首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a potentially productive, high‐yielding grain crop in the southeastern USA. A lack of response in pearl millet grain yield to fertilizer N in field studies indicates pearl millet may be able to remobilize N from vegetative to reproductive tissue. The N remobilization capabilities of a plant can be affected by the form of N supplemented. The objectives of this study were to evaluate the effects of N‐form ratio (NH4 + : NO3 ) on the N remobilization capabilities of pearl millet when N is removed from the nutrient solution at the boot stage and to evaluate the effects of changing N‐form ratios at the boot stage on the seed yield and N content of pearl millet. Pearl millet was grown in solution culture under greenhouse conditions. There were 10 treatments: an initial NH4 + : NO3 ratio of 3:1 followed by a change at the boot stage to either all NO3 , no N, or a continuation of the initial ratio; an initial NH4 + : NO3 ratio of 1:1 followed by a change at the boot stage to either all NO3 , all NH4 + no N, or a continuation of the initial ratio; and an initial NH4 + : NO3 ratio of 1:3 followed by a change at the boot stage to either all NH4 + no N, or a continuation of the initial ratio. Pearl millet dry matter accumulation was insensitive to changes in N‐form ratio or N removal at the boot stage. The lack of seed yield response to removal of N was a result of pearl millet utilizing N present in culms and leaves for seed production. Applications of N after the boot stage did not increase seed yield, but led to luxury consumption of N.  相似文献   

2.
Solution pH, temperature, nitrate (NO3 )/yammonium (NH4 +) ratios, and inhibitors effects on the NO3 and NH4 + uptake rates of coffee (Coffea arabica L.) roots were investigated in short‐term solution culture. At intermediate pH values (4.25 to 5.75) typical of coffee soils, NH4 + and NO3 uptake rates were similar and nearly independent of pH. Nitrate uptake varied more with temperature than did ammonium. Nitrate uptake increased from 0.05 to 1.01 μmol g‐1 FWh‐1 between 4 and 16°C, and increased three‐fold between 16 to 22°C. Between 4 to 22°C, NH4 + uptake rate increased more gradually from 1.00 to 3.25 μmol g‐1 FW h‐1. In the 22–40°C temperature range, NH4 + and NO3 uptake rates were similar (averaging 3.65 and 3.56 umol g‐1 FW h‐1, respectively). At concentrations ranging from 0.5 to 3 mM, NO3 did not influence NH4 + uptake rate. However, NO3 uptake was significantly reduced when NH4 + was present at 3 mM concentration. Most importantly, total uptake (NO3 +NH4 +) at any NO3 /NH4 + ratio was higher than that of plants fed solely with either NH4 + or NO4 . Anaerobic conditions reduced NO3 and NH4 + uptake rate by 50 and 30%, respectively, whereas dinitrophenol almost completely inhibited both NH4 + and NO3 uptake. These results suggest that Arabica coffee is well adapted to acidic soil conditions and can utilize the seasonally prevalent forms of inorganic N. These observations can help optimizing coffee N nutrition by recommending cultural practices maintaining roots in the temperature range optimum for both NH4 + and NO3 uptake, and by advising N fertilization resulting in a balanced soil inorganic N availability.  相似文献   

3.
Uptake of NO3 , NH4 +, P, K++, Ca++ and Mg++, as influenced by the stage of plant development and three NO3 : NH4 + ratios (1: 0, 1: 1, and 0: 1), was determined for sweet pepper (Capsicum annuum L. cv. ‘California Wonder'). Uptake was highest during fruit development and immediately after fruit harvest, indicating that fruit removal promotes nutrient uptake. When NO3 and NH4 + were supplied in equal concentrations, NO3 was absorbed more readily. Each increment in NH4 + decreased the uptake of K+, Ca++, and Mg++ by fruit tissue, while no significant effect on the N and P content of the fruit was observed. Ammonium nutrition reduced plant dry weight and fruit yield in comparison to NO3 . Results from this study suggest that NO3 is the preferred N form, and that fertilizer application should be scheduled according to specific physiological stages to maximize nutrient uptake. Nutrient content of vegetative tissue was not indicative of potential yield.  相似文献   

