首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
Citrus, especially K innow (Citrus deliciosa × Citrus nobilis), fruit yield and quality in Pakistan is not competitive with that of other countries which could be mainly attributed to the lack of good nutrient management for citrus orchards. The yield losses in this fruit crop occur mainly due to heavy fruit dropping. Experiments to overcome these problems were conducted at four different sites one each in Faisalabad, Toba Tek Singh, Jhang and Sargodha districts of Punjab, Pakistan. The soil and leaf chemical analysis showed severe deficiency of Zn and our pervious results have shown that soil amendment with potassium (K) at 75 K2O kg ha?1 improved the citrus fruit yield and quality at all selected sites. In the present experiments, effect of foliar application of Zn and K alone or in combination was studied on nutrient uptake, fruit yield, fruit dropping and juice quality. The fruit trees were pretreated with a selected K level of sulfate of potash (SOP) or muriate of potash (MOP), i.e., 75 kg K2O ha?1 along with recommended nitrogen (N) and phosphorus (P) doses. Zinc [Zn, 1% zinc sulfate (ZnSO4) solution], K [1% potassium sulfate (K2SO4) solution] and Zn + K (solution containing 0.5% each of ZnSO4 and K2SO4) were sprayed at the onset of spring and flush of leaves or flowers, fruit formation and at color initiation on fruit. Overall, application of Zn, K or Zn + K was effective in improving the nutrient uptake, yield and quality parameters of citrus fruit at all sites. Fruit dropping was also reduced by the foliar spray of Zn, K or Zn + K but the most promising results were recorded with foliar spray containing both Zn and K.  相似文献   

2.
Among the major nutrients, potassium (K) not only improves yields but also improves quality parameters. Field experiments were conducted to assess the comparative effect of sources and rates of K fertilizer on potato yield and quality on a sandy loam soil. Graded doses of potassium, i.e., 0, 150 and 225 kg ha?1 K2O from sulfate and muriate of potash were applied in triplicate. Recommended dose of nitrogen (N) and phosphorus (P) applied uniformly. Significant increase in tuber yield was observed with 150 kg ha?1 K2O from both the sources over control. Increase in tuber yield with 225 kg ha?1 K2O was statistically non significant compared to 150 kg ha?1. The dry matter and specific gravity were more affected with sulfate of potash (SOP) than muriate of potash (MOP). The quality parameters like dry matter, specific gravity, starch contents, vitamin C, chips color and taste were improved with K application.  相似文献   

3.
There is a great potential for greenhouse tomato fruit yield improvement in China for the low yield per hectare. We evaluated the effects of multi-factors (plant density, nitrogen (N) and K2O fertilizer) on fruit yield of tomato (Lycopersicon esculentum Mill. cv. Jinfan 4) by response surface methodology with a 5-level-3-factor central composite design. A multivariate quadratic regression model of fruit yield was established. Results showed that N fertilizer was the most significant for fruit yield, followed by K2O fertilizer and plant density. Fruit yield showed a parabolic trend with increasing fertilizer levels or plant density. There was a significant interaction effect between plant density and fertilizer levels. Optimal conditions were obtained: 4.83 × 104 plants ha?1 for density, 262 kg ha?1 for N and 513 kg ha?1 for K2O. Under these conditions, the predicted fruit yield was 119,381 kg ha?1, while the actual fruit yield from verification test was 121,005 kg ha?1.  相似文献   

4.
With respect to the important effects of nitrogen (N) on plant growth and fruit production, a five-year experiment was performed to evaluate the effects of different sources of N fertilization including chemical and organic on the quantity and quality of citrus fruit. Using five-year old trees, different types of fertilization including ammonium sulfate, urea coated with sulfur, ammonium nitrate and manure were tested using seven treatments in five replicates from 2002 to 2007. Different plant quantitative and qualitative parameters were determined. The most effective strategy on fruit yield production was the use of urea coated with sulfur and manure with 92.46 kg ha?1 fruit yield followed by ammonium sulfate and manure (87.06 kg ha?1) and ammonium sulfate (86.43 kg ha?1). The combination of mineral and organic fertilization may be the most suitable fertilization strategy for citrus production.  相似文献   

