首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies showed that limpograss, Hemarthria altissima (Poir), Stapf & C. E. Hubb (PI 364344) was tolerant to low temperature and to high concentrations of Al in acid soil, mine spoil and nutrient solution. Additional experiments were conducted to test the tolerance of this limpograss clone to excess Mn, another potential growth‐limiting factor in acid soils.

Cuttings from a single plant were grown in pots of Mn‐toxic Zanesville soil with no lime (pH 5.1) and 1250 ppm CaCO (pH 6.3) and in nutrient solutions containing 0, 4, 8, 16, 32 or 64 ppm Mn at pH 4.0. The grass was highly tolerant to excess Mn in both media. Liming the soil from pH 5.1 to 6.3 did not significantly affect top dry weight of the first harvest and significantly decreased that of the second. In nutrient solutions at pH 4.0 top dry weights were not significantly affected by Mn concentrations up to 64 ppm. Root dry weights were significantly increased by Mn additions of 16, 32 and 64 ppm. Limpograss (PI 364344) was not injured when Mn concentrations were as high as 930 and 9152 ppm in tops and roots, respectively. High Mn tolerance is yet another trait that should enhance the potential use of this grass in revegetating acid mine spoils and other acid sites.  相似文献   


2.
Two genotypes of Old world bluestems from the species Bothriochloa intermedia (R. Br.), A. Camus, shown earlier to differ in tolerance to acid, Al‐toxic Tatum subsoil at pH 4.1, were characterized further with respect to growth in pots of Tatum soil over a wider pH range and tolerance to Al in nutrient solutions. The two genotypes studied were acid‐soil tolerant P. I. 300860 (860) and acid soil sensitive P. I. 300822 (822).

The soil experiment confirmed earlier rankings of acid soil tolerance in these two genotypes. For example, with 0, 375 or 750 ug CaCO3 g‐1 soil (final pH 4.0, 4.3 and 4.6), the 860 genotype produced significantly more dry top weight than 822, but these differences were precluded with 1500 or 3000 ug g‐1 CaCO3 added (pH 4.7 and 5.4). At pH 4.3 and 4.6, the root dry weights of the two genotypes were also significantly different and weights were equalized at pH 4.7 and 5.4. The 860 genotype made fairly good top growth (67% of maximum) at pH 4.3 and a soil Al saturation of 63%; this situation was lethal for 822. When grown in greenhouse pots, the acid‐soil tolerant 860 genotype required only about one fourth as much CaCO3 as 822 to produce good growth of forage on acid Tatum subsoil. If confirmed under field conditions, such a difference could be economically significant in reclaiming acidic marginal land and in producing forage at low cost.

Differential Al tolerance in the two genotypes was confirmed in nutrient solutions. For example, with 8 mg Al L‐1 added, both top and root dry weights of 860 were significantly higher than those of 822, but with no Al added, these growth differences disappeared.

Mineral analyses of plants did not shed much light on mechanisms of differential acid soil or Al tolerance. For example, Al concentrations in plant tops associated with toxicity varied from 33–43 ug g‐1 in nutrient solutions containing Al to 119–283 ug g‐1 in acid soil It appears that elucidation of Al‐adaptive mechanisms will require physiological and biochemical studies at the cellular level.  相似文献   

3.
Abstract

Shallow rooting and susceptibility to drought are believed to be caused, at least in part, by strongly acidic (pH <5.5, 1:1 soil‐water), aluminum (Al)‐toxic subsoils. However, this hypothesis has not been clearly confirmed under field conditions. The Al toxicity hypothesis was tested on a map unit of Matawan‐Hammonton loam (0–2% slope) on unlimed and limed field plots (pH range 5.1 to 5.8) at Beltsville, MD, during 1994 to 1998. Aluminum‐tolerant and sensitive pairs of barley (Hordeum vulgare L.), wheat [Triticum aestivum (L.)], snap bean (Phaseolus vulgaris L.), and soybean [Glycine max (L.) Merr.] cultivars were used as indicator plants. Eastern gamagrass [Tripsacum dactyloides (L.) L.], cultivar ‘Pete’, reported to tolerate both chemical and physical stress factors in soils, was grown for comparison. Shoots of Al‐sensitive ‘Romano’ snap beans showed a significant response to liming of the 0–15 cm surface layer, but those of Al‐tolerant ‘Dade’ did not, indicating that Al toxicity was a growth limiting factor in this acid soil at pH 5.1. Lime response of the Al‐tolerant and sensitive cultivars of barley, wheat, and soybean were in the same direction but not significant at the 5% level. Aluminum‐tolerant and sensitive cultivars did not differ in abilities to root in the 15–30 cm soil depth. Only 9 to 25% of total roots were in this layer, and 75 to 91% were in the 0–15 cm zone. No roots were found in the 30–45 cm zone which had a pH of 4.9. Soil bulk density values of 1.44 and 1.50 g cm?3 in the 15–30 and 30–45 cm zones, respectively, indicated that mechanical impedance was a primary root barrier. Results indicated that restricted shoot growth and shallow rooting of the Al‐indicator plants studied in this acid soil were due to a combination of Al toxicity and high soil bulk density. Confounding of the two factors may have masked the expected response of indicator plants to Al. These two growth restricting factors likely occur in many, if not most acid, problem subsoils. Studies are needed to separate these factors and to develop plant genotypes that have tolerance to multiple abiotic stresses. Unlike the Al indicator cultivars, eastern gamagrass showed high tolerance to acid, compact soils in the field and did not respond to lime applications (pH 5.1–5.8).  相似文献   