4.
ABSTRACT

Interactions between nitrate (NO3 ?), potassium (K+), and ammonium (NH4 +) were investigated using hydroponically grown cucumber (Cucumis sativus L.) plants. Ammonium as the sole nitrogen (N) source at 10 mM was toxic and led to overall growth suppression, chlorosis, and necrosis of leaves. After 20 days, 50% of the plants were dead. However, when NO3 ? was supplied at very low concentration together with high NH4 + (only 1% of total 10 mM N) all seedlings survived and their growth was improved. High K+ concentration (5 mM) also alleviated NH4 + toxicity and increased plant growth several fold compared to intermediate concentration of K+ (0.6 mM). Leaf total N and 15N derived from 15N-labelled NH4 + increased in the presence of NO3 ?, but decreased at high K+ concentration. High K+ supply enhanced total carbon (C) and δ 13C and stimulated GS and PEPCase activities in leaves and roots. Nitrate supplementation had no effect on GS or PEPCase activities. It is concluded that K+ may alleviate NH4 + toxicity, partly by inhibiting NH4 + uptake, partly by stimulating C and N assimilation in the roots.  相似文献   

5.
Abstract

The potential for using dicyandiamide (DCD) to enhance yield of take‐all‐infested winter wheat (Triticum aestivum L.) was evaluated in six field experiments on four acid soils (pH 5.7–6.2). Ammonium and NO3 concentrations and NH4 +: NO3 ratios in 0–10 and 10–20 cm soil depths were measured for ten weeks after spring topdressing 180 kg N/ha as urea with 0, 13, or 27 kg DCD/ha. Nitrification was strongly inhibited for 6 to 10 weeks by either 13 or 27 kg DCD/ha. Averaged over the ten‐week sampling period, NH4 +: N03 ratios in the 0–10 cm depth of soil were 36: 1 for DCD‐treated plots as compared to 2: 1 for plots receiving only urea. Ratios in DCD‐treated plots were considerably wider than ratios associated with take‐all suppression (10: 1 to 3: 1) in earlier studies. Extractable NH4 + + NO3 concentrations in soil were high in DCD‐treated plots after 30 to 40 days, suggested that DCD had reduced crop uptake of N because of the lower mobility of NH4 + as compared to NO3 . In four of the six studies, grain yields tended to be reduced by DCD. Results suggest that lower rates of DCD and/or application of some NO3 will be necessary if DCD is to be used as a tool for suppressing take‐all.  相似文献   

6.
Uptake and assimilation of inorganic N in young rice plants has been studied with labelled N (N-15). Depletion of the plants' carbohydrate content, obtained by a preceding dark period, resulted in a drastic reduction of NH4 +-N uptake. Plants exposed to low light intensity showed diminishing NH4 +-N uptake rates as compared with plants exposed to full light intensity, the latter showing constant NH4 +-N uptake rates during the whole experimental period. The percentage of labelled insoluble N in total labelled N was not significantly affected by a preceding dark period, whereas the low light intensity resulted in a lower proportion of insoluble N in roots and shoots. The incorporation of labelled N into the insoluble fraction (proteins, nucleic acids) was higher in plants fed with NH4 +-N than in those fed with NO3 -.

