首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
ABSTRACT

Greenhouse experiments were conducted to assess the effects of salinization of soil on emergence, seedling growth, and mineral accumulation of Prosopis cineraria (Linn.) Druce (Mimosaceae). A mixture of chlorides and sulfates of sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) was added to the soil and salinity was maintained at 5.1, 7.2, 9.3, 11.5, and 13.3 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Seedlings did not emerge when soil salinity exceeded 11.5 dS m?1. Results suggested that this tree species is salt tolerant at seed germination and seedling stages. Elongation of stem and root was retarded by increasing salt stress. Young roots and stem were most tolerant to salt stress, followed by old roots and leaves. Leaf tissue exhibited maximum reduction in dry-mass production in response to increasing salt stress. However, production of young roots and death of old roots were found to be continuous and plants apparently use this process as an avoidance mechanism to remove excess ions and delay onset of ion accumulation in this tissue. Plants accumulated Na in roots and were able to regulate transfer of Na ions to leaves. Stem tissues were a barrier for translocation of Na from root to leaf. Moreover, K decreased in root tissues with increased salinization. Nitrogen (N) content significantly (P < 0.01) decreased in all tissues (leaf, stem, and root) in response to low water treatment and salinization of soil. Phosphorus (P) content significantly (P < 0.01) decreased while Ca increased in leaves as soil salinity increased. Changes in elements-accumulation patterns and the possible mechanisms for avoidance of Na toxicity in tissues and organism level are discussed.  相似文献   

2.
Greenhouse experiments in a completely randomized block design were conducted to assess the effect of soil salinity on emergence, growth, water status, proline content, and mineral accumulation of seedlings of Tamarindus indica Linn. (Caesalpiniaceae). Sodium chloride (NaCl) was added to the soil, and the salinity was maintained at 0.2, 3.9, 6.2, 8.1, 10.0, 11.9, and 13.9 dS m?1. Salinity lowered water content and water potential of tissues, which resulted in an internal water deficit to plants. Consequently, seedling growth significantly decreased and proline content in tissues increased as salinity increased. There were no effective mechanisms to control net uptake of sodium (Na+) and its transport to shoot. Potassium (K) and calcium (Ca) contents in tissues significantly decreased, while nitrogen (N) content significantly increased as salinity increased. Changes in tissues and whole-plant accumulation patterns of other nutrients, as well as possible mechanisms for avoidance of Na+ toxicity in this species in response to salinity, are discussed.  相似文献   

3.
土壤盐渍化是制约滨海新围滩涂围垦区土壤质量的最主要因子,严重抑制了作物的生长和产量。试验设置了对照处理(CK)、有机肥(OM)、聚丙烯酰胺+有机肥(PAM+OM)、秸秆覆盖+有机肥(SM+OM)、秸秆深埋+有机肥(BS+OM)和生物菌肥+有机肥(BM+OM)6个处理方式,研究不同改良方式对滨海盐碱地土壤盐渍化的调控效应,明确改良过程中土壤盐渍化程度变异的主控因素。结果表明,表层土壤含盐量、钠吸附比和碱化度随着燕麦生育期的推移逐渐上升,而pH随着燕麦生育期的推移逐渐下降。与CK处理相比,PAM+OM、SM+OM、BS+OM和BM+OM措施能够显著降低0—20cm深度的土壤含盐量、pH、钠吸附比和碱化度。其中,SM+OM措施对土壤含盐量的抑制效果最好,达到68.0%~73.6%;而BM+OM措施对pH、钠吸附比和碱化度的调控效果最佳,分别降低4.5%~8.2%,61.5%~80.8%和55.5%~79.4%。主控因素分析表明环境因子中的土壤容重、土壤含水量和蒸发量对表层土壤盐渍化程度的影响均达到极显著水平(P<0.01),而风速和降水量的影响则达到显著水平(P<0.05)。  相似文献   

