首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that full sun‐grown Heliconia "Golden Torch”; leaves exhibited sustained decreased in PS II efficiency as compared to those grown under shade conditions. In this study, full sunlight plus low level of fertilization caused a further reduction of photosynthesis, chlorophyll content and Fv/Fm ratio while plants grown at high level of nutrient showed higher values of all these parameters. When plants grown under intermediate and deep shade, there was no significant difference in all parameters irrespective of nutrient supply. In the recovery experiments, plants without fertilizer were re‐fertilized weekly. Maximal photosynthetic rates, chlorophyll content, and Fv/Fm ratio increased gradually after re‐fertilizing the plants grown under full sunlight. However, no significant changes of these parameters were observed in plants grown under intermediate and deep shade over the same period. Total leaf nitrogen (N) was measured parallel with all the parameters. Photosynthetic rates, chlorophyll content, and Fv/Fm ratio showed a clear linear correlation with total leaf N in plants grown under full sunlight while there was no clear relationship observed in those plants grown under intermediate and deep shade. These results suggest that acclimation of Heliconia under full sunlight could be achieved by high level of nutrient fertilization.  相似文献   

2.
《Journal of plant nutrition》2013,36(10-11):1997-2007
Abstract

Two tomato (Lycopersicon esculentum Mill., cvs. Pakmor and Target) genotypes differing in resistance to iron (Fe) deficiency were grown in nutrient solution under controlled environmental conditions over 50 days to study the relationships between severity of leaf chlorosis, total concentration of Fe, and activities of Fe‐containing enzymes in leaves. The activities of Fe‐containing enzymes ascorbate peroxidase, catalase, and guaiacol peroxidase, and additionaly the activity of glutathione reductase, an enzyme that does not contain Fe, were measured. Plants were supplied with 2 × 10?7 M (Fe deficient) and 10?4 M (Fe sufficient) FeEDTA, respectively. Leaf chlorosis appeared more rapidly and severely in Target (Fe deficiency senstive genotype) than Pakmor (Fe deficiency resistant genotype). On day 50, Pakmor had 2‐fold more chlorophyll than Target under Fe deficiency, while at adequate supply of Fe the two genotypes were very similar in chlorophyll concentration. Despite distinct differences in development of leaf chlorosis and chlorophyll concentrations, Pakmor and Target were very similar in concentrations of total Fe under Fe deficiency. In contrast to Fe concentration, activities of Fe‐containing enzymes were closely related to the severity of leaf chlorosis. The Fe‐containing enzymes studied, especially catalase, showed a close relationship with the concentration of chlorophyll and thus differential sensitivity of tomato genotypes to Fe deficiency. Glutathione reductase did not show relationship between Fe deficiency chlorosis and enzyme activity. The results confirm that measurement of Fe‐containing enzymes in leaves is more reliable than the total concentration of Fe for characterization of Fe nutritional status of plants and for assessing genotypical differences in resistance to Fe deficiency. It appears that Fe deficiency‐resistant genotype contains more physiologically available Fe in tissues than the genotype with high sensitivity to Fe deficiency.  相似文献   

3.
Water convolvulus, Ipomea aquatica Forsk., was grown in nutrient solution with four concentrations of iron and four concentrations of potassium ranging from deficient to sufficient. All other nutrients were supplied in adequate quantities. When the iron supply was marginal, low potassium levels in the solution produced plants with interveinal chlorosis on the young leaves characteristic of iron deficiency. Potassium level had no effect on either total or active iron concentrations of the chlorotic leaf tissue. Foliar sprays of iron prevented the interveinal chlorosis at all potassium levels.  相似文献   