The uptake of NH4 +-N was not significantly affected by NO3 -, whereas the NO3- uptake rate was considerably reduced in the presence of NH4 +-N. Low energy status of plants affected the nitrate uptake more than the uptake of NH4 +-N. The results show that uptake and assimilation of inorganic N depend much on the energetic status of plants. Nitrate uptake and assimilation is more sensitive to low energy conditions than NH4 +-N.  相似文献   

7.
Abstract

Nitrogen‐form effect on nutrient uptake and the subsequent concentration of nutrients in turfgrass plant tissue has not been thoroughly investigated. This study evaluated the effects of clipping regime and N‐form on the tissue concentration of macronutrients and micronutrients and macronutrient uptake in ‘Penncross’ creeping bentgrass (Agrostis palustris Huds.). Turfgrass plugs were grown under greenhouse conditions in a modified Hoagland's solution with a combination of three nutrient solutions (100% NO3 ?, 100% NH4 +, and 50:50 ratio of NH4 +:NO3 ?) and two cutting regimes (cut and uncut). Concentrations of macronutrients and micronutrients were determined for shoot, root and verdure. Nutrient uptake was determined weekly. Uncut NO3 ?‐treated plants accumulated higher concentrations of K, Ca, Mg, B and Cu in the shoot tissue; P, K, Ca, Mg, B, Cu, Mn and Zn in the root tissue; and P, Ca, Mg, B, Fe and Mn in the verdure compared to uncut NN4 +‐treated plants. Nitrate uptake was greater with uncut NO3 ?‐treated plants than was NH4 + absorption with uncut NH4 +‐treated plants. Plants grown with the uncut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with the uncut NO3 ? and 50:50 treatments adsorbed higher amounts of P, K, and Ca compared to the NH4 + treatment. The cut NO3 ?‐treated plants accumulated higher concentrations of K in the shoot tissue; P, Ca, Mg, B, Cu, Fe and Mn in the root tissue; and B in the verdure than did the cut NH4 +‐treated plants. Cut NO3 ?‐treated plants adsorbed less NO3 ? than did cut NH4 +‐treated plants adsorbed NH4 +. The cut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with NO3 ? and 50:50 treatments, under both cutting regimes, resulted in higher concentrations of most macro‐ and micronutrients and greater nutrient uptake compared to the NH4 +‐treated plants.  相似文献   

8.
The influence of nitrogen (N) forms and chloride (Cl) on solution pH and ion uptake in the hydroponic culture of Ageratum houstonianum [ammonium (NH4 +)‐tolerant] and Salvia splendens (NH4 +‐sensitive) for a period of 216 hours was investigated. The pH of the hydroponic solution (initially 6.50) containing either NH4 + or NH4 ++nitrate (NO3 ) was drastically lowered (3.08), whereas that of the same solution containing NO3 was raised (7.74). Solution pH changed more by ageratum than by salvia. The solution Cl concentration did not influence pH significantly. However, addition of Cl in the solution lowered transpiration rate in both NH4 + and NO3 treatments. Total N uptake was the greatest in the NH4 + + NO3 treatment and the lowest in the NO3 treatment. In the NH4 + + NO3 treatment, NO3 uptake was suppressed by NH4 + (to about 50%), while NH4 + uptake was not affected by NO3 . The rate of Cl uptake was the lowest in the NH4 + treatment, but was similar in the NH4 + + NO3 and NO3 treatments. Uptake of potassium (K+), dihydrogen phosphate (H2PO4 ), sulfate (SO4 ‐2), manganese (Mn+2), and zinc (Zn+2) was significantly enhanced in the NH4 + treatment. The uptake rate of calcium (Ca+2) and magnesium (Mg+2) was the highest in the NO3 treatment. Absorption of copper (Cu+2) and boron (B) was not affected by N source. Ion uptake was more stable in the solution containing both NH4 + and NO3 than in the solution containing either NH4 + or NO3 . The uptake rate of total N, NH4 +, NO3 , Mn+2, Cu+2, and Zn+2 was higher, whereas that of Cl and molybdenum (Mo) was lower in ageratum than in salvia. Amounts of total anion (TA) and total cation (TC) absorbed, the sum of TC and TA, and the difference between TC and TA (TC‐TA) were affected by N source, Cl level, and their interactions. The NO3 treatment, as compared to the NH4 + or the NH4 + + NO3 treatment, reduced total cation and anion uptake while increasing TC‐TA, especially in the absence of Cl. Plant tissue ion contents were also affected by N source and Cl level.  相似文献   