5.
A two-year field study was conducted to determine the effect of two zinc (Zn) levels [0 and 10 kg zinc sulfate (ZnSO4) ha?1] in respect with four potassium (K) levels (0, 20, 40 and 60 kg K2O ha?1) on growth, yield and quality of forage sorghum. The soil of the experimental field was loamy sand (Inceptisol), carrying 70, 08, 77, and 0.51 mg nitrogen (N), phosphorus (P), K, and Zn kg?1 soil, respectively. Increasing K levels significantly improved most of the growth, yield, and quality attributes gradually irrespective of the Zn levels. Zinc applied at 10 kg ZnSO4 ha?1 proved significantly better than no zinc application at various K application rates. The benefit of zinc application increased progressively with increasing K rates for most of the parameters studied, indicating significant response of the crop to positive K × Zn interaction in plants in respect with K and Zn application to the soil. Accordingly, 60 kg K2O ha?1 applied with10 kg ZnSO4 ha?1 boosted most of the attributes maximally. It resulted in about 20–40% increase in growth attributes, 25% increase in fresh matter yield, 36–38% increase in dry matter yield, and 38% increase in protein yield compared to the comparable K level applied without zinc. It also enhanced N uptake by 38%, P uptake by 5–19%, K uptake by 40–42%, and Zn uptake by 114–144%. Across the K rates, application of 10 kg ZnSO4 surpassed no zinc application by 30–35% in N uptake, by 8–15% in P uptake, by 33–36% in K uptake, by 120–140% in Zn uptake, by 19–21% in fresh matter yield, by 29–31% in dry matter yield, and by 30–34% in protein yield.  相似文献   

6.
Potassium (K) leaching is affected by soil texture and available K, among other factors. In this experiment, effects of soil texture and K availability on K distribution were studied in the presence of roots, with no excess water. Soils from two 6-year field experiments on a sandy clay loam and a clay soil fertilized yearly with 0, 60, 120, and 180 kg ha?1 of K2O were accommodated in pots that received 90 kg ha?1 of K2O. Soybean was grown up to its full bloom (R2). Under field conditions, K leaching below the arable layer increased with K rates, but the effect was less noticeable in the clay soil. Potassium leaching in a sandy clay loam soil was related to soil K contents from prior fertilizations. With no excess water, in the presence of soybean roots, K distribution in the profile was significant in the lighter textured soil but was not apparent on the heavier textured soil.  相似文献   

7.
Determination of optimum rates of potassium (K) for high citrus production with great qualitative traits is of both agricultural and economical significance, particularly when performing long–term experiments. A five–year field experiment was conducted in the Citrus Research Center of Tonekabon, Iran in a silty clay loam. The objectives were to: 1) to apply different rates of K fertilizer and determine the optimum rates for citrus high production, and 2) to evaluate the effects of K fertilization on the fruit quantitative and qualitative traits for the production of tasty and great quality fruits for fresh or long consumption. Fifteen–year citrus trees were fertilized with five rates of potassium at control, 750, 1500, 2250 and 3000 g tree?1 on the basis of a completely randomized block design in five replicates. Fruit parameters were determined. Potassium significantly increased fruit yield and qualitative traits at the optimum amount of 1500 g tree?1.  相似文献   

