首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion relations, water content, leaf water potential, and osmotic adjustment were determined for cultivated barley (cv Harrington) and wild barley grown under mixed sulphate (SO4) salts with varied calcium (Ca) supply using a hydroponic system. Salinity induced significant increases of leaf, stem and root sodium (Na) concentrations in both species. Salt‐stressed wild barley roots accumulated more Na than shoots, and transport of Na from roots to shoots was low compared to Harrington. Cultivated barley had lower Ca concentrations than wild barley, especially in the low Ca salt treatment. Although potassium (K/Na) and Ca/Na ratios were higher in control wild barley plants than in Harrington, they declined under salt stress, irrespective of Ca supply. Major osmotica in wild barley leaves were K, sugars, organic acids, and quaternary ammonium compounds, while in Harrington they were cations, including Na, K and Mg, and anions such as phosphate (PO4) and SO4. Wild barley maintained better water status than Harrington under low Ca salt treatment. Supplemental Ca improved water status more in Harrington than in wild barley. Lack of osmotic adjustment to salinity in wild barley apparently resulted from its ion exclusion. Low Ca salt treatment caused Ca deficiency, Na toxicity, and loss of turgor in Harrington. In the high Ca salt treatment, Harrington had improved water and ion relations, as well as positive turgor.  相似文献   

2.
The effects of the interaction between sodium chloride, nitrate, and concentrations on growth and internal ion content of faba bean (Vicia faba L.) plants were studied, to understand the relationship between the above parameters and salt tolerance. Increased salinity substantially reduced the dry weight of roots and shoots and increased the root/shoot biomass ratio. Additional nitrate‐N considerably moderated the salinity effects on these parameters. The promotive effects of nitrate‐N were more pronounced on shoot dry weight. These results suggest that an exogenous supply of nitrate‐N would improve the vegetative growth of V. faba plants by moderating the suppresive effects of salinity. The evolution of the root and shoot content in potassium (K), sodium (Na), magnesium (Mg), calcium (Ca), and nitrogen (N) was monitored during vegetative growth. A high correspondence between total N and Ca content was found. The acquisition of Ca and K in response to salt and nitrate was similar in shoots and roots, whereas Mg uptake showed notable differences in the two organs. In salt‐affected plants, the roots were found to be high in accumulated Na while the shoots exhibited the lowest Na concentration. Potassium accumulation was higher in the shoots. In this way, there was an antagonistic effect between Na and K uptake. Analyses of the nutrient contents in plant organs have provided a data base on salt‐tolerance mechanisms of V. faba plants.  相似文献   

3.
ABSTRACT

This study was conducted in a greenhouse to evaluate the root and shoot response of canola (Brassica napus L.) to salt-stress conditions and the remobilization, deposition, and input rate of sodium (Na), potassium (K), and magnesium (Mg) at different salinity levels using two canola cultivars. A salt-tolerant (‘Kristina’) cultivar and a salt-sensitive (‘Hyola 308’) cultivar were grown in nutrient solutions with 0, 50, 100, 150, and 200 mol m?3 NaCl for 7 d. The plants were harvested after 6, 12, 18, and 24 h and 3 and 7 d after salt treatment. The results indicated that increasing salinity significantly decreased shoot and root weights 7 d after treatment. Also, K content and K-Na selectivity decreased in both cultivars, but the changes in ‘Hyola 308’ were greater than in ‘Kristina.’ Electrolyte leakage was increased significantly by salinity, and cell-membrane stability of ‘Hyola 308’ was damaged more than that of ‘Kristina’. Sodium import, transport, and deposition was increased by salinity concentration but remobilization was decreased. The K and Mg import, deposition, and remobilization were also decreased. From this experiment we can conclude that greater K and Mg remobilization in ‘Kristina’ could be a mechanism of salt tolerance in canola.  相似文献   