9.
Abstract

Root‐tip, 1‐cm of Sorghum bicolor (L.) Moench cv SC283, SC574, GP‐10, and Funk G522DR were exposed to calcium (45Ca2+) at pH 5.5 for 2‐hr in the presence of nitrate‐nitrogen (NO3?‐N) or ammonium‐nitrogen (NH4+‐N). Nitrate (0.1 mM) induced significantly increased 45Ca uptake in Funk G522DR, SC283, and GP‐10 while 0.01 mM NO3 ?‐N induced significantly increased 45Ca'uptake in SC574, but 45Ca absorption was significantly decreased at 1 mM NO3—N. In the presence of the NH4+ ion, 45Ca uptake was increased up to 8X that of the NH4 +‐N untreated roots. When ammonium chloride (NH4CI) was used, the Cl? tended to induce an increased 45Ca uptake. Cultivar variation was present.  相似文献   

10.
Maize (Zea mays L. cv. Anjou 256) seedlings were grown hydroponically for 10 d in a split‐root system (3mM N; pH 5.5) under either a homogeneous supply (HS) or a simultaneous, but spatially separated supply (SS) of NH4 + andNO3 . Treatments comprised three NH4 +:NO3 ratios (1:4, 1:1, 4:1). Shoot dry matter and various root traits (dry matter, number of laterals, length of main axes, total root length and total root surface area) were determined. For all NH4 +:NO3 ratios, shoot dry matter, root dry matter, total root length, and root surface area, were greater under HS than under SS. Under both SS and HS, increasing NH4 +:NO3 ratios resulted in decreased shoot and root dry matter production, but did not alter the shoot:root dry matter ratio. Under SS, root dry matter, root length, and root surface area was greater on the NO3 ‐fertilized side than on the NH4 + ‐fertilized side. The allocation of root dry matter, root length, and root surface area to the NH4 + or NO3 compartments was unaffected by changes in the NH4 +:NO3 ratio. Enhanced NH4 + nutrition has detrimental effects on top growth, but roots are apparently unable to avoid excessive NH4 + uptake by proliferating in zones where NO3 is the only form of N.  相似文献   

11.
Calcium uptake by bell pepper (Capsicum annuum L. cv. ‘California Wonder') varied by stage of plant development and N form supplied (NO3 NH4 + ratios: 1:0, 3:1, 1:1, 1:3, and 0:1) in a hydroponic study. Uptake of Ca++ was highest at bloom and during fruit expansion, making the fruit development stage the highest demand period. Calcium uptake declined with each increasing increment of NH4 + relative to NO3 supplied, although fruit yield was not significantly reduced until the ratio of NH4 + to NO3 exceeded 50%. Tissue Ca++ levels in the blossom‐end of the fruit were reduced whenever NH4 + was included with N supplied. Vegetative yield of plants followed the same trend as that observed for total fruit dry weights. Our results indicate that pepper yields are higher when NO3 is the predominant form of N. Also, these results strongly suggest that Ca++ fertilizer applications should precede the bloom period and continue during fruit development to ensure adequate Ca++ availability for fruit development.  相似文献   