4.
《Journal of plant nutrition》2013,36(10):1609-1620
Orange (Citrus sinensis L. Osb. cv. ‘Newhall’) plants grafted on Citrange troyer rootstock were grown in nutrient solution with 0, 5, 10, or 20 μM iron (Fe), with and without calcium carbonate. Calcium carbonate was added in order to mimic the natural conditions in calcareous soils. Leaf chlorophyll concentration was estimated every 3–4 days using the portable instrument SPAD-502 meter. Chlorophyll fluorescence parameters, photosynthetic capacity estimated from oxygen evolution, leaf Fe concentrations, and root tip ferric chelate reductase activity were measured at the end of the experiment. Plants from the 0 and 5 μM Fe treatments showed leaf chlorosis and had decreased leaf chlorophyll concentrations. Leaves of plants grown in the absence of Fe in the solution had smaller rates of oxygen evolution both in the presence and absence of calcium carbonate, compared with plants grown in the presence of 10 μM Fe. In the absence of calcium carbonate the photosystem II efficiency, estimated from fluorescence parameters, was similar in all treatments. A slight decrease in photosystem II efficiency was observed in plants grown without Fe and in the presence of calcium carbonate. A 2.5-fold increase in root tip ferric chelate reductase activity over the control values was found only when plants were grown with low levels of Fe and in the presence of calcium carbonate.  相似文献   

5.
《Journal of plant nutrition》2013,36(10):1575-1588
The objective of this study was to examine the effect of different mode of titanium (Ti) fertilization on growth and nutrition by M.26 EMLA apple rootstock (Malus spp.) grown in three soils with diverse physical and chemical properties. Soils were taken from Warszawa, Grojec and Brzezna regions (fruit growing regions) of Poland. The experiment was carried out during 120 days in a greenhouse. The following treatments were applied: soil Ti fertilization at a rate of 2 and 4 mg Ti per plant and four- and eight-times Ti sprays at a rate of 0.5 mg Ti per plant in each spray. Titanium was applied as TiCl4. Plants unfertilized with Ti served as control. Titanium sprays increased levels of this element in leaf and stem tissues. Soil Ti applications had no effect on Ti concentrations in plant tissues except plants grown in Warszawa soil where root tissue had higher Ti status compared to those of control plants. Foliar Ti applications enhanced plant dry matter and levels of phosphorus (P), iron (Fe), manganese (Mn), and zinc (Zn) in leaf tissues only in Brzezna soil. Leaves of plants sprayed with Ti grown in Brzezna soil were greener and had higher concentrations of Fe2+ and chlorophyll than those of control plants. These results suggest that the primary reason for higher biomass in plants sprayed with Ti was higher leaf Fe2+ level, which enhanced chlorophyll synthesis and uptake of P, Fe, Mn, and Zn.  相似文献   

6.
Cotton (Gossypium hirsutum L.) plants grown under low pressure sodium lamps (LPS) developed chlorosis which was similar in appearance to iron‐stress induced chlorosis, while plants under cool white fluorescent lamps (CWF) at the same level of photosynthetically active radiation (PAR) developed normally. These illumination sources differ in spectral irradiance; CWF lamps emit ultra violet (UV), whereas LPS lamps do not. Ultraviolet radiation is capable of reducing Fe3+ to Fe2+ through a chlorotic leaf which may be important in establishing an active iron fraction in the leaf. Root reduction of Fe3+ to Fe2+ was lacking in Fe‐stressed cotton under LPS light, but was present under CWF light. Net photosynthesis, photosynthetic electron transport, and leaf chlorophyll content were lower under LPS than CWF light in most of the growing media studies (soil or solutions with nitrate‐ or ammonium‐nitrogen supplied). Chloroplast ultrastructure and leaf thickness were also altered by LPS irradiance. Electron microscopic studies with plants grown in nutrient solutions for 4 weeks suggested that chioroplastic granal disorganization was more directly associated with diminished iron supplies than with light source. However, plants grown in soil for 6 weeks under LPS light had granal disorganization similar to that found in iron‐stressed plants. These studies suggest an important role for UV radiation in influencing the activity of iron in plants.  相似文献   