4.
Kentucky bluegrass, Poa pratensis L., is generally regarded as an acid‐soil‐sensitive species. However, previous studies in our laboratory showed that cultivars within the species differed widely in tolerance to acid Tatum subsoil (pH 4.6) which is used routinely to screen plants for aluminum (Al) tolerance. In the early studies, specific differential Al tolerance was not demonstrated. The objective of the current study was to test the hypothesis of differential Al tolerance more precisely in nutrient solutions. In one experiment, acid‐soil‐tolerant Victa and Fylking and acid‐soil‐sensitive Windsor and Kenblue cultivars were grown for 35 days in nutrient solutions containing 0, 2, 4, 6, 12, and 24 mg Al L‐1, at initial pH 4.5, with no subsequent adjustment. In a second experiment, Victa and Windsor were grown for 30 days in solutions containing 0, 4, and 6 mg Al L‐1, at initial pH 4.5, with no further adjustment. For Victa and Windsor, tolerance to Al in nutrient solution corresponded with tolerance to acid Tatum subsoil, however, the cultivar difference in tolerance, based on relative root dry weight, was only about 2‐fold, compared with 20‐fold in acid Tatum subsoil. Fylking and Kenblue cultivars, which showed a wide difference in tolerance to acid Tatum subsoil, did not show distinct differences in tolerance to Al in nutrient solutions. Possible reasons for this discrepancy are discussed. Superior Al tolerance of Victa (compared with Windsor) was associated with a greater plant‐induced increase in the pH of its nutrient solutions and a corresponding decrease in concentrations of soluble Al in the filtered solutions at the end of the experiments. Greater Al sensitivity in Windsor (compared with Victa) was not related to reduced uptake of phosphorus (P) or excessive uptake of Al; neither cultivar accumulated appreciable Al concentrations in its shoots. The observed differential acid soil and Al tolerance among bluegrass cultivars appears worthy of further study. Improved understanding of Al tolerance mechanisms would contribute to fundamental knowledge of plant mineral nutrition and could aid plant breeders in tailoring plants for greater tolerance to acid subsoils.  相似文献   

5.
通过调查分析20年来洪泽县蔬菜园区土壤养分的变化趋势,寻求提高蔬菜生产水平的合理施肥结构和用量。  相似文献   

6.
Aluminum (Al) activity was determined in nutrient solutions and in acid soil solutions. Aluminum concentrations in the solutions ranged from 7.4 μM to 370.3 μM giving values of ionic strength of nutrient solutions higher than the values of acid soil solutions. The increase of ionic strength values was due to the increase of Al concentrations. The values of Al activities of 20 uM in the acid soil solutions were noticed when Al concentrations were lower than 70 μM. On the other hand, these values of Al activities in nutrient solutions were noticed only when the Al concentrations were higher than 70 μM. This study demonstrates why it is important to use higher Al concentrations in nutrient solutions to obtain Al toxic effects.  相似文献   

7.
KCl, CaCl2, NH4Cl, NaCl, K2SO4 and KF solutions were used for studying the effects of cations and anions on the dissolution of aluminum and the distribution of aluminum forms respectively. Power of exchanging and releasing aluminum of four kinds of cations was in the decreasing order Ca2+ >K+ >NH4+ >Na+. The dissolution of aluminum increased with the cation concentration. The adsorption affinity of various soils for aluminum was different. The aluminum in the soil with a stronger adsorption affinity was difficult to be exchanged and released by cations. The Al-F complexes were main species of inorganic aluminum at a low concentration of cations, while Al3+ became major species of inorganic aluminum at a high concentration of cations. The results on the effect of anions indicated that the concentrations of total aluminum, three kinds of inorganic aluminum (Al3+, Al-F and Al-OH complexes) and organic aluminum complexes (Al-OM) when SO42- was added into soil suspension were lower than those when Cl- was added. The dissolution of aluminum from soils and the distribution of aluminum forms in solution were affected by the adsorption of F- on the soil. For soils with strong affinity for F-, the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-; but for soils with weak affinity for F-, the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl-. The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils.  相似文献   