12.
Ammonium(NH+4) is the main nitrogen(N) form for rice crops, while NH+4near the root surface can be oxidized to nitrate(NO-3)by NH+4-oxidizing bacteria. Nitrate can be accumulated within rice tissues and reused when N supply is insufficient. We compared the remobilization of NO-3stored in the tissue and vacuolar between two rice(Oryza sativa L.) cultivars, Yangdao 6(YD6, indica)with a high N use efficiency(NUE) and Wuyujing 3(WYJ3, japonica) with a low NUE and measured the uptake of NO-3, expression of nitrate reductase(NR), NO-3transporter genes(NRTs), and NR activity after 4 d of N starvation following 7-d cultivation in a solution containing 2.86 mmol L-1NO-3. The results showed that both tissue NO-3concentration and vacuolar NO-3activity were higher in YD6 than WYJ3 under N starvation. YD6 showed a 2- to 3-fold higher expression of OsNRT2.1 in roots on the 1st and 4th day of N starvation and had significantly higher values of NO-3uptake(maximum uptake velocity, Vmax) than the cultivar WYJ3.Furthermore, YD6 had significantly higher leaf and root maximum NR activity(NRAmax) and actual NR activity(NRAact) as well as stronger root expression of the two NR genes after the 1st day of N starvation. There were no significant differences in NRAmax and NRAact between the two rice cultivars on the 4th day of N starvation. The results suggested that YD6 had stronger NRA under N starvation, which might result in better NO-3re-utilization from the vacuole, and higher capacity for NO-3uptake and use, potentially explaining the higher NUE of YD6 compared with WYJ3.  相似文献   

13.
Growth, development, and uptake of essential nutrients as influenced by nitrogen (N) form and growth stage was evaluated for ‘Freedom’ poinsettias (Euphorbia pulcherrima Willd. Ex Klotz.). Treatments consisted of five nitrate (NH4 +):ammonium (NO3 ) ratios (% NH4 +:% NO3 ) of 100:0, 75:25, 50:50, 25:75, and 0:100 with a total N concentration of 150 mg L‐1. Plants were grown in solution culture for ten weeks under greenhouse conditions. Nutrient uptake data was combined into three physiological growth stages. Growth stage I (GSI) included early vegetative growth (long days). Growth stage II (GSII) began at floral induction and leaf and bract expansion (short days). Growth stage III (GSIII) was from visible bud through anthesis and harvest. Dry weights for all plant parts and height increased as the ratio of NO3 increased. Leaf area and bract area were maximized with 25:75 and 50:50 N treatments, respectively. Nitrogen treatments significantly affected foliar nutrient concentrations with calcium (Ca++) and magnesium (Mg++) being highest when NO3 was the predominant N form. Uptake of each macronutrient was averaged across all treatments and divided into physiological growth stages (GS) to identify peak demand periods during the growth cycle. The greatest uptake of NH4 + and NO3 was from the early vegetative stage to floral induction (GSI). Phosphorus (P), potassium (K+), and Mg++ uptake were greatest from floral induction to visible bud (GSII) and Ca++ uptake remained relatively unchanged through GSI and GSII. Uptake was lowest for all nutrients from visible bud to anthesis (GSIII). Results from this study clearly indicate that peak demand periods for macronutrient uptake existed during the growth cycle of poinsettia.  相似文献   

14.
Southern peas [Vigna unguiculata, (L.) Walp.] cultured with 100% NH+ 4 produced no viable flowers, while treatments in which NO 3 composed 50% or more of the N form were not significantly different in the number of flowers formed. Flower abortion was least with 100% NO 3 at the lower N concentration and with 75% and 100% NO 3 at the higher N concentration. Further increments of NH+ 4 resulted in greater flower abortion. The trends in flower survival were reflected in the number of pods and number of seed/plant. At the lower N concentration, the addition of NH+ 4 slowed pod maturity, while at the higher N concentration pod maturity was hastened with the addition of up to 50% NH+ 4. The dry weight and N content of tissues were generally greater with the higher N concentration and with N combinations containing predominantly NO 3, but trends varied with the plant part being analyzed. Ammonium appears to adversely influence reproductive development and/or NO 3 is essential to complete the reproductive development of southern peas. The observed differences in the response of southern peas to N form may account for previously reported discrepancies concerning the effectiveness of N fertilization on growth and yield parameters. Also, vegetative growth and vegetative N content appear to be poor indicators of final seed yields of southern peas if NH+ 4 supplies a significant portion of the N form utilized by the plant.  相似文献   