7.
The influence of nitrogen nutrition and greenbug (Schizaphis graminum Rondani) infestation on growth, chlorophyll content, soluble amino acids, and soluble protein of barley plants (Hordeum vulgare L.) was studied in growth chamber experiments. Plants were grown for 21 days using complete or minus nitrogen nutrient solution. First leaves were then fitted with cages containing eight apterous adult greenbugs. After 7 days, the greenbugs were removed and the plants harvested. The plants given complete nutrient solution grew more rapidly than those given minus nitrogen. Plants grown with minus nitrogen had fewer greenbugs per plant but had much higher numbers of greenbugs per square centimeter of total plant leaf area than plants given complete nutrient solution. All leaves of infested plants grown with minus nitrogen had decreased dry weight, decreased chlorophyll, and increased soluble amino acids when compared with minus nitrogen uninfested plants. Infestation of first leaves of plants grown on complete nutrient solution increased soluble amino acids in all leaves. However, there was little change in the dry weight or chlorophyll level in leaves other than the first leaf. It is concluded that adequate nitrogen nutrition produces plants that can better withstand localized greenbug feeding damage than plants deficient in nitrogen.  相似文献   

8.
The development of iron deficiency symptoms (growth depression and yellowing of the youngest leaves) and the distribution of iron between roots and leaves were investigated in different vine cultivars (Silvaner, Riparia 1G and SO4) grown in calcareous soils. As a control treatment all cultivars were also grown in an acidic soil. Only the cultivars Silvaner and Riparia 1G showed yellowing of the youngest leaves under calcareous soil conditions at the end of the cultivation period. All cultivars including SO4 showed severe shoot growth depression, by 50 % and higher, before yellowing started or without leaf yellowing in the cultivar SO4. Depression of shoot growth occurred independently from that of root growth. In a further treatment the effect of Fe‐EDDHA spraying onto the shoot growth of the cultivar Silvaner after cultivation in calcareous soil was investigated. Prior to Fe application plants were non‐chlorotic, but showed pronounced shoot growth depression. Spraying led to a significant increase in shoot length, though leaf growth was not increased. Accordingly, depression of shoot growth of non‐chlorotic plants under calcareous soil conditions and with ample supply of nutrients and water has been evidenced to be at least partly an iron deficiency symptom. We suggest that plant growth only partially recovered because of dramatic apoplastic leaf Fe inactivation and/ or a high apoplastic pH which may directly impair growth. Since growth was impaired before the youngest leaves showed chlorosis we assume that meristematic growth is more sensitively affected by Fe deficiency than is chlorophyll synthesis and chloroplast development. In spite of high Fe concentrations in roots and leaves of the vines grown in calcareous soils plants suffered from Fe deficiency. The finding of high Fe concentrations also in young, but growth retarded green leaves is a further indication that iron deficiency chlorosis in calcareous soils is caused by primary leaf Fe inactivation. However, in future, only a rigorous study of the dynamic changes of iron and chlorophyll concentration, leaf growth and apoplastic pH at the cellular level during leaf development and yellowing will provide causal insights between leaf iron inactivation, growth depression, and leaf chlorosis.<?show $6#>  相似文献   

9.
In order to study the effect of different growth rates of the shoot apex, i.e. shoot demand, on the remobilization of iron (Fe) from mature (primary) leaves, bean (Phaseolus vulgaris L.) plants were precultured with 8x10‐5 M FeEDTA for four days. Thereafter, plants were grown for another six days at various levels of Fe (0.0, 1.0, and 10.0μM FeEDTA), and simultaneously treated with or without shading of one primary leaf. Dry weight increment of the shoot apex decreased with decreased Fe in the nutrient solution. Shading of one primary leaf decreased total dry weight of plants irrespective of Fe supply, but increased the dry weight of the shoot apex of plants supplied without Fe or with only 1.0μM Fe. In these plants, the concentration of chlorophyll and Fe in the shoot apex corresponded with the treatment effects on dry weight of the shoot apex. Shading induced senescence of the shaded leaf, decreased the content of “active Fe”; (extractable in dilute acid), and also enhanced the remobilization of Fe and copper (Cu) from the shaded leaf. The remobilization of Fe from primary leaves was not related to the severity of chlorosis in the shoot apex (the Fe demand of sink tissue), indicating that only a certain fraction of the total Fe in mature leaves can be remobilized.  相似文献   