8.
A potato field experiment was conducted for 2 consecutive years to determine the effects of nitrogen (N) and potassium (K) fertilization rates on the yield and quality of potato cv. Spunta cultivated on soil low in N and K. A 3?×?4 complete factorial experiment was used with three rates of nitrogen (330, 495, and 660 kg N ha–1) and four rates of potassium (112, 225, 450, and 675 kg K2Ο ha–1). An additional treatment without fertilization was used as the control. On soils low in N and K, potatoes showed low yield response to K fertilizer. The greatest tuber yields for both years were achieved at 495 kg N ha–1 and 112 kg K2O ha–1 (29.81 t ha–1) and 225 kg ha–1 (27.13 t ha–1), respectively. Differences in mean fresh weight due to treatment application were not significant. Application of 495 kg N ha–1 significantly reduced harvest index (the ratio of tuber dry weight to the total dry weight at harvest) compared to 330 kg N ha–1, but at 660 kg N ha–1 harvest index achieved the greatest significant value. Potassium fertilization had no significant influence on harvest index. Nitrogen rates positively influenced the number of tubers. The addition of 450 kg K2O ha–1 significantly enhanced the number of tubers compared to the lower K rates, and the number was significantly decreased by the application of 675 kg K2O ha–1. Tuber dry-matter concentration was significantly promoted by N fertilization in both cultivation years, but it was negatively affected by K fertilization in the first year of cultivation. There was no change in tuber N with N application, but N application strongly increased nitrate (NO3) concentration, which fluctuated between 360 and 1382 mg kg–1 wet mass. Tuber NO3 was negatively correlated with tuber yield, indicating that high levels of NO3 in tubers can adversely affect yield. Tuber response to K fertilization was not in accordance with the rate of applied nutrient.  相似文献   

9.
《Journal of plant nutrition》2013,36(7):1295-1317
Abstract

A field experiment was conducted at Central Cotton Research Institute, Multan, Pakistan on Miani soil series, silt loam soil (Calcaric, Cambisols and fine silty, mixed Hyperthermic Fluventic Haplocambids) to assess the response of four cotton (Gossypium hirsutum L.) cultivars to potassium (K) fertilization. The treatments consisted of four cotton cultivars (CIM-448, CIM-1100, NIAB-Karishma, S-12), four potassium rates (0, 62.5, 125, 250 kg K ha?1), and two sources of potassium fertilizer [muriate of potash (KCl) and sulphate of potash (K2SO4)]. The cotton cultivars differed significantly in response to various potassium fertilizer levels and its sources with respect to seed cotton yield and its components. The highest yield was obtained with the application of 250-kg K ha?1, however, it was economical to add 125 kg K ha?1. Seed cotton yield of cv. CIM-448 was considerably greater than that of the other cultivars in K-unfertilized treatments, which was related to cultivar differences in K uptake efficiency in utilizing native potassium nutrient. Potassium added as muriate of potash caused a significant depression in seed cotton yield than that of sulphate of potash. The increase in yield seemed to have resulted largely from the higher K concentration of leaf tissues at bloom stage and available soil-K because of potassium application. A significant relationship between the yield and number of bolls per plant (r = 0.92**) and boll weight (r = 0.85**) indicated that these two growth attributes were responsible for enhancing the quantum of final harvest of seed cotton.  相似文献   

10.
To study the influence of potassium (K) fertilizer rate on soil test K values, crop yield, and K-leaching in sandy soils, four long-term fertilizer experiments (0–60–120–180 kg K ha?1 a?1) were initiated in 1988 in northern Germany on farmers fields. Clay content of the plow layer was about 4%, and organic matter between 2% and 5%. Plant available soil K was estimated with the double lactate (DL) method. Small grain cereals (rye and barley) did not respond to K fertilization in the 7-year period even though the soil test value of the K-0 plots decreased from ca. 90 to ca. 30 mg KDL kg?1 within 3 years. This value remained almost constant thereafter. Crop removal (including straw) of 75 kg K ha?1 a?1 was therefore apparently supplied from nonexchangeable K fractions. Compared to the optimum, no K application reduced the yield of potato by up to 21%, and that of white sugar yield up to 10%. Maximum potato yield was obtained by annually applying 60 kg K ha?1 which resulted in a test value of 60 mg KDL kg?1 soil. Maximum potato yield was also obtained at 40 mg KDL kg?1 soil, however, with a single application of 200 kg K ha?1. Similar results were obtained with sugar beet. This indicates that for maximum yield, even for K demanding crops, it is not necessary to maintain KDL values above 40 mg K kg?1 soil throughout the entire crop rotation. Soil test values increased roughly proportional to the K fertilizer level. About 120 kg fertilizer K ha?1 a?1, markedly more than crop K removal, was required to maintain the initial KDL of 90 mg kg?1. The K concentration of the soil solution in the top soil measured after harvest was increased exponentially by K fertilizer level and so was K leaching from the plow layer into the rooted subsoil. The leached quantity increased from 22 kg K ha?1 a?1 in the plot without K application to 42.79 and 133 kg Kha?1 a?1 in plots supplied with 60, 120 and 180 kg K ha?1 a?1 respectively. Soil test values around 100 mg KDL kg?1 on sandy soils, as often found in the plow layer of farmers fields, lead to K leaching below the root zone that may exceed the critical K concentration of 12 mg K T?1 for drinking water.  相似文献   