15.
Chickpea plants (Cicer arietinum L cv. ILC 195) were grown for 24 days in water culture under two regimes of nitrogen nutrition (NO3 or NH4‐N) with or without Fe. For plants fed with NO3‐N, Fe stress severely depressed fresh weight accumulation and chlorotic symptoms of Fe‐deficiency developed rapidly. Little difference in growth occurred in the NH4‐fed plants, whether or not Fe was withheld, with no visual evidence of Fe‐deficiency indicating a beneficial effect of NH4 in depressing the symptoms of Fe chlorosis. Typical pH changes were measured in the nutrient solution of the control plants in relation to nitrogen supply, increasing with NO3 and decreasing with NH4‐nutrition. With both forms of nitrogen, plants acidified the nutrient solution in response to Fe‐stress. Under NH4‐nutrition, acidification was enhanced by withholding Fe. In the NO3‐fed plants the uptake of all nutrients was reduced by the stress but proportionally NO3‐ and K+ were most affected. Total anion uptake was depressed more than that of cation uptake. For the NH4‐fed plants withholding Fe resulted in an increased uptake of all ions except NH4 + which was depressed. Regardless of the form of N‐supply, when Fe was withheld from the nutrient solution the net H+ efflux calculated from the (C‐A) uptake values was closely balanced by the OH” added to the nutrient solution to compensate for the pH changes. Evidence of accumulation of organic acids in the Fe‐stressed plants was found, especially in the NO3‐fed plants, indicating a role for these internally produced anion charges in balancing cation charge in relation to the depression of NO3 uptake associated with Fe‐stress.  相似文献   

16.
ABSTRACT

Aspects of ammonium (NH4 +) toxicity in cucumber (Cucumis sativus L.) were investigated following growth with different N sources [nitrate (NO3 ?), NH4 +, or NH4NO3] supplied in concentrations of 1, 5, 10, or 15 mM. Plant dry weights and root: shoot ratios were lower with NH4 +-fed plants than with NO3 ?-fed plants. Ammonium accumulated strongly in leaves, stem, and roots when the concentration in the growth medium exceeded 1 mM. The increase in tissue NH4 + coincided with saturation of glutamine synthetase activity and accumulation of glutamine and arginine. Low tissue levels of calcium and magnesium in the NH4 +-fed plants constituted part of the NH4 +-toxicity syndrome. Additions of small amounts of NH4 + to NO3 ? -grown cucumber plants markedly increased the growth.  相似文献   

17.
Effects of varying the proportions of NO3 and NH4+ in the growth medium on seedling growth and tomato fruit yield (Lycopersicon esculentum L. cv. Trust F1) were investigated in greenhouse hydroponic experiments. The presence of NH4+ as the sole N source (11 mM) was toxic: it curtailed growth and decreased chlorophyll content of the leaves. However, at low concentration (10 % of total N), the presence of NH4+, with or without added dissolved inorganic carbon (DIC), increased vegetative growth and fruit yield by ˜ 15 %, and enhanced taste/flavor of the fruits. In DIC‐enriched treatment, pH was maintained at 5.8 by addition of KHCO3 or as CaCO3. The presence of NH4+, at 10 % of total N, inhibited NO3 uptake rates by ˜ 27 %. The rates of uptake of NO3 and NH4+ were comparable (13.3 and 14.2 mmol plant—1 d—1, respectively, in the presence of DIC, and 14.7 and 14.0 mmol plant—1 d—1, respectively, in the absence of DIC), despite such a large difference in their concentrations in the nutrient feed solution. A higher proportion of NH4+ (up to 50 % of total N) had no further significant effect upon early vegetative growth, but in a long‐term experiment resulted in a high incidence of blossom end‐rot (BER) disease, thereby severely curtailing fruit yield. The presence of even 1.1 mM NH4+ reduced Ca2+ and Mg2+ accumulation in the leaves as well as in fruits.  相似文献   

