首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Alfalfa (Medicago sativa L.) does not grow as well as it used to in areas of Canada and northwestern United States. Affected plants have nitrogen (N)‐deficiency symptoms, few or no nodules, and respond to N fertilizer. For lack of a good explanation, such plants are called “sick”;.

Six commercial inoculant products were tested with alfalfa grown on cores of eight soils in which alfalfa establishment and stand duration have been problems, to determine if inoculant quality influenced development of any sick‐alfalfa symptoms. Percentages of nodulated plants ranged from 35 to 82 after 5 to 8 weeks’ growth, and corresponded closely with estimated rhizobia numbers in the products. Dry forage yields were not closely related to percentage nodulation, however, because of residual soil N levels that supported seedling growth. Inoculant products containing inadequate numbers of rhizobia to promptly and effectively nodulate plants resulted in poor nodulation that may lead to establishment failure or sparse, weak stands.

Contribution from the Central Oregon Exp. Stn. and Dep. of Microbiology, Oregon Agric. Exp. Stn. Journal Article No. 4910.  相似文献   

2.
Leguminous plants grown in sewage sludge–amended soils can acquire nitrogen by assimilation of nitrate and ammonium from the soil solution or from atmospheric‐dinitrogen (N2) fixation through association with N2‐fixing bacteria. We proposed that operation of both metabolic processes could contribute to alleviate the impact of drought in sludge‐treated plants. A greenhouse experiment was conducted to evaluate the involvement of nodule metabolism in the use efficiency of water and N in sludge‐treated plants. Treatments comprised (1) plants inoculated with rhizobia and amended with sewage sludge; (2) plants inoculated with rhizobia without any amendment; and (3) noninoculated plants supplied with ammonium nitrate, each under well‐watered and drought conditions. Under drought, sludge‐treated plants had increased plant growth and higher photosynthetic and water‐use efficiencies than untreated plants. Drought stimulated nitrate reductase and GS/GOGAT activities but did not affect the activities of phosphoenolpyruvate carboxylase and malate dehydrogenase or the leghemoglobin concentration. The results suggest that under drought conditions, both N2 fixation and nitrate assimilation in nodules of sludge‐treated plants contributed to improve plant N supply and to increase the drought tolerance of alfalfa.  相似文献   

3.
ABSTRACT

This study aimed to understand the effects of Medicago spp proportion on symbiotic and non-symbiotic nitrogen (N) utilization of plants, and subsequent forage production and soil N status in an artificial Leymus chinensis grassland. By a two-year field experiment conducted in semi-arid northern China, it was found that the corresponding biomass proportions of legume in swards were 0, 39, 63, 83 and 98% when legume seedling proportions at sowing were 0, 25, 50, 75 and 100%, respectively. Increased Medicago seedling proportion (from 25 to 100%) decreased legume N2 fixation capacity from 53 to 21%, as a consequence, this reduced total symbiotic N2 fixation and its contribution to forage production with Medicago seedling proportion increasing from 50 to 75% or more. However, as increased Medicago seedling proportion enhanced legume biomass and sward uptake to soil mineral N, higher legume stands still led to the greater biomass and N yield. The cultures with 50% seedling of legume had 4–13% greater soil N concentration than the cultures with 0, 25, 75 and 100% seedling of legume. We concluded that pure Medicago stands led to the greatest forage yield, while medium Medicago stands could lead to the greater symbiotic N fixation and soil N concentration.  相似文献   