4.
Two experiments were conducted to determine if improved nutrient uptake increases salinity tolerance of cotton (Gossypium hirsutum L.). A transgenic cotton line (CMO3) with increased salt tolerance and its wild line (SM3) were grown in pots containing substrate (peat:vermiculite = 1:1, v/v) in the first experiment, while cotton (‘SCRC 28’) was cultured in hydroponics with a split-root system in the second experiment. Contents of essential nutrient elements and Na+ in plant tissues, leaf photosynthesis (Pn) and chlorophyll (Chl) concentration and plant biomass were determined after salinity [sodium chloride (NaCl)] treatment in both experiments. In the first experiment, salinity stress with 150 mM NaCl reduced plant biomass and photosynthesis (Pn) of both SM3 and CMO3 compared with their non-stressed controls, but the CMO3 suffered significantly lower reductions than SM3, suggesting an increased salinity tolerance of CMO3 relative to SM3. Total uptake and contents of main nutrient elements [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn)] in CMO3 were higher than those in SM3. Also, less sodium (Na+) accumulation and lower extreme ratios of Na/N, Na/P, Na/K, Na/Ca, Na/Mg, Na/Fe, Na/Mn, Na/Cu, and Na/Zn were observed in CMO3 than in SM3. Increased salt tolerance in transgenic AhCMO cotton was probably attributed to its superior nutrient uptake compared with SM3. In the second experiment, the non-stressed root half fed with moderate level of nutrient solution and salt-stressed half fed with low level of nutrient solution (CMN/SLN) exhibited higher salinity tolerance than salt-stressed root half fed with moderate level of nutrient solution and non-stressed root half fed with low nutrient solution (CLN/SMN). Plants absorbed more nutrients but less Na+ under CMN/SLN than CLN/SMN. The overall results suggest that improved nutrient uptake played an important role in the enhanced salt tolerance of cotton.  相似文献   

5.
CO2浓度倍增和土壤盐胁迫对藜麦生理特征及产量的影响   总被引:1,自引:1,他引:0  
利用可精准调控CO2浓度的人工气候室,设置2个CO2浓度(常规组:400 μmol/mol和倍增组:800 μmol/mol),同时设置2个NaCl胁迫浓度(对照组NaCl浓度为0;盐胁迫组400 mmol/L NaCl),探讨CO2浓度倍增和土壤盐胁迫对藜麦生长、生理、叶片离子含量、叶片光合特性和内禀水分利用效率的影响。结果表明,在盐胁迫下,CO2浓度倍增显著提升藜麦光合速率、降低藜麦气孔导度,提高藜麦内禀水分利用效率,从而增加藜麦产量。但是,在CO2浓度倍增处理下,随着藜麦生长,光合速率提升幅度逐渐缩小,藜麦产生光合适应现象。此外,在盐胁迫下,与CO2浓度常规组相比,CO2浓度倍增最终(63 d)降低藜麦叶片Na+浓度达42%,增加藜麦叶片K+浓度达26%,有效调控藜麦叶片中离子平衡,表现出明显的吸K+排Na+的现象。同时,CO2浓度倍增促进藜麦渗透调节,有效调控藜麦叶片水分运动,增加细胞含水率,降低叶片溶质势和水势,提高压力势,维持细胞正常的生理功能。此外,藜麦内禀水分利用效率与藜麦叶水势、溶质势,光合速率和K+浓度呈显著正相关。研究结果有助于深入理解CO2浓度倍增调控作物耐盐性的生理机制,为应对大气CO2浓度升高背景下土壤盐碱化问题,维护生态系统稳定性,保障粮食安全提供参考。  相似文献   

6.
We investigated the mechanism of growth reduction of dicotyledonous halophyte Salicornia bigelovii under salinity stress by growing it at 0.005 to 500?mol?m?3 sodium chloride (NaCl). The optimal range for growth of S. bigelovii was between 50 and 200?mol?m?3 NaCl. A significant correlation was found between growth and water content, which indicated that water deficit was an important factor in growth reduction at both suboptimal and supraoptimal salinities. Abscisic acid (ABA) concentration of the shoot was negatively related to growth and water content, which suggested that ABA induced by water deficit may inhibit growth at both the suboptimal and supraoptimal salinities. The cause of water deficit at supraoptimal salinity might be caused by nutritional imbalance and osmotic stress due to the low osmotic potential of the external solution. However, limited salt uptake may be one of the causes of water deficit under suboptimal salinity. We discuss a sodium ion (Na+) specific deficit rather than salt deficit as another possible cause of water deficit.  相似文献   

