 + or NO3 compartments was unaffected by changes in the NH4 +:NO3 ratio. Enhanced NH4 + nutrition has detrimental effects on top growth, but roots are apparently unable to avoid excessive NH4 + uptake by proliferating in zones where NO3 is the only form of N.  相似文献   

13.
Abstract

In order to evaluate the influence of extraction procedure on extractable nitrogen (N) fractions, fresh as well as dried soil samples were extracted with CaCl2 at various temperatures (20,40,60, 80°C) for 30–120 minutes. Data obtained were compared with those from the electro‐ultra‐filtration (EUF) method. Increasing the drying temperature as well as the extraction temperature led to an increase in Norg content. The EUF and CaCl2‐method produced comparable results for all N‐fractions (NO3 , NH4 +, Norg) when an extraction temperature of 80°C was applied for two hours. Data presented suggested that the Norg fraction represented mainly the microbial biomass and may thus be considered as being easily available to plants.  相似文献   

14.
Enhanced NH4 nutrition causes thicker roots (higher g/m root length) than NO3 nutrition. This study examined the underlying anatomy of N‐form altered root morphology. Corn (B73xLH51) was cultured in complete nutrient solutions containing NO3‐ or NH4‐N. Plants were harvested four times between 13 and 20 days after germination. Root lengths were measured and photomicrographs taken of primary and nodal root cross‐sections. Plants grew better under the NH4 regime. This was probably due to controlling acidity in the pH 6.0 to 6.5 range using 2.0 mM MES. The primary root system was 16% thicker under NH4‐N. No difference due to N form in the cross‐sectional area of the primary axis base was detected, suggesting that NH4‐N caused thicker laterals. Cross sectional areas of the first tier nodal roots were 27%‐ and 2nd tier roots 10.5%‐ greater under NH4‐N. Changes in the stelar and cortical regions were proportional in 1st tier nodal roots, but the cortex accounted for most of the NH4‐induced thickening in 2nd tier nodal roots. The number of late metaxylem elements was not affected by N form. Possible implications of these morphological and anatomical differences are discussed.  相似文献   

15.
We evaluated the differences in the use of a quartz filter and a polytetrafluoroethylene (PTFE) filter as a first (F0)-stage filter in a four-stage filter-pack method. A four-stage filter-pack method can completely collect sulfur species (SO2 and SO 4 2? ), nitrate species (HNO3 and NO 3 ? ), and ammonium species (NH3 and NH 4 + ) with little or no leakage irrespectively of the first-stage filter used. On the other hand, a seasonal variation was observed in the efficiency of collection between the quartz filter and the PTFE filter depending on the material to be collected. There was no seasonal variation in the efficiency of collection in sulfur species; in contrast, a clear seasonal variation was observed for the nitrate and ammonium species. As for NO 3 ? , the PTFE filter was more vulnerable than the quartz filter at air temperatures below 21°C, while the quartz filter was more vulnerable than the PTFE filter at air temperatures exceeding 21°C. A similar vulnerability for air temperature was observed for NH 4 + , although the threshold air temperature was 23°C for NH 4 + . Consequently, the evaporation loss of NO 3 ? would be mainly attributable to the volatilization of NH4NO3, although it is also partially due to the volatilization of NH4Cl.  相似文献   

16.
Emissions of nitrous oxide (N2O), a potent greenhouse gas, from agricultural soil have been recognized to be affected by nitrogen (N) application and temperature. Most of the previous studies were carried out to determine effects of temperature on N2O emissions at a fixed N application rate or those of N application rates at a specific temperature. Knowledge about the effects of different ammonium (NH4+) application rates and temperatures on N2O emissions from tropical agricultural soil and their interactions is limited. Five grams of air-dried sandy loam soil, collected in Central Vietnam, were adjusted to 0, 400, 800 and 1200 mg NH4-N kg–1 soil (abbreviated as 0 N, 400 N, 800 N and 1200 N, respectively) at 60% water holding capacity were aerobically incubated at 20°C, 25°C, 30°C or 35°C for 28 days. Mineral N contents and N2O emission rates were determined on days 1, 3, 5, 7, 14, 21 and 28. Cumulative N2O emissions for 28 days increased with increasing NH4+ application rates from 0 to 800 mg N kg–1 and then declined to 1200 mg N kg–1. Cumulative N2O emissions increased in the order of 35°C, 20°C, 30°C and 25°C. This lowest emission at 35°C occurred because N2O production was derived only from autotrophic nitrification while other N2O production processes, e.g., nitrifier denitrification and coupled nitrification-denitrification occurred at lower temperatures. More specifically, cumulative N2O emissions peaked at 800 N and 25°C, and the lowest emissions occurred at 1200 N and 35°C. In conclusion, N2O emissions were not exponentially correlated with NH4+ application rates or temperatures. Higher NH4+ application rates at higher temperatures suppressed N2O emissions.  相似文献   