4.
Studies were conducted on paddy soils to ascertain N2 fixation, growth, and N supplying ability of some green-manure crops and grain legumes. In a 60-day pot trial, sunhemp (Crotalaria juncia) produced a significantly higher dry matter content and N yield than Sesbania sesban, S. rostrata, cowpeas (Vigna unguiculata), and blackgram (V. mungo), deriving 91% of its N content from the atmosphere. Dry matter production and N yield by the legumes were significantly correlated with the quantity of N2 fixed. In a lowland field study involving sunhemp, blackgram, cowpeas, and mungbean, the former produced the highest stover yield and the stover N content, accumulating 160–250 kg N ha-1 in 60 days, and showed great promise as a biofertilizer for rice. The grain legumes showed good adaptability to rice-based cropping systems and produced a seed yield of 1125–2080 kg ha-1, depending on the location, species, and cultivar. Significant inter- and intraspecific differences in the stover N content were evident among the grain legumes, with blackgram having the highest N (104–155 kg N ha-1). In a trial on sequential cropping, the groundnut (Arachis hypogaea) showed a significantly higher N2 fixation and residual N effect on the succeeding rice crop than cowpeas, blackgram, mungbeans (V. radiata), and pigeonpeas (Cajanus cajan). The growth and N yield of the rice crop were positively correlated with the quantity of N2 fixed by the preceding legume crop.  相似文献   

5.
Topography and slope position influence the soil and environmental factors that affect N2 fixation by legumes. The present study was conducted to (1) estimate N2 fixation by field peas in a gently rolling farm field using the natural 15N abundance and the 15N-enriched isotope dilution techniques and (2) identify soil and environmental factors that influence N2 fixation at the landscape scale. Whereas soil available water capacity, available NH inf4 sup+ , total crop yield, and percent N derived from N2 fixation (% Ndfa) estimated using enriched N were significantly affected by landform patterns, soil NO inf3 sup- levels, seed yield, and the % Ndfa estimated using natural abundance did not follow landform patterns. The % Ndfa using natural abundance was correlated with NH inf4 sup+ but not with available soil water, pH, electrical conductivity, NO inf3 sup- , or particle size. Estimates of the % Ndfa using enriched 15N ranged from 0 to 92.8%. The highest median value (68.6%) for % Ndfa using enriched N occurred on the divergent footslopes, with the lowest value (28.1%) on the convergent shoulders. Estimates of % Ndfa using natural abundance ranged from 13.2% to 96.9%. Smaller fluctuations during the growing season in the 15N of the available N pool may have resulted in less variability for % Ndfa using natural abundance compared to enriched 15N. Despite similar mean values for % Ndfa using natural abundance (44.5) and enriched 15N (49.6), no significant correlation between the two estimates was found. These results suggest that although topography may exert gross controls on N2 fixation, large variations in N2 fixation at the microsite level may preclude correlations between individual estimates and limit detection of landscape scale patterns of N2 fixation.Contribution No. R754 of the Saskatchewan Center of Soil Research  相似文献   

6.
Abstract

Recently there has been developments in the measurement of N2 fixation due mainly to the C2H2 reduction method (1). This method, however, has several disadvantages, especially for submerged soil, and the estimated amount of fixed N2 on the basis of the C2H2 reduction activity is not very reliable. The tracer 15N2 technique which gives a reliable estimation of the fixed N2 is too expensive for common use. Development of an alternative method suitable for submerged soil would therefore be desirable. The present authors expected that the measurement of the ratio N2/Ar in the soil solution might provide advantages for the estimation of the fixed N2 in submerged soil.  相似文献   

7.
Several important features of the N. fixation in paddy fields which were reported previously were confirmed and some new additional results regarding the evaluation of the N2 fixation in the rhizosphere were obtained by reinvestigation in the fields. In addition, rice plants were cultivated in the submerged soil in pots and various parts of the soil were analyzed for the N2-fixing activity as well as several other properties. The results of the pot experiments were found to be fairly similar to those observed in the field investigations, indicating the validity of the submerged soil in a pot as a rather simulated model for the actual paddy field. By using this model system, the following facts were ascertained: (1) Water-percolation had almost no effect on the N2-fixing activities of both the rhizosphere and the non-rhizosphere soils. (2) Suppressing effect of washing the root of rice plant on the N2-fixing activity was slight in the seedling stage and marked in the tillering and flowering stages. (3) The N2-fixing activity of a single rice root varied from tip to base.  相似文献   