10.
《Journal of plant nutrition》2013,36(8):1381-1393
Abstract

Root and leaf ferric chelate reductase (FCR) activity in Annona glabra L. (pond apple), native to subtropical wetland habitats and Annona muricata L. (soursop), native to nonwetland tropical habitats, was determined under iron (Fe)-sufficient and Fe-deficient conditions. One-year-old seedlings of each species were grown with 2, 22.5, or 45 µM Fe in a nutrient solution. The degree of tolerance of Fe deficiency was evaluated by determining root and leaf FCR activity, leaf chlorophyll index, Fe concentration in recently mature leaves, and plant growth. Root FCR activity was generally lower in soursop than in pond apple. Eighty days after plants were put in nutrient solutions, leaf FCR activity of each species was lower in plants grown with low Fe concentrations (2 µM) than in plants grown with high (22.5 or 45 µM) Fe concentrations in the nutrient solution. Leaves of pond apple grown without Fe became chlorotic within 6 weeks. The Fe level in the nutrient solution had no effect on fresh and dry weights of soursop. Lack of Fe decreased the leaf chlorophyll index and Fe concentration in recently matured leaves less in soursop than in pond apple. The rapid development of leaf chlorosis in low Fe conditions and low root and leaf FCR activities of pond apple are probably related to its native origin in wetland areas, where there is sufficient soluble Fe for adequate plant growth and development. The higher leaf FCR activity and slower growth rate of soursop compared to pond apple may explain why soursop did not exhibit leaf chlorosis even under low Fe conditions.  相似文献   

11.
Soybean [Glycine max (L.) Merr. cv Essex] was grown in sand in a greenhouse under 2 levels of biologically effective ultraviolet‐B radiation (effective daily dose: 0 and 11.5 kJ/m2 UV‐BBE and 2 levels of P (6.5 and 52 μM). Plants were grown in each treatment combination up to the fifth trifoliolate stage. UV‐B radiation had no affect on plant growth and net photosynthesis at 6.5 μM P supply but decreased both these parameters when grown in the higher P concentration. Reductions in net photosynthesis were apparently due to direct effects on the photosynthetic machinery, since chlorophyll concentration and stanatal conductance were unaffected by UV‐B radiation. Both UV‐B radiation and reduced P supply increased the level of UV‐B absorbing compounds in leaf tissues and their effects were additive. The reduced sensitivity of P deficient plants to UV‐B radiation may be the result of this increase in UV absorbing compounds and possibly uv protective mechanisms associated with growth inhibition.  相似文献   

12.
Comparative physiological studies on iron (Fe) chlorosis of Vicia faba L. and Helianthus annuus L. were carried out. High internal Fe contents in Vicia cotyledons (16–37 μg) were completely used for plant growth and Fe chlorosis was not inducible by the application of nitrate (with or without bicarbonate). In Helianthus, low quantities of Fe in the seeds (4 μg) were insufficient for normal growth and without Fe in the nutrient solution, Fe chlorosis was obtained in all treatments. This chlorosis was an absolute Fe deficiency. Also, the treatment with 1 μM Fe in the nutrient solution and nitrate (with or without bicarbonate) led to severe chlorotic symptoms associated with low leaf Fe concentrations and high Fe concentrations in the roots. In contrast, Helianthus grown with NH4NO3 and 1 μM Fe had green leaves and high leaf Fe concentrations. However, with NO3 supply (with or without bicarbonate), Fe translocation from the roots to the upper plant parts was restricted and leaves were chlorotic. Chlorotic and green sunflower leaves may have the same Fe concentrations, leaf Fe concentration being dependent on Fe translocation into the leaf at the various pH levels in the nutrient solution. At low external pH levels (controlled conditions) more Fe was translocated into the leaf leading to similar leaf Fe concentrations with higher chlorophyll concentrations (NH4NO3) and with lower chlorophyll concentrations (NO3). This indicates a lower utilization of leaf Fe of NO3 grown sunflower plants. Utilization of Fe in faba bean leaves is presumably higher than in sunflower leaves. In Vicia xylem sap pH was not affected by nitrate. In contrast, the xylem sap pH in Helianthus was permanently increased by about 0.4 pH units when fed with nitrate (with or without bicarbonate) compared with NH4NO3 nutrition. The xylem sap pH is indicative of leaf apoplast pH. From our earlier work (Mengel et al., 1994; Kosegarten und Englisch, 1994) we therefore suppose that in Helianthus, Fe immobilization occurs in the leaf apoplast due to high pH levels when grown with nitrate (with or without bicarbonate).  相似文献   

