首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Abstract

A wide range of metabolites accumulates under water stress depending on certain metabolic alterations. For example, free amino acids, especially free proline, accumulate in response to water stress ((l)). Proline accumulation is closely connected with carbohydrate metabolism. Thus, a carbohydrate requirement for proline accumulation in water-stressed leaves has been reported (2, 3).  相似文献   

2.
Abstract

This research was undertaken on a paleudult soil in southern Brazil, 30° south latitude, to quantify lime and P effect upon soybean (Glycine max (L.) Merrill). A lime x P factorial experience with lime treatments of 0, 0.5, 1, and 2 times SMP interpretation to pH 6.5, and 0, 44, 88, 132, and 176 kg P/ha with 3 replications were installed. The experiment was conducted for 2 years (1973–74, 1974–75), with leaf‐N, P, and K; yield; seed‐N, P, and K; Bray P2 (0.03N NH4F + 0.1N HC1) avail‐able‐P and soil pH measurements completed each year. Data was evaluated with linear, quadratic, logarithmic, polynomial, segmented line, and multiple regression using the coefficient of determination as goodness of fit.

The best model fit between P treatment and Bray P2 available‐P was a quadratic equation; the model between relative yield and Bray P2‐P with 54% of the relative yield attributed to Bray P2 available‐P, a sigmented line. This model indicated point of maximum yield (91% relative yield) was obtained at 7.4 ppm‐P, with no increase in relative yield with increasing levels of soil available‐P. To calculate the P fertilizer necessary to increase available soil‐P to the level of maximum yield of equation Yp = [1639(7.4 ‐ xs)]1/2, where Yp = kg P/ha fertilizer needed; and xs = initial Bray P2 soil available‐P in ppm's. The lime effect upon soil pH was best described as a linear relationship. Yield increase with lime at this site was not significant at the 5% level.

The leaf‐N, P, and K increased significantly with soil available‐P levels. A second degree polynomial with logarithmic function best defined these relationships. The calculated DRIS indices and sum proved useful to evaluate the plant‐N, P, and K balance of each treatment.

Only seed‐P level was directly related to soil available‐P. Both seed‐N and seed‐K were highly correlated with indirect effects of soil available‐P levels.

Results from this study suggest the segmented line model would best interpret soybean yield response to Bray P2 available‐P for this soil. To obtain maximum yield using this model rather than the second degree polynomial would require less fertilizer P. Foliar analyses interpretation confirmed adequate plant‐P level would be supplied for maximum yield at this level of fertilization.  相似文献   

3.
The long-term effect of the concentration and duration of application of nitrate from the lower part of soybean roots on the nodulation and nitrogen fixation in the upper part of roots was investigated using a two-layered pot system separating the upper roots growing in a vermiculite medium and the lower roots growing in a nutrient solution. Continuous absence of nitrate (hereafter referred to as “0–0 treatment”), and continuous 1 mM (1–1 treatment) and 5 mM (5–5 treatment) nitrate treatments were imposed in the lower pot from transplanting to the beginning of the maturity stage. In addition, 5 mM nitrate was supplied partially from the beginning of the pod stage till the beginning of the maturity stage (0–5 treatment) or from transplanting till the beginning of the pod stage (5–0 treatment). The values of the total plant dry weight and seed dry weight were highest in the 5–5 treatment, intermediate in the 1–1, 5–0, 0–5 treatments, and lowest in the 0–0 treatment. The values of the nodule dry weight and nitrogen fixation activity (acetylene reduction activity) were lowest in the 5–5 treatment. The value of the nodule dry weight in the upper roots was highest in the plants subjected to the 1–1 treatment and exceeded that in the 0–0 treatment. Total nitrogen fixation activity of the upper nodules per plant at the beginning of the pod stage was also highest in the 1–1 treatment. These results indicated that long-term supply of a low level of nitrate from the lower roots could promote nodulation and nitrogen fixation in the upper part of roots. Withdrawal of 5 mM nitrate after the beginning of the pod stage (5–0 treatment) markedly enhanced nodule growth and ARA per plant in the upper roots at the beginning of the maturity stage when the values of both parameters decreased in the other treatments. The nitrate concentration in the nodules attached to the upper roots was low, including the 5–5 treatment regardless of the stages of growth. This indicated that the inhibitory effect of 5 mM nitrate or promotive effect of 1 mM nitrate supplied from the lower roots was not directly controlled by nitrate itself, but was mediated by some systemic regulation, possibly by the C or/and N requirement of the whole plant.  相似文献   