8.
Aluminum (Al) toxicity is a major limiting factor for crop production in many acid soils in Brazil. Two greenhouse experiments were conducted to evaluate response of rice (Oryza saliva L.) and common bean (Phaseolus vulgaris L.) to Al levels on a Low Humic Gley acid soil. The Al levels created by liming were: 0,0.03, 0.10, 0.23, 1.03, and 3.83 cmolc kg‐1 of soil. Rice dry matter and grain yield were significantly improved (P<0.05) with increasing Al levels in the soil solution. However, common bean dry matter as well as grain yield were significantly (P<0.01) decreased with increasing Al levels. At 3.83 cmolc Al kg‐1 of soil, bean did not produce any dry matter or grain yield. On an average, Al decreased nutrient concentrations in the tops of rice plant except zinc (Zn) and manganese (Mn), but in bean crop almost all the nutrients concentrations were increased with increasing Al levels. Rice showed tolerance to Al toxicity, whereas, common bean was susceptible to toxicity of this element. For successful intensive crops production lime application will be necessary in Varzea soils especially for legume production.  相似文献   

9.
Aluminum tolerant oat cultivars are needed for use on acid soil sites where neutralization of soil acidity by liming is not economically feasible. Oat germplasm in Poland has not been examined for range of Al tolerance. Eleven Polish oat cultivars were screened for Al tolerance in nutrient solutions containing 0, 5 and 15 mg L‐1 Al. Three of these cultivars showing high to moderate tolerance to Al in nutrient solutions were also grown in greenhouse pots of soil and in field plots of soil over a pH range of 3.8 to 5.5 as determined in 1 N KC1.

The eleven oat cultivars differed significantly in tolerance to Al in nutrient solutions. Based on relative root yield (15 mg L‐1 Al/no A1%), the cultivars ‘Solidor’ and ‘Diadem’ were most tolerant and ‘Pegaz’ and ‘B‐20’ were least tolerant. For these three cultivars, the order of tolerance to acid soil agreed with the order of tolerance to Al in nutrient solution ‐ namely, Solidor > Diadem > Leanda. Hence, for these cultivars, the nutrient solution methods used appear adequate for selecting plants that are more tolerant to Al in strongly acid soils. Additional study is needed to assess the value of this method for screening a broad range of germplasm.

Superior tolerance of the Solidor cultivar to acid soil was associated with significantly higher concentrations of N in the grain. Hence, results suggest that selecting for acid soil or Al tolerance may increase N efficiency in oats.  相似文献   

10.
The aim of this trial was to study the spatio-temporal variability in solution nutrient concentration under intensive greenhouse tomato production, to determine the number of suction-cups needed to obtain a representative sample and the influence by the position in the greenhouses. Twenty sampling points were selected within the greenhouse with one suction-cup per sampling point. One soil solution were sampled per point at weekly intervals to analyze for pH, electrical conductivity, chloride, nitrate, phosphate, sulfate, sodium, potassium, calcium, and magnesium (EC, Cl?, NO3?, H2PO4?, SO42—, Na+, K+, Ca2+, and Mg2+) concentrations. The pH, Cl?, H2PO4?, and SO42? concentrations showed no spatio-temporal variation but EC, NO3?, and K+ showed temporal variation. The spatial variability in EC, K+, Na+, Mg2+, and Ca2+ can be influenced by microclimate and topography. The numbers of suction cups required for a representative sample ranged from 1 to 10 depending on nutrient.  相似文献   

11.
Abstract

Setaria and paspalum were found to be very tolerant of excess Mn. Green panic and sorghum were somewhat less tolerant with foliar symptoms due to excess Mn being exhibited in plants containing 1000 ppm Mn and yield reductions occurring in plants containing Mn concentrations of the order of 2000 ppm. Excess Mn did not effect the early seedling growth of sabi grass but regrowth was severely depressed. Rhodes grass and buffel grass were severely effected by excess manganese. Regrowth of these two species was more adversely effected than initial seedling growth indicating that these species probably would not survive to maintain a stable pasture in Mn toxic situations.