13.
《Journal of plant nutrition》2013,36(10-11):2137-2148
Abstract

The present work is aimed at evaluating some effects induced by different levels of iron availability in the growth medium for two different tomato (Lycopersicon esculentum Mill.) genotypes, the T3238fer (Tfer), unable to activate mechanisms for iron mobilization and uptake known as “strategy I,” and its correspondent wild‐type T3238FER (TFER). By using different iron concentration in the growth solution, the most suitable iron level to induce phenotypic differences between the two genotypes without being lethal for the mutant was found to be 40 µM Fe‐Na‐EDTA. The analyses were carried out also on plants grown with 80 µM Fe‐Na‐EDTA, an iron concentration at which the two genotypes showed no phenotypic differences. A significant decrease in total leaf iron and chlorophyll content was detected in both genotypes following reduction of iron concentration in the nutrient solution, and was particularly evident in Tfer40, which showed symptoms of chlorosis. The photo‐electron transport rate of the whole chain was significantly affected by growth conditions as well as by genotype, the lowest activity being detected in Tfer40 plants. Chlorophyll a fluorescence analysis revealed an increase in non‐photochemical quenching (q NP) of Tfer plants grown at both iron concentrations, indicating the activation of photoprotective mechanisms, which, however, were not sufficient to prevent photoinhibition when plants were grown at 40 µM iron, as indicated by significant reduction in PSII photochemistry (F v/F m) and photochemical quenching (q P). The actual quantum yield of PSII (ΦPSII) and the intrinsic PSII efficiency (ΦEXC) showed the same behavior of q P and F v/F m ratio. A significant effect of mutation and iron supply on all the pigments was detected, and was particularly evident in the mutant grown at 40 µM iron. A different behavior was shown by the three pigments involved in the xantophyll cycle, violaxanthin being less affected than chlorophylls and the other carotenoids, and zeaxanthin even increasing, due to the xanthophyll cycle activation. In conclusion, the interaction between iron deprivation and fer mutation induced functional alterations to the photosynthetic apparatus. Anyway, as far as concerns the photo‐electron transport activity, the influence of fer mutation seemed to occur independently from iron supply.  相似文献   

14.
Thlaspi caerulescens, a metallophyte that is able to accumulate up to 4% zinc (Zn) in leaf dry matter, has attracted much attention for its possible use in phytoremediation of metal contaminated soils. In the present study, the influence of Zn supply on mineral nutrition in T. caerulescens was investigated, in order to establish the extent to which growth stimulation by high Zn supply is related to changes in the levels of other essential nutrients. The plants were exposed to nutrient solutions containing 1.5, 100, 500, 750, 1000, or 1500 μM Zn. Zinc supply significantly influenced root and shoot concentrations of essential nutrients, but excepting Zn, the concentrations stayed within the range considered adequate for optimum growth in Brassicaceae crops. Best performance was achieved with the supply of 500 μM Zn. Growth stimulation by this treatment was accompanied by increased translocation of iron (Fe) from root to shoot and a significant correlation between shoot dry weight and Fe concentrations in shoots was found.  相似文献   