4.
5.
6.
渗透胁迫与大豆幼苗叶片多胺含量的关系   总被引:14,自引:1,他引:14  
用高效液相色谱(HPLC)法对渗透胁迫下两个抗旱性不同的大豆品种(抗旱性弱的豫豆6号和抗旱性强的豫豆24号)幼苗叶片的三种不同形态多胺游离态(Free:f)、酸可溶性共价结合态(Acid.soluble.covalently.conjugated:AS-CC)和酸不溶性共价结合态(Acid.insoluble.covalently.conjugated:AISCC))的含量变化进行了研究。结果如下:三种游离态多胺:腐胺(fPut)、亚精胺(fSpd)和精胺(fSpm)均在渗透胁迫条件下上升,但是豫豆24号的fSpd和fSpm的上升幅度明显大于豫豆6号,而豫豆6号的fPut的升幅明显大于豫豆24号。甲基乙二醛-双(鸟嘌呤腙)(MGBG)处理豫豆24,明显抑制了渗透胁迫诱导的fSpd和fSpm的增加,并且加重了渗透胁迫的伤害;外源Spd处理豫豆6号明显促进了渗透胁迫诱导的fSpd和fSpm的增加,并且减缓了渗透胁迫的伤害。统计分析表明:在渗透胁迫条件下,大豆幼苗叶片的fSpd+fSpm/fPut的比值与相对干重增长率(RDWIR)呈显著正相关。渗透胁迫下,豫豆24叶片的AISCC-PAs含量的上升幅度明显大于豫豆6号。菲咯啉处理明显抑制了渗透胁迫所诱导AISCC-PAs的增加,同时也加重了渗透胁迫对幼苗的伤害。渗透胁迫也引起了幼苗叶片中ASCC-PAs含量的上升,但是在两个大豆品种之间的上升幅度没有差异。这些结果表明,渗透胁迫条件下,大豆幼苗叶片的fSpd、fSpm及AISCC-PAs含量的上升有利于增强大豆幼苗的抗胁迫能力。  相似文献   

7.
The effect of nitrogen (N) source (nitrogen fixation or nitrate assimilation) and progressive water stress on pigment content, carbon assimilation and changes in the activity of certain photosynthetic (Rubisco and phosphoenol pyruvate carboxilase) and photorespiratory enzymes (glutamate synthetase and glycolate oxidase) during vegetative development of soybean plants was studied. Glycolate oxidase declined by 13% in nitrogen-fixing plants under water deficit, and increased in nitrate-fed ones. Nodulated plants were less sensitive to drought than nitrate-fed individuals; although as general growth was inhibited under drought stress in both experimental models. Results support the importance of nitrogen source in soybean responses to water stress. Difference in sensitivity of nitrate-fed and nitrogen-fixing plants towards water stress seems to be related not to nitrogen assimilation process itself, but to complex interactions with photorespiratory flux and stomatal conductance.  相似文献   