4.
Suaeda aegyptiaca is an important native annual halophyte in salt-affected soils around coastal areas of the Persian Gulf. In order to study the effects of different levels of saturation paste soil salinity (10, 20, 40, 60, and 80 dS m?1) and nitrogen supply (25, 50, and 75 mg kg?1 N as urea) on growth and physiological characteristic of S. aegyptiaca, a greenhouse factorial experiment in completely randomized design was conducted with three replications. Salinity treatments were established after early growth of plants and nitrogen was applied in two steps. Results showed that increasing salinity up to 20 dS m?1 led to increase in dry weight (DW) of plants and this decreased by increasing salinity. Also, DW of plants was significantly increased by application of 75 mg kg?1 nitrogen. Increasing salinity significantly decreased plant height, chlorophyll index, and total nitrogen content; while proline content and total soluble solids (TSS) were significantly increased. The electrolyte leakage (EL) and sodium concentration were increased under salinity stress. However, further increase in salinity decreased these two parameters. By increasing the nitrogen levels, relative water content (RWC), chlorophyll index, proline, and total nitrogen contents were increased, whereas EL was decreased.  相似文献   

5.
黑龙港流域微地貌与地下水埋深对土壤潜在盐渍化的影响   总被引:3,自引:0,他引:3  
[目的]对近年河北省曲周县土壤潜在盐渍化进行多方位评价,为预防土壤盐渍化提供科学依据。[方法]通过微咸水灌溉试验、土壤剖面观测和土样分析,从海拔高度、土层深度、地下水埋深、土壤质地几个方面对黑龙港流域土壤盐分运移以及其对土壤潜在盐渍化的影响进行探讨。[结果]从区域角度分析,降雨和用微咸水灌溉加剧了表层盐分向下层淋洗的可能性,从而使土壤盐分多在40—100cm土层聚集。质地较为黏重的土层阻止了土壤盐分的运移而聚积在该土层之上,为土壤潜在盐渍化创造了条件。土壤盐分含量与海拔高度呈现出很好的相关性,其复相关指数R2=0.76。HCO_3~-的表聚现象比较明显,各土层土壤SO_4~(2-)离子和Ca~(2+)离子与全盐含量之间达到了显著和极显著相关(0.88*~1.00**,0.89*~0.97**),Ca~(2+)离子与SO_4~(2-)离子之间达到了显著和极显著相关(0.86*~0.97**)。[结论]微地貌和土体构型的变化将会影响到土壤盐分的重新分配,进而对土壤潜在盐渍化有重要影响。  相似文献   

6.
Abstract

Zucchini plants (Cucurbita pepo L. cv. Moschata) were grown in artificial soil in 1‐m3 containers under greenhouse conditions in order to determine how to improve the performance of this crop in an salinity‐affected agricultural area where there can be an enormous economic return with correction. Eight weeks after planting, four salinity treatments were initiated by the addition of 0, 20, 40, or 80 mM sodium chloride (NaCl) to the irrigation water. The leaves and fruits were collected and both total phosphorus (P) and inorganic P concentrations were measured. As salinity increased, total and inorganic P concentration in the leaf increased significantly. With the salinity increase, total and inorganic P concentration in the fruit was not affected. Total P content decreased in the skin and then returned to levels close to the control. In the fleshy part as well as in the whole fruit, however, increased salinity increased total P accumulation. Inorganic P content in the pulp increased significantly, while in skin and whole fruit, inorganic P content was not affected by the NaCl treatment. In our study, these P forms in the fruit showed that increased salinity augmented P accumulation, especially in the fleshy part where the accumulation of both P forms was not only more pronounced, but was also more directly related to increases in soil salinity. Thus, it is necessary to know what responses occur under such salinity conditions in order to improve the fertilizer management, and therefore crop performance, when dealing with this high ionic contamination.  相似文献   

7.
民勤绿洲盐生草生境土壤盐分特征及离子组成   总被引:2,自引:0,他引:2  
对民勤绿洲盐生草周围不同距离范围内的总体盐分状况、盐分离子组成及离子之间的相关性进行了研究。结果表明,盐生草具有一定的聚盐作用,在其周围形成了一定的"盐岛"效应。在距盐生草0-60 cm范围内,土壤剖面中的土壤盐渍化程度随土层的加深而加重,土壤阴离子主要有Cl-和SO42-,阳离子主要有Na+和Ca2+,土壤盐分主要是氯化钠、氯化钙、硫酸钠和硫酸钙,其次是氯化镁和硫酸镁。其中在盐生草周围0-40 cm范围内,垂直剖面0-20 cm土层土壤全盐含量为0.98~1.52 g/kg,属于非盐渍化土壤,20-40 cm土层土壤全盐含量达到了2.25~2.30 g/kg,属于轻度盐渍化土壤,40-60 cm土层土壤全盐含量达到了3.10~3.16 g/kg,属中度盐渍化;在距盐生草60 cm处,垂直剖面0-40 cm土层土壤全盐含量为0.83~1.86 g/kg,属非盐渍化,40-60 cm土层土壤全盐含量达到了2.43 g/kg,属轻度盐渍化。除HCO3-外,土壤盐分含量与各盐分离子之间均呈极显著正相关。  相似文献   