15.
In this study, the influence of rootstocks, pH, iron (Fe) supply (in nutrient solutions), and Agrobacterium radiobacter on the leaf chlorophyll and Fe concentration of the peach cultivar ‘Sun Crest’ was investigated. The results showed that chlorophyll index (SPAD-502) and active Fe differed significantly at different pH levels. Chlorophyll index was highest at pH 6.0 and 9.0 and lowest at pH 7.0 and 8.0 Leaf active Fe concentration was highest at pH 6.0 and 7.0 Significant differences between rootstocks and interactions were also found. Chlorophyll index was highest in the leaves of GF677, Antafuel and MRS 2/5, while the leaves of seedling had the lowest chlorophyll index and chlorophyll a and b concentration. The chlorophyll index in the leaves of St. Julien 655/2 did not differ from those of MRS 2/5. However, seedling had the highest leaf active Fe concentration. Supply of trees with different Fe levels (in solutions) did not affect positively the leaf chlorophyll index, chlorophyll a and b concentration, or active Fe concentration. The leaf chlorophyll index and active Fe in the rootstocks GF677, Antafuel, and Siberian C were significantly reduced in trees inoculated with Agrobacterium radiobacter.  相似文献   

16.
A short-term experiment was carried out to study the effects of exogenous nitric oxide (NO) on some growth parameters and mineral nutrients of maize grown at high zinc (Zn). Maize seedlings were planted in pots containing perlite and subjected to 0.05 or 0.5 mM Zn in nutrient solution. Nitric oxide (0.1 mM) was sprayed to the leaves of maize seedlings. High Zn reduced total dry matter, chlorophyll (Chl.) content and leaf relative water content (RWC), but increased proline content and membrane permeability. Foliar application of NO significantly increased chlorophyll content, RWC and growth of plants treated with high Zn, and significantly reduced their membrane permeability and proline contents. High Zn resulted in increased leaf and root Zn, but lower concentrations of leaf phosphorus (P), and iron (Fe). Foliar application of NO lowered leaf and root Zn and increased leaf and root nitrogen (N) and leaf Fe in the high Zn plants. These results clearly demonstrated that externally-applied NO induced growth improvement in maize plants was found to be associated with reduced membrane permeability under high zinc. Results can be concluded that NO may be involved in nutritional and physiological changes in plants subjected to high Zn.  相似文献   

17.
Cool white fluorescent (CWF) light reduces Fe3+ to Fe2+ while low pressure sodium (LPS) light does not. Cotton plants grown under CWF light are green, while those yrown under LPS light develop a chlorosis very similar to the chlorosis that develops when the plants are deficient in iron (Fe). It could be that CWF light (which has ultra violet) makes iron more available for plant use by maintaining more Fe2+ in the plant. Two of the factors commonly induced by Fe‐stress in dicotyledonous plants‐‐hydroyen ions and reductants released by the roots‐‐were measured as indicators of the Fe‐deficiency stress response mechanism in M8 cotton.

The plants were grown under LPS and CWF light in nutrient solutions containing either NO3‐N or NH4‐N as the source of nitrogen, and also in a fertilized alkaline soil. Leaf chlorophyll concentration varied significantly in plants grown under the two light sources as follows: CWF+Fe > LPS+Fe > CWF‐Fe ≥ LPS‐Fe. The leaf nitrate and root Fe concentrations were significantly greater and leaf Fe was generally lower in plants grown under LPS than CWF light. Hydrogen ions were extruded by Fe‐deficiency stressed roots grown under either LPS or CWF light, but “reductants”; were extruded only by the plants grown under CWF light. In tests demonstrating the ability of light to reduce Fe3+ to Fe2+ in solutions, enough ultra violet penetrated the chlorotic leaf of LPS yrown plants to reduce some Fe3+ in a beaker below, but no reduction was evident through a yreen CWF grown leaf.