7.
Melon (Cucumis melo L.) plants were grown hydroponically in a greenhouse to investigate the interaction of phosphorus (P) and calcium (Ca) under saline conditions on vegetative biomass and cation balance. Three levels of Ca (0.4, 2, and 8 mM) were combined factorially with two levels of phosphate (0.1 and 1 mM) under two regimes of NaCl salinity (10 and 80 mM). An increase of phosphate and salinity level decreased shoot and root growth. A strong antagonism between Ca and magnesium (Mg) was observed regardless of the salinity level. Calcium effect on growth depended on the salinity level. At low salinity, an increase of Ca reduced sodium (Na) concentration in all plant fractions. At high salinity, this effect was only significant in young and medium leaves. At low salinity and low Ca the reduction of growth could be due to Na toxicity and an unbalanced Ca/Mg ratio. In addition to that, at high salinity, the restoration of growth by increasing Ca concentration in the root medium could be due to an effect on water relation and by increasing potassium K/Na selectivity.  相似文献   

8.
Abstract

A greenhouse pot experiment was carried out using pumice material to investigate the response of frijolillo [Rhynchosia minima (L.) DC] grown at high salinity to supplementary P (P). Plants were tested during a period from germination to vegetative growth stage. Four levels of sodium chloride (NaCl; 0, 25, 50, and 100 mM) combined with two levels of P (4 and 8 meq L?1) were tested in a factorial arrangement with four replications. This cultivar was tolerant to salinity stress up to 50 mM of NaCl and its growth was not affected. However, with high salinity (100 mM of NaCl), growth of both stem and root was reduced. Concentration of potassium (K) and P was affected adversely. The increment of P in the saline solution results in a greatest accumulation of biomass and in a better response to the osmotic adjustment of this wild specie. The amount of NaCl was correlated negatively with the amount of K and calcium (Ca) and positively correlated with P and magnesium (Mg).  相似文献   

9.
Irrigation water of poor quality that is high in salts, alkalinity-inducing compounds, and boron (B) threatens global agricultural production. The objective of the present study was to determine whether supplementary calcium (Ca) and potassium (K) ameliorate the response of tomato plants to a simultaneous combination of these stress conditions. Irrigation water high in alkalinity, salinity, and B reduced plant growth, which was associated with a partial impairment in the antioxidant system (reduction in catalase activity), impairment in water relations (reduced relative water content), decreased nutrient acquisition [lower nitrogen (N), phosphorus (P), K, Ca, and magnesium (Mg) content]; and specific toxicity due to the increase in shoot sodium (Na) and B. However, stressed plants exhibited partially improved growth when supplemented with greater concentrations of Ca and K, which were associated with enhanced P concentration, maintenance of chlorophyll a concentration, and/or partially restored N, P, K, Ca, and Mg uptake.  相似文献   

10.
The effect of salinity on growth response, nitrogen (N) fixation and tissue mineral content was investigated for four legumes: faba bean (Vicia faba L), pea (Pisum sativum L), soybean (Glycine max L), and common bean (Phaseolus vulgaris L). Plants were grown in a vermiculite culture system supplied with a N‐free nutrient solution with the addition of 0, 50, and 100 mM NaCl. Plants were harvested at the beginning of the flowering period and the dry weights of shoots and roots and acetylene reduction activity (ARA) were evaluated at the same time plant tissues were analysed for N, potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) contents.

The depressive effect of saline stress on ARA of nodules was directely related to the salt induced decline in dry weight and N content in shoots. Growth inhibition by NaCl treatments was greater for the pea than for other legumes, whereas the soybean was the most salt‐tolerant Saline stress also affected the N content in shoots and roots. In general the N content accumulated in the shoot and Na in the roots of the four legumes tested, while K accumulated both organs. The acquisition of other macronutrients differed according to the legume species. The legumes most sensitive were P. sativum and V. faba which accumulated Ca in shoot and Mg both in the shoot and the roots. On the contrary, in G. max and P. vulgaris, the two most salt tolerant legumes, accumulated Mg in the roots and Ca in both vegetative organs. Our results suggest a relationship between the salt‐tolerant range in legumes and the macronutrient accumulation in vegetative organs.  相似文献   