8.
Effect of different 15N labeled sources on the estimation of N2 fixation was investigated. The combination of 15N labeled ammonium sulfate, 15N labeled plant material, and 15N labeled ammonium sulfate with unlabeled plant material, was examined in pot experiments. Two cultivars of soybean (Glycine max) and one of mungbean (Vigna radiata) were used. No significant difference was observed among the treatments for the estimation of N2 fixation. This was due to the homogeneity and stability of the 15N abundance in soil which resulted in a similar N uptake from the soil by the N2 fixing and reference crops. The plant yield, total N uptake and amount of N2 fixed were higher in the Yellow Soil than in the Andosol. The amount of N2 fixed was strongly influenced by the plant growth and consequently it affected the plant yield. The slow decomposition of plant material in the Andosol resulted in a low yield in both the N2 fixing and reference crops. Thus, the artificial decrease of the available N content in soil, by application of plant material, did not stimulate N, fixation but suppressed plant growth and N2 fixation.  相似文献   

9.
We compared the concentrations and contents of protein and oil in mature seeds from nodulated and non-nodulated soybean plants grown on soils with four different N levels during maturation. We observed a positive correlation between the contents of protein and oil in seeds from nodulated plants. Seeds from nodulated plants grown on urea-treated soil showed higher protein and lower oil contents than those from plants grown on soil treated with coated slow release N fertilizer (LP-100). Contents of these compounds in seeds from nodulated plants grown on LP-100 soil were almost the same as those from non-nodulated plants on the same soil. These observations indicated that N economy in roots during seed maturation affects the contents of storage compounds. We suggested that the control of the N2 fixation activity of soybean plants and management of soil N level during seed maturation are important to determine the contents of protein and oil in seeds.  相似文献   

10.
Summary N accumulation and natural 15N abundance in three legumes (groundnuts, cowpeas, and soybeans) and in two cereals (sorghum and maize) were investigated over two seasons in Alfisols with and without N fertilization. Using the N uptake and natural 15N abundance of non-nodulating plants as the indication of N derived from soil and fertilizer, the per cent N derived from atmospheric N2 was calculated for nodulated plants. In the first experiment, the groundnut genotype contained 85% atmosphere-derived N, but the percentage decreased with N application. Estimates of atmosphere-derived N by the N-difference and 15N-abundance techniques gave identical results. The percentages of atmosphere-derived N estimated by the two methods at different stages of groundnut growth were also similar. In the second experiment, atmosphere-derived N was estimated in plants grown with 0–200 kg ha-1 applied N. The estimated atmosphere-derived N ranged from 42% to 61% for groundnuts from 33% to 77% for cowpeas, and from 24% to 48% for soybeans, depending on the amount of N applied. Inoculation with a Bradyrhizobium strain increased the percentage of atmospherederived N in soybean plants grown without any fertilizer N. The natural 15N abundance of sorghum and maize was very close to that of the non-nodulating groundnut, suggesting that these cereals can be used as reference plants in the estimation of atmosphere-derived N by the natural 15N-abundance method.ICRISAT Journal Article No. 876  相似文献   

11.
Abstract

A study was carried out to compare the difference or N-yield method with the 15N natural abundance method for the estimation of the fractional contribution of biological N2 fixation in the different plant parts of nodulating and non-nodulating isolines of soybeans. The results indicated that the δ15N values of most plant parts of soybeans were significantly lower (p<0.05) in the nodulating than in the non-nodulating isoline. However, in the case of the root+nodule component, the δ15N value was higher in the nodulating than in the non-nodulating isoline possibly due to isotopic discrimination of 15N over 14N which may have occurred in the nodules. Inoculation of soybeans with the Bradyrhizobium japonicum strain CB 1809 increased significantly (p<0.05) the δ15N value of the root+nodule component implying that the effectiveness of the soybean-rhizobium symbiosis had increased by inoculation.

Percentage of plant N derived from atmospheric N2 fixation (%Ndfa) estimated by the 15N natural abundance method was highly correlated (r=0.762, p<0.01) with that by the difference or N-yield method and the differences between the two methods were not statistically significant. The agreement between the two methods was closer at maturity than at the early reproductive stage.