The chlorosis that developed in these cotton plants appeared to be induced by a response to the source of liyht and not by the fertilizer added. It seems possible that ultra violet liyht could affect the reduction of Fe3+ to Fe2+ in leaves and thus control the availability of this iron to biological systems requiring iron in the plant.  相似文献   

18.
A study was carried out to explore leaf traits analysis of three strawberry varieties under different drought conditions in Malaysian upland environment in 2013. Plants of three strawberry varieties were grown in three different soil moisture levels including 25 percent (severe stress), 50 percent (mild stress), and 75 percent (normal irrigation) and remained for 60 days as a duration of stress to get appropriate observations of plants to drought stress. Significant differences were observed among varieties, treatments, and duration of drought stress in different traits (P < 0.05). Leaf area, leaf number, chlorophyll content, chlorophyll stability index, leaf moisture, leaf expansion rate, and leaf yield were diminished under stress especially when treated with 25 percent of soil moisture level and 60 days of duration. Moreover, there were remarkable differences among plants in terms of leaf thickness in 25 percent, 50 percent, and control. Severe stress reduced leaf thickness significantly compared to other treatments.  相似文献   

19.
Many plant species are characterized by pronounced sensitivity to sole ammonium supply and exhibit growth depression and particularly reduced leaf growth rates. Stress symptoms under sole ammonium supply may be related to perturbation of photosynthetic processes, e.g., low rates of net CO2 assimilation, low quantum yield, reduced stomatal conductance, and carboxylation capacity. The results of three experiments with French bean plants supplied with an N concentration of 5 mM illustrate significantly lower dry mass and specific leaf area, reduced leaf expansion, and higher chlorophyll and N content of ammonium‐ compared to nitrate‐supplied plants. Light‐saturated rates of CO2 assimilation (Amax) per unit leaf area were higher under ammonium compared to nitrate supply while no significant effects of N form on quantum yield and Amax per unit leaf weight and chlorophyll were found. Maximal carboxylation (Vcmax) and electron‐transport (JMax) rates were significantly higher under ammonium supply only in one of three experiments. Vcmax was linearly related to total leaf N, the slope of the regression was similar with both N forms, the x‐axis intercept was significantly higher for ammonium‐ compared to nitrate‐supplied plants. The ratio Vcmax : JMax was not affected by N form. It is concluded that ammonium supply had no negative effects on the operation of photosynthetic protein‐enzyme complexes.  相似文献   

20.
Three rice (Oryza sativa L.) varieties viz. ‘CR 683‘, ‘Budumoni’ “Budumoni”, and ‘Akisali’ were grown in sand culture in a greenhouse with three levels of iron (Fe) in nutrient solutions viz., 0.045 (control), 5.34, and 7.12 mM Fe to study the effects of iron on physiology of rice seedling growth. Shoot length, root, and shoot dry weights were reduced significantly by higher levels of Fe in the medium. Results of leaf bronzing have revealed higher bronzing score in the seedlings grown at 7.12 mM Fe in the growth medium. Occurrence of bronzing was severe in varieties ‘CR683’ and ‘Akisali’. Variety ‘Budumoni'maintained higher leaf chlorophyll content, nitrate reductase activity and total soluble protein in the leaves at 5.34 and 7.12 mM Fe. Higher concentration of iron in the nutrient medium exerted an inhibiting effect on the concentration and content of almost all the macro and micronutrients in the root and shoot. Higher Fe and nitrogen (N) contents and lower phosphorus (P), potassium (K), manganese (Mn), copper (Cu), and zinc (Zn) were determined in roots and shoots in plants grown in medium supplied with 7.12 mM Fe. The variety ‘Budumoni’ “Budumoni” performed relatively better in comparison to other tested varieties at 7.12 mM Fe in the growth medium. ‘Budumoni’ “Budumoni” can be considered a suitable rice variety to use in the rice-breeding programme for Fe toxicity tolerance in acid soils of Assam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号