8.
The effects of four salinity levels [0, 1000, 2000, and 3000 mg sodium chloride (NaCl) kg?1 soil] and three zinc (Zn) levels [0, 5, and 10 mg kg?1 soil as zinc sulfate (ZnSO4.7 H2O)] on growth and chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami’ were studied in a calcareous soil under greenhouse conditions in a completely randomized design with three replications. After 26 weeks, the dry weights of leaves, stems and roots were measured and the total leaf area determined. Salinity decreased leaf, stem, and root dry weights and leaf area, while this effect diminished with increasing Zn levels. Zn fertilization increased leaf, stem and root Zn concentrations, leaf potassium (K) concentration, and stem and root sodium (Na) concentrations, while decreased leaf Na concentration, and stem and root K concentrations. Salinity stress decreased leaf, stem, and root Zn concentrations, and leaf K concentration, while salinity increased leaf, stem and root Na concentrations, and stem and root K concentrations. Proline accumulation increased with increasing salinity levels, whereas the reverse trend was observed for reducing sugar contents. Zn application decreased proline concentration but increased reducing sugar contents. These changes might have alleviated the adverse effects of salinity stress.  相似文献   

9.
为了探究盐旱胁迫对土壤中氮素分布和棉花生长的影响,通过测坑试验研究滴灌区不同盐分、干旱条件下土壤全氮、硝氮、氨氮的分布和棉花生长情况。试验设置3种盐分梯度的土壤(电导率,EC):3,6,9 dS/m,分别用T1、T2、T3表示;3个灌水量:2 700,3 600,4 500 m3/hm2,分别用W1、W2、W3表示(4 500 m3/hm2为当地推荐灌水量)。结果表明:当土壤盐分梯度> 3 dS/m时土壤全氮累积量显著高于低盐土壤(P<0.05),且土壤盐分对棉花花期生长影响较大。土壤的氨氮挥发量和土壤盐分梯度成正比。土壤硝态氮的淋失与灌水量呈正比,与正常灌水量的硝态氮淋失相比,水分胁迫对棉花产量的影响更为严重(P<0.01)。随土层深度的增加,土壤碱解氮以每20 cm土层8%的速度减少。各处理土壤15N残留率为11%~40%,随土壤盐度增加而增加,随灌水量增加而减少,与土壤全氮含量呈正比,与棉花产量呈反比。综上所述,T1W3处理更有利于棉花对氮肥的利用和产量的提高,推荐滴灌区棉花土壤盐度<3 dS/m,灌水量4 500 m3/hm2,可在花期适当提高施肥量以稳定产量。  相似文献   

10.
Salinity is one of the most important agricultural problems in Iran. The effect of different levels of salinity and phosphorus on shoot length, root and shoot fresh and dry weight, nutrient elements (sodium (Na+), potassium (K+), phosphorus (P) and chloride (Cl?), proline and soluble sugar contents of barley were investigated. Two cultivars of barley, Hordeum murinum (wild resistant germplasm) and Hordeum vulgar, variety Afzal were treated in vegetative stage under hydroponics condition in a factorial arrangement based on completely randomized block (CRB) design with four levels of salinity [0, 100, 200 and 300 mM sodium chloride (NaCl)] and three levels of phosphorus (15, 30 and 55 μm L?1) with three replications. By increasing salinity, all the measured parameters, except sodium (Na+) content were reduced. Furthermore, with increased in phosphorus levels from 15 to 55 μm, Na+ content of the plant shoots decreased, but length, fresh and dry weights of roots and shoots and K+, P, Cl?, proline, and soluble sugars content of the shoots increased. The results indicated that accumulation of mineral ions for osmotic adjustment and restriction of Na+ accumulation in shoots were involved in phosphorus enhancement of the salt tolerance of barley. Thus, it seems that in saline soils, where there is no possibility for soil leaching and amending, application of phosphorus fertilizers can lead to a satisfactory growth and production in barely yield.  相似文献   