18.
Plant nitrogen (N) uptake, growth, and N use efficiency may be affected by N form (NO3 or NH4 +) available to the root. The objectives of this study were to determine the effect of mixed N form on dry matter production and partitioning, N uptake, and biomass N use efficiency defined as total dry matter produced per unit plant N (NUE1) in U.S. and tropical grain sorghums [Sorghum bicolor (L.) Moench]. The U.S. derived genotype CK 60 and three tropical genotypes, Malisor‐7, M 35–1, and S 34, were evaluated in a greenhouse trial using three nutrient solutions differing in their NO3 /NH4 + ratio (100/0, 75/25, 50/50). Shoot and root biomass, N accumulation, and NUE, were determined at 10‐leaf and boot stages. Averaged over all genotypes, shoot and root biomass decreased when NH4 + concentration was increased in the solution. Shoot biomass was reduced by 11% for 75/25 and 26% for 50/50 ratios, as compared to 100/0 NO3 /NH4 +. Similarly, root biomass reduction was about 34% and 45% for the same ratios, respectively. Increasing NH4 + concentration also altered biomass partitioning between shoot and root as indicated by decreasing root/shoot ratio. Total plant N content and NUE1 were also reduced by mixed N source. Marked genotypic variability was found for tolerance to higher rates of NH4 +. The tropical line M 35–1 was well adapted to either NO3 as a sole source, or to an N source containing high amounts of NH4 +. Such a characteristic may exist in some exotic lines and may be used to improve genotypes which do not do well in excessively wet soil conditions where N uptake can be reduced.  相似文献   

19.
Ammonium and nitrate are the major forms of nitrogen (N) present in tropical soils. An experiment was conducted to assess the influence of nitrate and ammonium forms (NO3?, NH4+, and mix of NO3? + NH4+), and levels (1.5–12.0 mM) of N on the growth and nutrition of cacao (Theobroma cacao L). Growth parameters were significantly influenced by N forms, and nitrogen supplied as NH4+ proved better for the growth of cacao compared with NO3? form and mixtures of these two forms. Irrespective of the forms of N, levels of N had no significant effect on plant growth parameters. Nutrient efficiency ratios (NERs) (shoot dry matter produced per unit of nutrient uptake) for macronutrients were sulfur>phosphorus>calcium>magnesium>nitrogen>potassium (S>P>Ca>Mg>N>K) and for micronutrients NERs were in the order of copper>boron>zinc>iron>manganese (Cu>B>Zn>Fe>Mn).  相似文献   

20.
Water‐soluble nitrogen (N) fertilizer is intensively used in greenhouse crop production. Any N not used by a crop is subject to leaching as nitrate (NO3‐N), which may pollute groundwater. A close correlation between N supply and N uptake by plants would increase the efficiency of N fertilization and minimize the possibility of NO3‐N pollution. The objectives of this study were to measure N uptake by American marigold (Tagetes erecta L. ‘First Lady') and New Guinea Impatiens (NGI) (Impatiens hawkeri Bull. ‘Selenia') during growth, to determine the effect of plant age on N uptake, to determine if the two species have a preference for NO3‐N or ammonium (NH4‐N), and to determine the total N required for 70 days of growth.The plants were grown in solution culture using solutions supplying 120 mg each of NO3‐N and NH4‐N. At ten day intervals, six cultures were chosen at random for nutrient solution analysis and plant sampling for dry weight and tissue analysis. Nitrate‐N uptake was greater than NH4‐N uptake throughout the experiment for both marigold and NGI. Total N uptake by marigold was greater during the first 50 days after transplanting with maximum N uptake during the period 30 to 50 days. In contrast, N uptake by NGI was greater during the period 40 to 70 days after transplanting. Maximum N uptake for NGI occurred during the period 60 to 70 days. Results of this study suggest that early N fertilization of marigold could be more important for their growth and quality than N applied later. For NGI, N fertilization later in the crop's development appears to be more important than early on. The total N absorbed by marigold during the experiment was 1.1 gm N plant‐1; for NGI the quantity was 0.5 gm N plant‐1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号