8.
Abstract

Soybean (Glycine max (L.) Merr. cv Bragg) plants were grown in the greenhouse using a low‐Mn Leefield sand amended with 0, 2.5, 5, 20 and 50 yg Mn/g. The plants were inoculated and were primarily dependent on symbiotically fixed N. Measurements of DTPA‐extractable soil Mn, soil pH, leaf tissue Mn, top weight, top N content, and nodule weight, volume and number were made at 27, 42, 56, 63 and 69 days after planting. The DTPA extrac‐tant was a good predictor of leaf tissue Mn giving a highly significant (P = 0.01) overall correlation coefficient of 0.704 for this comparison. Because of an unexpected decline in soil pH from 6.8 to 6.0 and an associated increase in DTPA‐extractable Mn from 0.14 to 0.24 yg/g during preparation and handling prior to the first harvest time, Mn in the leaf tissue of the controls was never less than 21 yg/g. Since this concentration of Mn is above the deficient level, no significant responses in top growth, nitrogen fixation or nodule measurements were obtained from the addition of low rates of Mn. The highest Mn rate was only mildly toxic in terms of top growth and top N content, producing leaf tissue having Mn concentrations ranging from 171 to 180 yg/g at the last three harvest periods.  相似文献   

9.
ABSTRACT

Two rice varieties, ‘Piaui’ (a landrace) and ‘IAC-47’ (an improved variety), were grown in nutrient solution containing 20 mg nitrate (NO3 ?)-nitrogen (N) L? 1 up to 32 days after germination (DAG). After this, a group of plants received 200 mg NO3 ?NL? 1, while the other was kept at 20 mg NO3 ?NL? 1 up to 42 DAG. From 42 until 56 DAG, all plants received 5 mg NO3 ?NL? 1. Plants were collected at 42 and 56 DAG, soluble fractions, nitrate reductase (NR) and GS enzymatic activities were determined. The nutritional history of the plants affected significantly the uptake and use of nitrogen (N), and should be taken into consideration in the studies of N-use efficiency. The variety ‘Piaui’ was more efficient than ‘IAC-47’ in N-uptake use, accumulating more NO3 ? in its tissues at the initial phases of its cycle for subsequent utilization.  相似文献   

10.
为进一步摸清农户生产实践条件下果园土壤硝态氮分布特征及影响因素,以河北太行山山前平原的保定地区葡萄园为研究对象,调查28个果园生产管理现状,测定分析葡萄园和临近农田共31个样点0—200 cm土壤硝态氮含量、累积量及主要影响因素。结果表明:葡萄生产中氮肥施用量偏高,每季平均为297 kg/hm2,过量的养分投入导致氮素在土壤中累积,0—200 cm土层硝态氮淋洗现象明显,平均累积量高达1 555 kg/hm2。不同树龄、施氮量、灌溉量水平下,土壤硝态氮含量有所不同,但均表现出随土层深度增加而增加的趋势,并且明显高于农田土壤。相关性分析表明,硝态氮累积量与树龄和施氮量均呈极显著正相关,与灌溉量呈显著负相关。通径分析表明,对土壤硝态氮累积量影响最大的因素为施氮量,其次为树龄和施肥次数,最后为灌溉量,施肥次数主要通过影响施氮量来间接影响硝态氮累积量。研究区域葡萄园氮素盈余严重,土壤硝态氮大量累积,并向深层土壤淋洗,影响该地区硝态氮累积的主要因素为施氮量、树龄和灌溉量。  相似文献   

11.
The pollution of agricultural soils by metals is of growing concern worldwide, and is increasingly subject to regulatory limits. However, the effect of metal pollutants on the responses of plants can vary with soil types. In this study, we examined the growth and antioxidant responses of soybean plants exposed to contrasting soils (Oxisol and Entisol), which were artificially contaminated with cadmium (Cd) or barium (Ba). Cadmium reduced plant growth at concentrations higher than 5.2 mg (kg soil)–1, while Ba only affected plant growth at 600 mg kg–1. Such levels are higher than the limits imposed by the Brazilian environmental legislation. Lipid peroxidation was increased only at a Cd concentration of 10.4 mg kg–1 in the Oxisol, after 30 d of exposure. Twelve superoxide dismutase (SOD; EC 1.15.1.1) isoenzymes were evaluated, most of which were classified as Cu/Zn forms. The SOD activity in the leaves of plants grown in the Oxisol decreased over time, whilst remaining high in the Entisol. Catalase (CAT; EC 1.11.1.6) activity in the leaves exhibited little response to Cd or Ba, but increased over time. Glutathione reductase (GR; EC 1.6.4.2) activity was reduced over time when exposed to the higher Cd concentrations, but increased following Ba exposure in the Oxisol. The enzyme‐activity changes were mainly dependent on soil type, time of exposure and, to a lesser extent, the metal concentration of the soil. Soybean plants grown in a sandy soil with a low buffering capacity, such as Entisol, suffer greater oxidative stress than those grown in a clay soil, such as Oxisol.  相似文献   