11.
To determine the effects of irrigation water salinity and leaching fraction on crop evapotranspiration (ETc), grain yield, straw yield, shoot sodium (Na), and chloride (Cl) concentrations of spring wheat (Triticum aestivum L.) cultivar ‘Onfarom 9,’ a pot experiment was conducted using saline soil with electrical conductivity of soil paste extract (ECe) of 13.2 dS m?1. A factorial experiment with a completely randomized design replicated seven times was used with three levels of saline irrigation water (4, 9, and 12 dS m?1) and four leaching levels (0, 17, 29, and 37%) included as the factors. The results showed that ETc significantly decreased as a result of an increase in irrigation water salinity (ECi) and decrease in leaching level. Crop evapotranspiration deficit and decreasing irrigation and drainage water effectively resulted in grain and straw yield reduction. Increase in ECi increased accumulation of Cl and Na in crop shoot, but application of leaching decreased this accumulation.  相似文献   

12.
Effects of Ca (Ca2+) level on the response of germination and seedling growth of Salvadora persica Linn. (Salvadoraceae) to sodium chloride (NaCl) salinity in soil were investigated. Salinity significantly retarded the seed germination and seedling growth, but the injurious effects of NaCl on seed germination were ameliorated and seedling growth was restored with Ca supply at the critical level to salinized soil. Calcium supply above the critical level further retarded the seed germination and seedling growth because of the increased soil salinity. Salt stress reduced nitrogen, phosphorus, potassium, and Ca content in plant tissues, but these nutrients were restored by addition of Ca at the critical level to saline soil. The opposite was true for sodium (Na+). The results are discussed in terms of the beneficial effects of Ca for plant growth under saline conditions.  相似文献   

13.
作物相对耐盐性的研究──Ⅱ.不同栽培作物的耐盐性差异   总被引:18,自引:0,他引:18  
陈德明  俞仁培 《土壤学报》1996,33(2):121-128
本文通过盆栽生物试验,对小麦、大豆、棉花、玉米等栽培作物的苗期耐盐性进行了研究.结果表明:棉花较为耐盐,玉米、小麦次之,大豆耐盐性最差.不同作物各组织中钠的浓度和累积量随盐度增加而剧增.小麦、大豆、棉花根系吸收钠后,不同程度地向地上部分转移;玉米根系吸收钠后,多累积在根系中.不同作物各组织中钾的浓度随盐度增加变化不大.但累积量剧减;钙的浓度和累积量随盐度增加都有不同程度的减少.作物根系吸收钾、钙后,向地上部分运输,因而地上部分组织中钾、钙累积量多于根系中钾、钙累积量.作物体内K/Na比随盐度增加而降低.本文还对不同栽培作物耐盐性差异的机理进行了探讨.  相似文献   

14.
[目的] 研究甘肃省沿黄灌区耕地撂荒、种植春播作物与豆禾混播牧草对土壤盐渍化的影响,为该区生物措施防治土壤盐碱提供科学依据。[方法] 以裸地(CK)、小麦(Triticum aestivum)、披碱草和苜蓿(Elymus nutans/Medicago sativa)混播为研究对象,测定地表植被和微环境相关指标及表土(0-5 cm)水、盐含量,分析植被与盐含量间定量关系。[结果] 裸地盐含量全年呈W形变化,初春、夏末和秋末为3个高峰期;麦地呈U形变化趋势,高峰在初春和秋末;混播牧草地仅初春盐含量较高。秋末,麦地盐含量较裸地高18.4%,而牧草地较裸地低55.9%。对比2 a 3月的土壤盐含量,裸地和小麦地分别提高了23.7%和14.8%,而牧草地却降低了28.2%。植被特征指标与表土盐含量间呈极显著负相关(p<0.01),其中植被盖度与盐含量间相关性最强(达-0.916)。植被的盖度、高度和生物量每提高1%,1 cm和1 g/m2,将使表土盐含量分别降低0.031,0.139,0.014 g/kg。[结论] 甘肃省沿黄灌区耕地撂荒和种植生育期较短春播作物易造成表土积盐和引发土壤次生盐渍化危害,而种植多年生豆禾混播牧草可降低表土盐含量和预防土壤盐渍化。  相似文献   