11.
Pot experiments were conducted in the greenhouse to study the effect of nitrogen (N) nutrition on photosynthesis and water relations of barley plants under salinity conditions. Nitrogen decreased the sodium (Na) content and increased the potassium (K) content in shoots. The net photosynthetic rate of leaves increased significantly with added N increasing from 0 to 100 mg N/kg soil. The activity of ribulose 1,5 bisphosphate carboxylase (RuBPCase) in leaves of high‐salt plants was lower, and in leaves of the low‐salt plants higher than that in control plants. The photosynthetic rate was reduced by sodium chloride (NaCl) and was significantly correlated with total soluble protein per unit leaf area. At each N level, stomatal conductance in leaves was reduced considerably by salt. Proline content of leaves increased with increasing N level. It was higher in leaves of salt‐treated plants than in those of control plants. The osmotic potential of leaves decreased with increasing N applied, and the turgor pressure of high N plants remained higher under salt treatment condition.  相似文献   

12.
Crop production in many parts of the world is increasingly affected by soil salinization, especially in the irrigated fields of arid and semi-arid regions. The effects of four magnesium levels [0, 0.5, 1, and 22 millliMolar (mM) magnesium as magnesium sulfate (MgSO4.5H2O)], and three salinity levels [0, 45 and 90 mM sodium chloride (NaCl)] on growth and the chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami-e-Zarand’ was studied in sand culture under greenhouse conditions. The experiment was set up as a completely randomized design (CRD) with four replications. After 28 weeks the growth parameters of biomass, leaf number, leaf area and stem height were measured. The results demonstrated that salinity decreased biomass, leaf area and stem height; the application of 2 mM magnesium (Mg) significantly reduced biomass, leaf number, leaf area and stem height; salinity stress increased concentrations of sodium (Na) and potassium (K) in shoot as well as Na concentration in root; however, it decreased Mg and calcium (Ca) concentrations in shoot, as well as Mg, Ca, and K concentrations in root. The application of 2 mM Mg reduced K and Ca concentrations in shoot and Na and K concentrations in root.  相似文献   

13.
ABSTRACT

Greenhouse experiments were conducted to assess the effects of salinization of soil on emergence, seedling growth, and mineral accumulation of Prosopis cineraria (Linn.) Druce (Mimosaceae). A mixture of chlorides and sulfates of sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) was added to the soil and salinity was maintained at 5.1, 7.2, 9.3, 11.5, and 13.3 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Seedlings did not emerge when soil salinity exceeded 11.5 dS m?1. Results suggested that this tree species is salt tolerant at seed germination and seedling stages. Elongation of stem and root was retarded by increasing salt stress. Young roots and stem were most tolerant to salt stress, followed by old roots and leaves. Leaf tissue exhibited maximum reduction in dry-mass production in response to increasing salt stress. However, production of young roots and death of old roots were found to be continuous and plants apparently use this process as an avoidance mechanism to remove excess ions and delay onset of ion accumulation in this tissue. Plants accumulated Na in roots and were able to regulate transfer of Na ions to leaves. Stem tissues were a barrier for translocation of Na from root to leaf. Moreover, K decreased in root tissues with increased salinization. Nitrogen (N) content significantly (P < 0.01) decreased in all tissues (leaf, stem, and root) in response to low water treatment and salinization of soil. Phosphorus (P) content significantly (P < 0.01) decreased while Ca increased in leaves as soil salinity increased. Changes in elements-accumulation patterns and the possible mechanisms for avoidance of Na toxicity in tissues and organism level are discussed.  相似文献   

14.
Salt-induced responses of Medicago ciliaris was studied under controlled conditions. Twenty-two-day old seedlings were cultivated for one month in a nutrient medium added or not with 75 mM sodium chloride (NaCl). Our results showed that this species is relatively salt-tolerant since the whole biomass production of salt-treated plants was affected a little (?30%) as compared to the control. The slight salt effect was mainly nutritional and concerned both macro potassium, calcium and magnesium (K, Ca, and Mg) and micro-nutrients iron (Fe). K and Fe uptake efficiencies were more affected than those of Ca and Mg. Nevertheless, M. ciliaris was able to counterbalance this impact by increasing both K and Fe use efficiencies. The enhancement of K use efficiency could be due in part to the plant aptitude to accumulate sodium (Na+) ions within its shoot tissues and to use them for osmotic adjustment. This “includer” behavior allowed M. ciliaris to maintain an adequate water status under saline conditions.  相似文献   