The %Ndfa obtained by the difference method ranged from 48.4 to 92.6% whereas the %Ndfa obtained by the 15N natural abundance method ranged from 43.2 to 92.4% in the different plant parts. Based on the 15N natural abundance method, approximately 15% of the N in pod, shoot, grain, and shell was derived from the soil but in the case of stover, this fraction was about 55%.  相似文献   

12.
The 4 long-term experimental plots (Umbric haplaquept) with different fertilizer treatment at Cent. Agric. Exp. Sta. in Konosu City, Saitama Prefecture, were used for the sites of investigation. The 4 plots were NF (applied with no fertilizer), IF (applied with inorganic fertilizers), GM (applied with green manure and CaCO2), and OM (applied with manure and inorganic fertilizers). Flooded water, floating weed, upper (0-2cm) and lower (2-10cm) parts of Apg horizon and rhizosphere were collected from each plot before flooding, during flooding, and after drainage. These samples were analyzed for N2-fixing activity by acetylene reduction method, pH, Eh, and contents of Fe2+, NH4 +, chlorophyll-type compounds, and water-soluble carbohydrates.

The N2-fixing activity of all samples showed almost the same pattern of change with time: very low before flooding, rapidly increased after flooding, the maximum value at the maximum tillering stage of rice plant, declined afterwards and reached a very low value after drainage.

Rough estimation of the “N2-fixing capacity” of each part of the paddy field revealed that the most important site of the N2 fixation was the reduced Apg horizon, that the importance of flooded water and/or the oxidized layer in the N2 fixation was rather low except in infertile soil, and that the role of rhizosphere in the N2 fixation could not be neglected also in Japan.

Reduced condition and content of easily decomposable organic substances were judged to be main factors which control the N2-fixing activity in the flooded soil on the basis of correlations between the Nt-fixing activity and several analytical data of the paddy soils.  相似文献   

13.
Summary Containers filled with soil mixed with potassium nitrate highly enriched in 15N were planted with corn (Zea mays L.) and kept in a phytotron under controlled conditions for 79 days. Soil water content was normally maintained at exactly 60% water-holding capacity (–33 kPa), but it was increased several times to 85% (–5 kPa) for short periods to favour denitrification. The soil headspace was sealed from the phytotron atmosphere and aerated by a continuous stream of air. Nitrous oxide emission was measured by estimating the N2O concentration differences in the air entering and leaving the containers. Emission of N2 was estimated by mass spectroscopy from changes in the N2 composition in the temporarily enclosed soil headspace. Both methods were carefully checked for accuracy by different tests. At specific times during the experiment the distribution of 15N between plants and soil was determined and a 15N balance established. Emission of N gases peaked at times of increased water content and reached maxima of 149 and 142 g N pot–1 day–1 for N2O and N2, respectively. While N losses of 5% ± 2% were indicated by the 15N balance, only 1.1% ± 0.3% loss from 2.7 g applied N was estimated from the N2O and N2 measurements after 79 days. Possible reasons for these differences are discussed.  相似文献   

14.
碱胁迫对超干处理紫花苜蓿种子出苗和成苗的影响   总被引:2,自引:0,他引:2  
为探明碱处理对超干种子出苗和成苗的影响, 以紫花苜蓿“陇东”(Medicago sativa L. “Longdong”)为试验材料, 以NaHCO3 和Na2CO3 按9︰1 摩尔比的混合液模拟典型碱胁迫环境, 在0 mmol·L-1、2 mmol·L-1、5 mmol·L-1、15 mmol·L-1 和25 mmol·L-1 5 个碱处理梯度下对未进行超干处理的种子进行标准发芽试验。结果表明, 具有明显胁迫效应并达到“陇东”耐受极限的碱处理浓度为15 mmol·L-1。采用硅胶室温干燥法对初始含水量为9.03%的“陇东”种子进行不同时间的干燥处理, 将种子含水量分别降至7.09%、6.93%、6.36%、5.72%、5.46%、5.18%和4.97%, 并在15 mmol·L-1 碱胁迫浓度下进行盆栽沙培试验, 以未进行超干处理的种子(含水量9.03%)为对照, 比较各含水量种子在中性(pH7.0)和碱性环境下的出苗与成苗情况。结果表明, 中性环境下含水量为6.93%~5.72%的超干种子及其幼苗的各项指标均优于对照, 7 d 的幼苗存活率、17 d 的幼苗株高和23 d 的单株叶片数分别高出对照18.18%~22.73%、16.79%~32.49%和15.65%~29.41%; 而含水量为6.36%~5.46%的超干种子形成的幼苗对碱胁迫环境的耐受能力较好, 7 d 的幼苗存活率和17 d 的幼苗株高分别高出对照11.30%~30.66%和1.64%~34.64%, 23 d 的叶片数为对照的79.32%~98.24%。表明适度超干处理作为种子预处理方式, 可以促进紫花苜蓿种子在中性和碱性条件下的出苗及幼苗的生长。  相似文献   