11.
Abstract

Polyhalite (PH), a naturally occurring multinutrient fertilizer containing potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), has improved tomato (Solanum lycopersicum L.) production in Brazil but a specific response by tomato to the S in PH is not confirmed. We compared four S sources – PH, sulfate of potash (SOP), sulfate of potash magnesia (SOPM), and single super phosphate (SSP) – applied at a target application rate of 40?kg?S?ha?1 to fertilizers with no S (muriate of potash, MOP), and no K or S at commercial application rates in three commercial fields in Brazil with nitrogen (N), phosphorus (P), and K applied at recommended rates of 355, 500, and 200–300?kg?ha?1, respectively. Consistent across locations, PH increased total yields over the control, MOP, and SSP, with SOP and SOPM higher than the control but not MOP or SSP. Only PH increased marketable yields compared to the control. Yields increased linearly with fruit numbers per plant which were higher for PH than the control or MOP, indicating higher fruit set in PH contributed to yield differences. While fertilizers increased leaf K and S concentrations and soil test K and SO4–S, yield differences did not appear to be related solely to either K or S fertilization, nor to Mg fertilizers to which there was no response. Leaf and fruit Ca concentrations were higher in PH than the control and MOP at some locations suggesting Ca improved fruit set in PH. Results suggest tomato likely responded to the multinutrient content or solubility pattern of PH.  相似文献   

12.
Annual potassium (K) balances have been calculated over a 40‐year period for five field experiments located on varying parent materials (from loamy sand to clay) in south and central Sweden. Each experiment consisted of a number of K fertilizer regimes and was divided into two crop rotations, mixed arable/livestock (I) and arable only (II). Annual calculations were based on data for K inputs through manure and fertilizer, and outputs in crop removal. Plots receiving no K fertilizer showed negative K balances which ranged from 30 to 65 kg ha?1 year?1 in rotation I, compared with 10–26 kg ha?1 year?1 for rotation II. On sandy loam and clay soils, the K yield of nil K plots (rotation I) increased significantly with time during the experimental period indicating increasing release of K from soil minerals, uptake from deeper soil horizons and/or depletion of exchangeable soil K (Kex). Significant depletion of Kex in the topsoil was only found in the loamy sand indicating a K supply from internal sources in the sandy loam and clay soils. On silty clay and clay soils, a grass/clover ley K concentration of ~2% (dry weight) was maintained during the 40‐year study period on the nil K plots, but on the sandy loam, loam and loamy sand, herbage concentrations were generally less than 2% K.  相似文献   

13.
The current study aimed to evaluate the effect of top-dressed potassium (K) application on the production of hybrid cucumber “Sapphire.” The experimental design was a randomized complete block, with five blocks of 0.80 × 0.40 m2 each and eight replicate plants per block. The five fertilization rates of K used were 0, 45, 90, 135, and 180 kg K2O ha?1. Data collection consisted of the estimation of fruit diameter, fruits length, fruit fresh and dry weights, the number of fruits per plant, and the weight of fruits per plant. The number of fruits per hectare and the fruit fresh weight per hectare were calculated. Fruit tissue was analyzed for determination of macronutrient concentrations, pH, titratable acidity, soluble solids, sugar contents, and protein content. The data were statistically analyzed using regression analysis and analysis of variance (ANOVA). There was a significant effect of the fertilization rate of K on fruit diameter, fruit fresh and dry weights, macronutrients concentrations in fruits, titratable acidity, soluble solids, and reducing sugars. A quadratic equation was adjusted for the number of fruits per plant and per hectare; fruit yield per plant and per hectare, with maximum top-dressing doses, was estimated to be between 60 and 95 kg K2O ha?1. A linear increase was obtained in the pH. An increase in the K fertilization rate caused a linear decrease in the fruit length.  相似文献   