17.
Root development responds not only to the quantity of inorganic nitrogen in the rhizosphere, but to its form, NH4+ or NO3?. Root growth of tomato showed a hyperbolic response to soil levels of inorganic nitrogen: very few roots were found in soil blocks depleted in inorganic nitrogen, roots proliferated as soils increased to 2 μg NH4+-N g?1 soil or 6 μg NO3?-N g?1 soil, and root growth declined in soils with the higher levels of inorganic nitrogen. High NH4+ concentrations inhibited root growth, but low concentrations promoted the development of an extensive, fine root system. Supply with NO3? as the sole nitrogen source led to a more compact root system. These differences in root morphology under NH4+ and NO3? nutrition may be mediated through pH. Rice and maize roots absorbed NH4+ most rapidly right at the apex and appeared to assimilate this NH4+ in the zone of elongation. During NH4+ assimilation, root cells must release protons, and the resulting acidification around the walls of cells in this region should stimulate root extension. By contrast, NO3? absorption reached a maximum in the maturation zone of rice and maize roots, and this NO3? was probably assimilated in more basal regions. Absorption of NO3? requires proton efflux, whereas NO3? assimilation requires proton influx. The net result under NO3? nutrition was only subtle shifts in rhizosphere pH that probably would not influence root elongation. The signal through which roots detect changes in rhizosphere NH4+ and NO3? levels is still obscure. It is proposed that a product of nitrogen metabolism such as nitric oxide serves as a signal.  相似文献   

18.
Abstract

Nitrogen‐form effect on nutrient uptake and the subsequent concentration of nutrients in turfgrass plant tissue has not been thoroughly investigated. This study evaluated the effects of clipping regime and N‐form on the tissue concentration of macronutrients and micronutrients and macronutrient uptake in ‘Penncross’ creeping bentgrass (Agrostis palustris Huds.). Turfgrass plugs were grown under greenhouse conditions in a modified Hoagland's solution with a combination of three nutrient solutions (100% NO3 ?, 100% NH4 +, and 50:50 ratio of NH4 +:NO3 ?) and two cutting regimes (cut and uncut). Concentrations of macronutrients and micronutrients were determined for shoot, root and verdure. Nutrient uptake was determined weekly. Uncut NO3 ?‐treated plants accumulated higher concentrations of K, Ca, Mg, B and Cu in the shoot tissue; P, K, Ca, Mg, B, Cu, Mn and Zn in the root tissue; and P, Ca, Mg, B, Fe and Mn in the verdure compared to uncut NN4 +‐treated plants. Nitrate uptake was greater with uncut NO3 ?‐treated plants than was NH4 + absorption with uncut NH4 +‐treated plants. Plants grown with the uncut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with the uncut NO3 ? and 50:50 treatments adsorbed higher amounts of P, K, and Ca compared to the NH4 + treatment. The cut NO3 ?‐treated plants accumulated higher concentrations of K in the shoot tissue; P, Ca, Mg, B, Cu, Fe and Mn in the root tissue; and B in the verdure than did the cut NH4 +‐treated plants. Cut NO3 ?‐treated plants adsorbed less NO3 ? than did cut NH4 +‐treated plants adsorbed NH4 +. The cut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with NO3 ? and 50:50 treatments, under both cutting regimes, resulted in higher concentrations of most macro‐ and micronutrients and greater nutrient uptake compared to the NH4 +‐treated plants.  相似文献   

19.
Abstract

Experiments were conducted using different NO3 /NH4 + ratios to determine the effects of these sources of N on mineral element uptake by sorghum [Sorghum bicolor (L.) Moench] plants grown in nutrient solution. The NO3 /NH4 + ratios in nutrient solution were 200/0, 195/5, 190/10, and 160/40 mg N L–1. Nutrient solutions were sampled daily and plants harvested every other day during the 12‐day treatment period.

Moderately severe Fe deficiencies were observed on leaves of plants grown with 200/0 NO3 /NH4 + solutions, but not on the leaves of plants grown with the other NO3 /NH4 + ratios. As plants aged, less Fe, Mn, and Cu were translocated from the roots to leaves and leaf/root ratios of these elements decreased dramatically in plants grown with 200/0 NO3 /NH4 + solutions. Extensive amounts of Fe, Mn, and Cu accumulated in or on the roots of plants grown with 200/0 NO3 /NH4 + solutions. Manganese and Cu may have interacted strongly with Fe to inhibit Fe translocation to leaves and to induce Fe deficiency. As the proportion of NH4 + in solution increased, K, Ca, Mg, Mn, and Zn concentrations decreased in the leaves, and Ca, Mg, Mn, and Cu concentrations decreased in roots. Potassium and Zn tended to increase in roots as NH4 + in solution increased.  相似文献   

20.
A laboratory study was initiated to investigate the effects of temperature (25, 30, 35, and 40 °C) and water quality on the loss of fertilizer nitrogen (N) through volatilization out of irrigation waters collected from 10 different Arizona sources. A 300‐mL volume of each water source was placed in 450‐mL beakers open to the atmosphere in a constant‐temperature water bath with 10 mg of analytical‐grade ammonium sulfate [(NH4)2SO4] dissolved into each sample. Small aliquots were drawn at specific time intervals over a 24‐h period and then analyzed for ammonium (NH4 +)‐N and nitrate (NO3 ?)‐N concentrations. Results showed potential losses from volatilization to be highly temperature dependent. Total losses (after 24 h) ranged from 30–48% at 25 °C to more than 90% at 40 °C. Volatilization loss of fertilizer N from irrigation waters was found to be significant and should be considered when making decisions regarding fertilizer N applications for crop production in Arizona particularly when using ammonia‐based fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号