15.
ABSTRACT

The interaction between soil salinity and infection caused by Verticillium dahliae was studied in pistachio (Pistacia vera) in a greenhouse experiment. Treatments consisted of 0, 1400, 2800, and 4200 mg sodium chloride (NaCl) kg? 1 soil and three rootstocks (Sarakhs, Badami, and Qazvini cultivars). They were gradually exposed to salinity stress before and/or after root inoculation with a water suspension of 107 conidia/mL of a pistachio isolate of V. dahliae. Salt stress significantly increased rootstock shoot and root colonization by V. dahliae. All rootstocks were susceptible to V. dahliae, but symptoms of the disease appeared earlier in Sarakhs, a salt sensitive cultivar. Moreover, salinity and V. dahliae interaction increased the concentrations of sodium (Na), potassium (K) and chloride (Cl), but decreased the K/Na ratio in all rootstocks. Shoot and root tissues of inoculated Sarakhs and Qazvini (a salt tolerant) contained the highest and the lowest concentrations of Na, K,and Cl, respectively. In salinity treatments, shoot and root dry weight of all rootstocks decreased as compared with controls. Sarakhs showed smaller shoot and root dry weight than Qazvini and Badami. Also, increasing the NaCl level increased accumulation of Na, K, and Cl in shoot and root of the rootstocks. Sarakhs showed higher concentrations of ions in the shoot and root. Based on shoot and root dry weights and ion accumulation, Sarakhs and Qazvini were susceptible and tolerant to salinity, respectively.  相似文献   

16.
采用田间大区试验,连续3年在河套重盐碱区开展了冬季咸水结冰灌溉试验研究,设置冬季咸水结冰灌溉(FSWI)和无灌溉对照(CK)两个处理,其中FSWI处理的灌水量为180 mm,矿化度为6.79~7.97 g·L~(–1),种植作物为青贮玉米,以分析不同处理下土壤水盐和钠吸附比(SAR)的周年动态以及对作物生长的影响,探究冬季咸水结冰灌溉对河套重盐碱地的改良效果。结果表明:与CK相比,FSWI处理显著改变了春季土壤水盐和SAR动态。0~20 cm土层,春季FSWI处理的土壤含水量显著高于CK处理,玉米苗期, FSWI处理的土壤含水量平均为24.3%,显著高于CK的21.6%; FSWI处理的春季土壤含盐量和SAR显著低于CK处理,其中, FSWI处理的土壤含盐量由灌溉前的33.86 g·kg~(–1)降低至玉米苗期的5 g·kg~(–1)以下,而CK处理土壤含盐量逐渐升高至玉米苗期的34.2 g·kg~(–1); FSWI处理土壤SAR由灌溉前的21.9降低至玉米苗期的9.86, CK土壤SAR则逐渐升高至玉米苗期的25.00。后续地膜覆盖和夏季降雨使FSWI处理的土壤含水量维持在23.0%以上,土壤含盐量保持在5 g·kg~(–1)以下,土壤SAR保持在9左右。20~40 cm土层与0~20 cm土层的土壤水盐和SAR变化趋势与表层一致,但没有表层变化剧烈。此外,随着灌溉年限的延长,同时期土壤含盐量和SAR呈逐年降低的趋势。FSWI处理玉米出苗率在70%以上,干物质产量为9~12t·hm~(–2),而CK处理由于土壤含水量较低(21.0%),并且土壤含盐量和SAR均较高,造成玉米出苗率极低,进而导致绝收。因此冬季咸水结冰灌溉改变了土壤水盐动态过程,变春季积盐为脱盐,显著降低了土壤SAR,并补充了土壤水分,保证了饲用玉米的正常种植和生长,这为该地区盐碱地改良和饲料作物种植提供了技术支持。  相似文献   

17.
在河北省滨海区,连续3年对当地的盐碱地进行了冬季咸水结冰灌溉,并对土壤的耕层水盐动态、棉花出苗和产量以及植株的盐离子状况进行了观测。结果表明:利用矿化度为8.15~14.27 g.L 1、灌水量为180mm的地下咸水,对滨海盐碱地进行冬季结冰灌溉,后期结合地膜覆盖可显著降低土壤盐分含量和提高土壤含水量。咸水结冰灌溉处理2009—2011年棉花播种期土壤盐分含量分别为0.32%、0.29%和0.17%,土壤含水量分别为26.2%、25.0%和24.2%,保证了棉花正常出苗,3年的棉花出苗率均达到85%以上。结冰灌溉年限越长越有利于土壤盐分的淋洗。苗期棉花根、茎和叶片Na+含量比对照降低57.6%~64.5%,而相应的K+和Ca2+含量显著高于对照(不灌溉不覆膜处理)棉苗,避免了对苗期棉花的单盐伤害。随着当地雨季的来临,棉田耕层土壤可实现周年脱盐,保证了棉花的正常生长,籽棉产量达到2 643.8~3 607.7 kg.hm 2,并且3年的产量呈逐年上升趋势,实现了滨海重盐碱区水土资源的高效利用和棉花丰产。  相似文献   