14.
Knowledge of forms of potassium (K) in soil is of great importance for formulating sound fertilizer recommendation to banana. Field experiments were conducted to study the effect of graded levels of potash application on forms of potassium at juvenile, grand growth, shooting, and harvest stages of banana on Vertic Haplustept soil. The negative balance of soil-available K was observed in the treatments of 0, 100, and 200 g K2O plant?1. However, at 300-g K2O plant?1 level, the balance was a mere –11 kg ha?1, and positive balance was observed in the treatments of 400 and 500 g K2O plant?1. Significant positive correlation among different forms of K indicated the interdependency and dynamic equilibrium between K forms. Application of K2O above the level of 300 g plant?1 for banana resulted in the build-up of potassium fractions in soil.  相似文献   

15.
This research was carried out to determine the effects of potassium [0, 40, 80, 120 kg potassium oxide (K2O) ha?1] and magnesium (0, 20, 40, 60 kg magnesium oxide (MgO) ha?1) applied into soil separately and together on the grain yield and yield components of sunflower for oil grown in two farmer fields in the semi-arid Central Anatolia in 2009 and 2010. The experiments were set as factorial experiment design in randomized blocks and 4 replicates. Potassium and Mg-fertilizers were used in the single time into base in the sowing. According to the results, K application in the increasing doses increased yield components more than that of Mg. Together giving of the K and Mg in certain combinations took the yield components to maximum levels. The highest grain yields were obtained by the K40Mg40 in the first year (7313 kg ha?1) and by the Mg60 in the second year (6510 kg ha?1).  相似文献   

16.
Abstract

Effective soil diagnostic criteria for exchangeable potassium (Ex-K) combined with inorganic potassium (K) application rates were developed to lower K input in forage corn (Zea mays L.) production using experimental fields with different application rates and histories of cattle manure compost. Two corn varieties, ‘Cecilia’ as a low K uptake variety and ‘Yumechikara’ as a high K uptake variety, were selected from among 20 varieties and tested to make diagnostic criteria for K fertilization applicable to varieties with different K uptakes. The K uptakes increased from 96 to 303 kg K ha?1 for ‘Cecilia’ and from 123 to 411 kg K ha?1 for ‘Yumechikara’ with increasing Ex-K content on a dry soil basis from 0.11 to 0.92 g kg?1 with no inorganic K fertilizer application. The K uptake by corn for achieving the target dry matter yield of 18 Mg ha?1 was estimated to be approximately 200 kg K ha?1 in common between the two varieties. Yields of both varieties achieved the target yield at an Ex-K content of approximately 0.30 g kg?1 with no K fertilization, although ‘Yumechikara’ reached the target yield at a lower Ex-K content. At the low Ex-K content of 0.1 g kg?1, inorganic K fertilizer application at 83 kg K ha?1 was needed to gain the target yield, and apparent K recovery rate for K fertilizer was calculated to be 70% for both varieties. The K uptakes for gaining the target yield by the K fertilization were lower than that by soil K supply. Based on these results, diagnostic criteria of Ex-K and inorganic K application rates were set up as follows: at an Ex-K content of < 0.15 g kg?1, inorganic K fertilizer is applied at 83 kg K ha?1 (100 kg ha?1 as potassium oxide (K2O) equivalent); at an Ex-K content of 0.15–0.30 g kg?1, the application rate is reduced to 33 kg K ha?1 (40 kg K2O ha?1); at an Ex-K content of ≥ 0.30 g kg?1, inorganic K fertilizer is not applied because of sufficient K in the soil. Additionally, we propose that cattle manure compost be used to supplement soil K fertility.  相似文献   