15.
Summary The legume Medicago sativa (+Rhizobium melilott) was grown under controlled conditions to study the interactions between soluble P in soil (four levels), or a mycorrhizal inoculum, and the degree of water potential (four levels) in relation to plant development and N2 fixation. 15N-labelled ammonium sulphate was added to each pot for a qualitative estimate of N2 fixation, in order to rank the effects of the different treatments.Dry-matter yield, nutrient content and nodulation increased with the amount of plant-available P in the soil, and decreased as the water stress increased, for each P-level. The mycorrhizal effect on dry matter, N yield, and on nodulation was little affected by the water potential. Since P uptake was affected by the water content in mycorrhizal plants, additional mechanisms, other than those mediated by P, must be involved in the mycorrhizal activity.There was a positive correlation between N yield and nodulation for the different P levels and the mycorrhizal treatment at all water levels. A high correlation between plant unlabelled N content and atom% 15N excess was also found for all levels of P. In mycorrhizal plants, however, the correlation between unlabelled N yield and 15N was lower. This suggests that mycorrhiza supply plants with other N sources in addition to those derived from the improvement on N2 fixation.  相似文献   

16.
Summary The effects of incorporation and surface application of straw to a wetland rice field on nitrogen fixation (C2H2 reduction), bacterial population and rice plant growth were studied. Rice straw (5 t ha–1) was chopped (10- to 15-cm pieces) and applied to the field 2 weeks before transplanting IR42, a long-duration variety, and IR50, a short-duration variety. The acetylene-reducing activity (ARA) of IR42 and IR50 measured at heading stage for 3 consecutive days showed significantly higher ARA in IR42 as a result of the 2 straw application methods. Mostly up to 20 days after straw surface application and incorporation, the dark ARA in the soil, total and N2-fixing heterotrophs, and photoorganotrophic purple nonsulphur bacteria (POPNS) in the soil and in association with degrading straw were stimulated. Higher bacterial populations were associated with straw on the surface than with straw incorporated. The POPNS counts, in particular, were increased hundreds fold in the surface-applied straw treatment. Straw applications also increased the root, shoot and total plant biomass at heading stage and the total dry matter yield at harvest in both varieties. The data show the potentials of straw as a source of substrate for the production of microbial biomass and for the non-symbiotic N2 fixation to improve soil fertility and plant nutrition.  相似文献   