12.
ABSTRACT

The capacity of a plant to take up nitrate is a function of the activity of its nitrate-transporter systems and the size and architecture of its root system. It is unclear which of the two components, root system or nitrate-uptake system, is more important in nitrogen (N) acquisition under nitrogen-sufficiency conditions. Two maize (Zea mays L.) inbred lines (478 and Wu312) grown in nutrient solution in a controlled environment were compared for their N acquisition at 0.1, 0.5, 2.5, 5, and 10 mmol L?1 nitrate supply. Genotype 478 could take up more N than Wu312 at all nitrate concentrations, though the shoot biomass of the two genotypes was similar. Genotype 478 had a larger leaf area and longer root length. The specific N uptake rate of 478 (μmol N g?1 root. d?1) was lower than that of Wu312. In an independent nitrate-depletion experiment, the potential nitrate uptake rate of 478 was also lower than that of Wu312. No genotypic difference was found in photosynthesis rate. It was concluded that the greater N acquisition ability in 478 involves the coordination of leaf and root growth. Vigorous leaf growth caused a large demand for N. This demand was met by the genotype's large root system. Besides providing a strong sink for N uptake, the larger leaf area of 478 might also guarantee the carbohydrate supply necessary for its greater root growth.  相似文献   

13.
为探讨设施菜田间作控制害虫斜纹夜蛾(Spodoptera litura)的效果及对捕食性天敌多样性的影响,以在上海市浦东新区设施菜田设置的青菜间作大豆或芋艿为处理,以非间作设施青菜田为对照,对间作作物大豆或芋艿植株上诱集到的斜纹夜蛾幼虫和卵块进行了调查,并对各处理区和对照区青菜田捕食性天敌群落结构特征进行系统调查和分析。结果表明,在调查期内(7~9月),每100株大豆和芋艿诱集斜纹夜蛾幼虫分别为1 098.84±107.50头和1 260.78±126.16头,诱集斜纹夜蛾卵块数分别为17.45±1.31个和20.76±1.81个;与非间作青菜田相比,青菜田间作大豆或芋艿后斜纹夜蛾种群数量分别减少37.83%或45.89%;间作大豆或芋艿青菜田捕食性天敌分别隶属5目21科31种和5目21科32种,而非间作青菜田隶属5目19科26种;非间作青菜田捕食性天敌的优势种为拟环纹狼蛛(Lycosa pseudoamulata)和草间小黑蛛(Erigonidium graminicolum),而间作大豆或芋艿后天敌优势种群均为拟水狼蛛(Pirata subpiraticus)、拟环纹狼蛛(Lycosa pseudoamulata)和草间小黑蛛(Erigonidium graminicolum);间作大豆青菜田捕食性天敌的个体数量、丰富度、多样性指数分别为91.22±4.91头.100株?1、29.74±0.30、4.53±0.03,较非间作青菜田分别增加58.70%、25.27%、10.60%;间作芋艿青菜田捕食性天敌的个体数量、丰富度、多样性指数分别为92.09±5.03头.100株?1、29.96±0.35、4.54±0.03,较非间作青菜田分别增加60.21%、26.19%、11.00%。本研究结论可为上海地区发展设施青菜田间作大豆或芋艿种植模式提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号