Accumulation of excess Mn was accompanied by a linear decline in Ca concentrations in all species.  相似文献   

12.
Abstract

With a peat soil similar amounts of phosphorus (P) were coprecipitated with humic acid from alkali extracts over a limited range of strongly acidic pH, whereas with a mineral soil the amount was pH dependent. The difference between the two soils relates to the much greater total amounts of inorganic P and aluminum (Al) present in the extract of the mineral soil. In this acid mineral soil, Al rather than iron (Fe) may be involved in the formation of metal bridges in humic acid‐metal‐inorganic P complexes. Neither Al or Fe were implicated in binding of organic P to humic acid. The P species observed in humic acids was dependent on the pH at which they were precipitated from the alkali extracts. In the peat soil the inorganic P was an order of magnitude lower than the organic P.  相似文献   

13.
Aluminum (Al) plant tolerance has been frequently associated with a pH increase in the rhizosphere. The changes in pH are dependent on plant genotypes and ionic composition and strength of nutrient solutions. This work was performed in order to study in triticale (Triticosecale Wittm.) the association of pH change with nitrogen (N) uptake and growth performance in acid conditions. Three‐day‐old seedlings were treated with Al (185 μM) in solutions having different proportion nitrate/ammonium (NO3/NH4), 15/1 and 8/1, but the same total N content. Along the period with Al treatment, several measurements have been made: pH, every day; NO3 and NH4 uptake from the solution as well as shoot and root biomass production every two days (five and seven days of plant age). The maximum growth inhibition (30%) of fresh weight was found in roots of plants in the 15/1 (NO/NH,) nutrient solution. The presence of a higher proportion of NH4 (8/1 solution) had a protective effect on Al damage as shown by less growth inhibition and less reduction in NO3 uptake. Changes in pH apparently were not relevant for the tolerance. The results suggest that NH4 fertilization may be useful for alleviating Al toxicity in triticale.  相似文献   

14.
4种土壤调理剂改良红壤铝毒害的效果研究   总被引:2,自引:1,他引:1  
在温室条件下,采用植物盆栽试验,研究4种土壤调理剂不同施用量对酸性红壤铝毒害的缓解效果。结果表明,4种土壤调理剂均显著降低土壤中交换性铝含量及毒害性铝含量,显著提高玉米株高、生物量;各处理土壤中交换性铝含量与玉米株高及生物量之间呈显著相关性。牡蛎壳、白云石、钾长石、麦饭石4种土壤调理剂0.2%的施用量土壤交换性铝分别比对照下降了63.8%、70.5%、53.0%、12.3%;0.4%的施用量土壤交换性铝分别比对照下降了90.5%、92.0%、80.5%、23.4%。土壤中交换性铝、毒害性铝的含量随着4种土壤调理剂的施用量增加而降低,土壤中毒害性铝含量由低到高依次为白云石、牡蛎壳、钾长石、麦饭石。  相似文献   

15.
Eastern gamagrass is a warm-season perennial with good forage yield and quality, but both may be increased with nitrogen (N) fertilization. The effects of N and harvest management on neutral- and acid-detergent fibers (NDF and ADF), lignin, in vitro dry matter digestibility (IVDMD), and crude protein (CP) were studied. Nitrogen (0, 50, or 100 kg ha?1) was applied by broadcasting or knife placement, and forage was harvested from 1- or 2-cut systems. Data were obtained during four years of N treatment, and three intervening years with no N treatment. Neutral- and acid-detergent fibers and lignin were usually lower, and IVDMD and CP were generally higher in the 2-cut than in the 1-cut system. Increasing N affected forage quality in minor ways, except for CP. When 100 kg ha?1 was applied, CP was increased over no N by 0.14 in the 1-cut system and by 0.25 in cut 1 of the 2-cut system.  相似文献   

16.
In view of restrictions in the application of antibiotics in animal production, Lanthanum (La) is intended to be introduced as a new growth promoter for pigs. Because most of the supplied La is subsequently excreted, it will be found in organic fertilizers which are applied to agricultural land. Thus, we examined the effect of lanthanum on the growth and La contents of plants in nutrient solution and in soils as well as its extractability from different soils. In nutrient solutions with concentrations of available La of up to 20 μmol L–1, shoot growth of bush bean was markedly reduced by up to 60% of the control at 20 μM La. By contrast, growth was not affected in maize. Lanthanum was mainly accumulated in the roots, but maize shoot contained considerable amounts of La as well. In contrast to nutrient solution, shoot growth of bush bean and spinach in soils supplemented with La up to 360 μmol kg–1 (50 mg kg–1) was not decreased. In contrast to spinach, bush bean shoots showed an increased La content at the highest La level. Extractability of La with 0.1 mol L–1 acetic acid from 12 different soils previously spiked with La was related mainly to soil pH, CEC, and Corg. We therefore conclude that except of strongly acidic conditions, the application of La‐containing organic fertilizers does not represent a risk for plant growth for the next over 100 years, provided that the recommended doses of feed supplementation is not increased.  相似文献   