17.
Abstract

We studied the effect of crop residues with various C:N ratios on N2O emissions from soil. We set up five experimental plots with four types of crop residues, onion leaf (OL), soybean stem and leaf (SSL), rice straw (RS) and wheat straw (WS), and no residue (NR) on Gray Lowland soil in Mikasa, Hokkaido, Japan. The C:N ratios of these crop residues were 11.6, 14.5, 62.3, and 110, respectively. Based on the results of a questionnaire survey of farmer practices, we determined appropriate application rates: 108, 168, 110, 141 and 0 g C m?2 and 9.3, 11.6, 1.76, 1.28 and 0 g N m?2, respectively. We measured N2O, CO2 and NO fluxes using a closed chamber method. At the same time, we measured soil temperature at a depth of 5 cm, water-filled pore space (WFPS), and the concentrations of soil NH+ 4-N, NO? 3-N and water-soluble organic carbon (WSOC). Significant peaks of N2O and CO2 emissions came from OL and SSL just after application, but there were no emissions from RS, WS or NR. There was a significant relationship between N2O and CO2 emissions in each treatment except WS, and correlations between CO2 flux and temperature in RS, soil NH+ 4-N and N2O flux in SSL and NR, soil NH+ 4-N and CO2 flux in SSL, and WSOC and CO2 flux in WS. The ratio of N2O-N/NO-N increased to approximately 100 in OL and SSL as N2O emissions increased. Cumulative N2O and CO2 emissions increased as the C:N ratio decreased, but not significantly. The ratio of N2O emission to applied N ranged from ?0.43% to 0.86%, and was significantly correlated with C:N ratio (y = ?0.59 ln [x] + 2.30, r 2 = 0.99, P < 0.01). The ratio of CO2 emissions to applied C ranged from ?5.8% to 45% and was also correlated with C:N ratio, but not significantly (r 2 = 0.78, P = 0.11).  相似文献   

18.
The influence of three sulphur application rates in combination with two nitrogen application rates on N2 fixation and growth of different legumes was investigated. N was applied as N-labelled 15NH4 15NO3. The 15N isotope dilution technique was used to estimate N2 fixation. At both N increments dry matter yield was highest with high S supply. Independently of the N supply, the high S application rate resulted in a significantly higher N accumulation, which was mainly caused by a higher N2 fixation rate. With the grain legumes the weight of nodules was increased by the high S application rate. The higher number of nodules per pot with optimum S supply was the result of a better root growth. Rates of acetylene reduction correlated significantly with S supply.  相似文献   

19.
We investigated the effects of applying hairy vetch foliage on nodulation and atmospheric nitrogen (N2) fixation in soybean cultivated in three soil types in pot experiments. Soybean plants were grown in Gley Lowland soil (GLS), Non-allophanic Andosol (NAS), and Sand-dune Regosol (SDR) with hairy vetch foliage application in a greenhouse for 45 days. In GLS, the nodule number was not influenced by the application, however, nodule dry weight and N2 fixation activity tended to increase. In NAS and SDR, nodule formation was depressed by foliage application. Soybean plant growth was promoted in GLS and SDR but not in NAS. These promotive effects of hairy vetch foliage application on soybean plant growth in GLS were considered to be mainly caused by the increase in N2 fixation activity of the nodules, whereas it was considered to be mainly caused by the increase in nitrogen uptake activity of the roots in SDR. The varying effects of hairy vetch foliage application on soybean nodulation may be due to soil chemical properties such as pH and cation exchange capacity, which are related to soil texture. Therefore, we conclude that it is important to use hairy vetch for soybean cultivation based on the different effects of hairy vetch on soybean plant growth in different soil types.  相似文献   

20.
Experiments were performed in greenhouse sand culture to determine the effect of pH and Se oxidation state on the tissue composition and yield of alfalfa (Medicago sativa L.). Alfalfa was planted and irrigated with nutrient solution containing 0, 0.25, 0.5, 1.0 or 3.0 mg Se L‐1 as Na2SeO3 or Na2SeOl4. The solution pH was maintained at 7.0 ± 0.2 or 4.5±0.2. Three harvests were made and the shoots and roots weighed and analyzed for total Se. At the levels tested, additions of Se to the treatment solutions increased the tissue Se concentrations and depressed alfalfa shoot growth regardless of Se oxidation state or pH. Root growth was reduced in the presence of Se(VI) but was unaffected by Se(IV). Selenium was accumulated to higher concentrations in the shoot when supplied as Se(VI) compared to Se(IV) and accumulated to higher concentrations in the root when added as Se(IV) compared to Se(VI). Relative shoot yields were depressed more by Se(IV) then Se(VI) at pH 7, but there was no difference between Se(IV) and Se(VI) at pH 4.5. Relative root yields were depressed by Se(VI) but not by Se(IV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号