17.
Ustochrept soil was collected from a major potato-growing area in Pakistan for a potassium (K) adsorption isotherm experiment. Adsorption data were fitted to Freundlich and Langmuir adsorption models. Results showed that the Freundlich model (R2?=?0.96**) fit the data better than did the Langmuir model. Fertilizer rates were calculated based on the Freundlich model and targeted solution K levels at 0, 3, 6, 9, 12, 15, 18, 21, 24, and 27 mg K L?1. A field experiment was then conducted on the soil to assess the effect of various soil solution K levels (0–27 mg L?1, with K fertilizer rates at 0, 24, 49, 75, 101, 128, 155, 182, 210, and 237 kg ha?1), on tuber yield and quality along with 300 kg N and 250 kg P2O5 ha?1 as basal doses. Yield response models (linear plus plateau, quadratic, square root, quadratic plus plateau, and exponential) were used to calculate the optimal fertilizer rate for potato crop. Linear plus plateau model fit the data with less bias than the other models. There was a significant effect of K use on the yield and quality of potatoes. Potassium fertilizer application at 130 kg K ha?1, which is equivalent to a soil solution level of 12 mg K L?1, maximized the tuber yield of potato. However, for the improvement in tuber dry matter, reducing sugars, protein contents, and starch contents, the soil solution K level required was as high as14.62 mg L?1 (157 kg ha?1). Even greater rate of K, 17.74 mg L?1 (190 kg ha?1), was needed to maximize vitamin C content in potato.  相似文献   

18.
Abstract

Nitrogen (N) and potassium (K) are usually found in higher concentrations than other macronutrients in apple (Malus x domestica Borkh) fruits and are most frequently associated with changes in fruit quality. The aim of this article was to evaluate the effects of N and K fertilization on some fruit quality attributes of Fuji apple. The experiment was conducted at São Joaquim, State of Santa Catarina, Brazil, during 2004 and 2005. A factorial design was used with N and K annual fertilizer rates (0, 50, 100, and 200 kg ha?1 of N and K2O) replicated in three orchards. Fifteen days prior to harvest, three fruit samples were collected from each treatment and site. One sample was used for total soluble solid content (TSS), titratable acidity, pulp firmness, and fruit color parameter analyses, and the other samples were refrigerated in a conventional atmosphere for 3 and 6 months for subsequent determination of fruit quality. Nitrogen fertilization negatively affected fruit color, flesh firmness, and TSS content. These same variables were positively affected by K fertilization, except for flesh firmness.  相似文献   

19.
Vertisols are characterized by deficiency of nutrients and recently, potassium (K), a major plant nutrient in crops, is gaining attention because of crop removal, fixation by clay minerals and leaching. A field experiment was conducted during the 2015 and 2016 main cropping seasons to test the effect of potash fertilizer on Vertisols of East Gojjam at Gudalima and Dejen/Tik sites using teff crop. The K rates (applied as muriate of potash) were 0, 50,100, and 150?kg ha?1. The experiment was laid out in a randomized complete block design in three replications. The results indicated that the plant height, panicle length, number of effective tillers, dry matter and grain yield of teff increased significantly (P?<?0.05) with applied K. The highest dry matter and grain yield (6966.4 and 2418.2 kg ha?1, respectively) were obtained from the application of 100 kg ha?1 KCl. Total uptake of N, P, and K were enhanced significantly with K treated plots than those without and K efficiency was improved due to the rate of K. The present study demonstrated the importance of K application to supplement NPS for optimum dry matter and grain yield of teff on Vertisols of the study sites.  相似文献   

20.
Based on a long-term finger millet-groundnut rotation study conducted for 24-years during 1992–2015 under Alfisols at Bangalore, organic and inorganic fertilizer effects on soil organic carbon (SOC) sequestration and sustainability of yield were assessed. Field experiments were conducted with T1:Control; T2:FYM@ 10t ha?1; T3:FYM@ 10t ha?1 + 50% NPK; T4:FYM@ 10t ha?1 + 100% NPK, and T5:100% recommended NPK in same plot every year. T5 comprised of 50 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for finger millet and 25 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for groundnut. Sustainability yield index of treatments was assessed using measurements made on variability of yield over years. The amount of carbon sequestered was assessed to identify a superior treatment for improving soil quality. Balanced use of 100% NPK+ FYM for maintenance of SOC at antecedent level with biomass-C of 1.62 Mg C ha?1 year?1 was feasible for sustaining production under semi-arid Alfisols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号