17.
The composition of the soil solution in unfertilized and well-fertilized plots of three long-term field experiments has been determined at the beginning and at the end of the growing season. All the plots were manured and the K and P fertilizers given in the autumn before the growth of sugar beet. N was applied in the spring, 3–4 weeks before the first soil sampling.The soil solution was removed at a pressure of 5 atm. The composition and the corresponding osmotic pressure were calculated for the moisture contents at field capacity and wilting point.In spring the salt concentrations, cations + anions, at the field capacity were in the range 91–97 mmoles/l in the fertilized plots. In autumn the concentration had dropped to 13.9–20.3, a decrease of 78–85%. At the wilting point, the concentrations in spring were as high as 211–307 mmoles/l and in autumn 31.5–69 mmoles/l. The corresponding osmotic pressures at field capacity in the spring ranged 2.2–2.3 atm. and at wilting point 5.1–7.4 atm.In spring the unfertilized plots showed concentrations of 16–21 mmoles/l and osmotic pressures of 0.38–0.51 atm., the values decreasing 52–65% during the growing season.It was pointed out that the high soil-solution concentration and osmotic pressure at low moisture contents may lead to an unfavourable effect on root metabolism. Further, the obscuring effect of the varying soil-solution concentration on the relationships between root ion exchange and nutrient uptake by plants has been discussed.  相似文献   

18.
Abstract

Barley plants were grown in 201 pots containing a sandy soil rich in exchangeable and watersoluble Ca. Results from earlier experiments have indicated that the mode of action of supplementary Ca may differ according to, for example, the associate anion. In this experiment soil‐Ca was activated by placing NH4NO3 at three depths in the soil and by adding solutions of Ca salts. Yields were found to increase with successively deeper placements of NH4NO3 in treatments without Ca application, whereas only small differences between placement depths were observed when Ca was added as a saturated gypsum solution or equivalent amounts of CaCl2. The very pronounced responses to Ca application were in good agreement with visual symptoms of Ca deficiencies later in the season and with the nutrient uptake rates and growth rate over the intire growth period.  相似文献   

19.
有机物料对酸性红壤铝毒的缓解效应   总被引:7,自引:2,他引:7  
利用盆栽试验研究了施用不等量稻草对酸性红壤旱耕地铝毒的缓解效应。结果表明,添加不等量的秸秆碳(C)后,土壤pH值显著提高,土壤交换性铝和吸附态羟基铝的含量则明显降低,土壤有机络合态铝的含量也呈增加趋势。添加铝盐并不影响秸秆碳对降低土壤交换性铝和吸附态羟基铝含量的作用。在本研究中,土壤pH值与土壤交换性铝和土壤吸附态羟基铝均呈显著负相关,方程分别为y=-2193.9x+11545,R2=0.9798**,y=-655.34x+9748,R2=0.7837**。土壤交换性铝和吸附态羟基铝与玉米主根长,地上部磷、钾含量均呈显著负相关,是抑制玉米吸收养分的主要限制因素,土壤吸附态羟基铝是次于交换性铝的又一活性较大的铝化合物。  相似文献   

20.
Abstract

Recent studies have indicated that A1 concentrations in excess of 1000 μg/g have occurred in grass species susceptible to Al toxicity, although other studies have suggested that high Al concentrations were the result of soil contamination. Our objectives were to determine the effect of Al source, Al level, nutrient solution pH, and tissue age on elemental concentrations in ryegrass.

An experiment was conducted in which ryegrass (Lolium multiflorum Lam.) cv ‘Gulf grown in nutrient solution at pH 5 and 6 received 0 Al or 100 and 500 μg Al/ml as Al‐sulfate and as NaAl‐citrate. Plant shoots were harvested 35 and 42 days after planting. Where nutrient solution pH was adjusted daily to pH 5 or 6, highest forage Al concentrations averaged only 295 μg/g. Where pH was not adjusted, highest Al concentrations averaged over 2000 μg/g. Plants having Al concentrations above 500 μg/g showed visible signs of Al toxicity. Source and level of Al in the nutrient solution, initial nutrient solution pH, and age of tissue at harvest had little effect on other elemental concentrations in the ryegrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号