18.
塔里木河下游绿洲灌区土壤盐渍化特征及季节性变化规律   总被引:1,自引:1,他引:1  
[目的]研究典型绿洲灌区土壤盐渍化特征和季节性变化规律,为农业生产调控提供理论依据。[方法]运用GPS定位技术在塔里木河下游三十一团灌区不同季节进行调查与采样,并结合室内样品测定结果,对该区土壤盐分含量和各盐分离子含量进行经典统计分析和地统计学分析。[结果]研究区土壤的pH值范围在8.09~8.24之间,不同季节之间的差异不大,土壤呈碱性。土壤盐分含量受季节影响明显,在不同深度均表现为:秋季冬季春季夏季。不同季节下各深度的土壤中主要离子均相同,土壤盐分组成中阴离子主要为SO■和Cl~-,阳离子主要为K~+和Na~+,土壤盐分类型春季和秋季以硫酸盐型为主,冬季以氯化物—硫酸盐型为主。秋季与冬季的土壤盐分含量随着土层深度的增加逐渐减小,总体呈表聚型,春季与夏季的土壤盐分含量随着土层深度的增加呈先减小后增大的趋势,总体呈底聚型。春季根域层(0—60 cm)土壤的盐分在东南部的含量较高,西北部的含量较低,而深层(60—100 cm)土壤盐分在东南部的含量较底,西北部的含量较高,夏季土壤盐分整体较底,且水平分布较为一致。秋季、冬季土壤盐分的高值区都出现在研究区的西南方向,靠近塔里木河,原始保留地和荒地较多的区域。[结论]三十一团灌区土壤盐分的周年变化总体表现为秋季、冬季积盐,春季、夏季脱盐,土壤盐分的水平分布主要受土地利用类型、地形因素以及与水源位置距离的影响。  相似文献   

19.
A greenhouse study was conducted to evaluate effects of phosphorus (P) levels (0, 50 and 100 mg kg?1 soil) under saline (0, 1000 and 2000 mg sodium chloride (NaCl) kg?1 soil) conditions on growth and chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami-zarand’ in a completely randomized design (CRD) with four replications. Results showed that salinity application decreased leaf, stem, and root dry weights, number of leaf, length of stem and leaf area, while this effect diminished with P fertilization. By increasing salinity levels, all of the nutrients concentration in leaf, stem and root except sodium (Na) content were reduced. P application increased P and potassium (K) concentrations in the leaves, stem and root, while decreased Na and Zinc (Zn) leaf, stem and root concentrations. However, the results indicated that proline accumulation and reducing sugar content were increased by salinity, P and their interaction application. The results suggest that fertilization of phosphorus can diminish some adverse effects of high salinity on growth and chemical composition of pistachio seedlings.  相似文献   

20.
Soil salinization and non-point source pollution are among the most important and widespread environmental problems in European Mediterranean regions. Sweet sorghum (Sorghum bicolor (L.) Moench var. saccharatum) is a moderate to high salinity tolerant crop with low water and nutrient needs, seen as an alternative to grow in the water scarce regions. A three-year multifactorial study was conducted in southern Portugal to evaluate the combined effects of saline water and nitrogen application on the dry biomass (total, stems, and leaves), sugar content (total reducing sugars and sucrose contents), and sugar yield (here defined as the product of total reducing sugars and stems dry biomass) functions of sweet sorghum. Sorghum dry biomass and sugar yield showed diminishing returns for each incremental change of nitrogen. The use of saline irrigation waters also led to yield reduction. Exception was sucrose content which increased with increasing levels of sodium in the soil. Nitrogen need decreased as the amount of sodium applied increased. Stem dry biomass, sucrose content, and sugar yield progressively increased with progress in the experiment. The effect could be attributed to the increase of the amount of irrigation applied throughout the years, thus increasing the leaching fraction which promoted salt leaching from the root zone, reduced the salinity stress, increased plant transpiration, nitrogen uptake and biomass yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号