15.
Poor quality of irrigation water (high salinity) has reduced the yields of pistachio over recent years, especially in Kerman. The effects of four salinity levels [0, 30, 60, and 90 mM sodium chloride (NaCl)] and three calcium (Ca) levels [0, 0.5, and 1 mM Ca as calcium nitrate (Ca(NO3)2.4H2O)] on growth and chemical composition of pistachio seedlings cv. ‘Badami’ were studied in sand culture under greenhouse conditions in completely randomized design (CRD) with four replications. After 170 days, leaf area, leaf number, shoot and root dry weights were determined. Also shoot and root sodium (Na), potassium (K), Ca, and magnesium (Mg) concentrations were measured. Results showed salinity decreased all growth parameters. Ca application increased shoot and root Ca concentrations and root K concentration, while Ca application decreased shoot K concentration and shoot and root Mg concentrations. Salinity decreased shoot Ca, root K, and root Mg concentrations, while salinity increased shoot and root total sodium uptake, and shoot and root Cl concentrations.  相似文献   

16.
Lygeum spartum L. has been recently introduced in areas where salinity is high in soils. However, there are no studies about the physiological response of these plants to salt excess. The effect of sodium chloride (NaCl) on plant growth and water status was studied. Also, the effect of calcium (Ca) addition to salinity conditions was analyzed because of the coexistence of salinity and calcareous soils. Dry weight (DW), transpiration, and osmotic potential (Ψπ) decreased with elevated NaCl and were restored with Ca2+, whereas moderate salinity had no effect. Fresh weight (FW), water potential (Ψω), and root hydraulic conductance (L 0) decreased with salinity; Ca2+ supply had an ameliorative effect at moderate salinity. Sodium (Na+) increased in leaf sap at high levels of NaCl and was decreased by Ca2+. Lygeum spartum showed a resistance to moderate salinity, but the effect of Ca2+ depends on salinity intensity. Thus, the role of Ca2+ in the tolerance to salinity was emphasized.  相似文献   

17.
We studied the effects of salinity stress on biomass production, photosynthesis, water relations, and activity of antioxidant enzymes in two cultivars of common bean (‘HRS 516’ and ‘RO21’). Seedlings were raised in nutrient solution supplemented with increasing concentrations of sodium chloride (NaCl) at 0, 50, and 100 mM. After 10 days of salinity treatment, the plants were sampled to determine the enzyme activity, protein content and dry biomass. Plant biomass and activities of most antioxidant enzymes were adversely affected by salinity stress. Leaf osmotic potential was found to be directly proportional to salt stress. The cultivar, ‘HRS 516’ accumulated less sodium (Na+) than ‘RO21’. Under salinity, superoxide dismutase (SOD) enzyme activity increased 3 folds in both bean cultivars (‘HRS 516’ and ‘RO21’) compared to other antioxidants (APX, CAT, and GR). While not neglecting other possible factors, photosynthesis and biomass remains reliable indicators of plant functioning in response to salinity stress.  相似文献   

18.
Alfalfa (Medicago sativa L.) yield and nutrient contents may be affected under salinity condition. Thus, this experiment was conducted to determine the effect of three salinity levels (60, 120, and 180 mM NaCl) on shoot and root dry weights, and mineral contents of three alfalfa cultivars. With the increasing salinity levels sodium (Na) and magnesium (Mg) contents increased; but potassium (K), nitrogen (N), phosphorous (P), calcium (Ca), zinc (Zn), and copper (Cu) contents and root and leaf weights decreased; however, changes in these traits depended on cultivar and salinity level. However, Rehnani, a tolerant cultivar, had the lowest Na and Mg contents and the highest K, N, P, Ca, Zn, and Cu contents and dry weights under all of the salinity levels. Moreover, leaf dry weight and leaf P content had the highest correlation with salt tolerance suggesting that these traits may be used as a marker for selecting salts that are tolerant among genotypes in alfalfa.  相似文献   

19.
We conducted a study to determine if inoculation with arbuscular mycorrhizal fungi (AMF) would enhance the tolerance of vinca [Catharanthus roseus (L.) G. Don] plants to sodium chloride (NaCl)-induced salinity in irrigation water. Vinca tolerated salinity levels up to 40 mM. Chlorophyll concentration, proline synthesis, and total antioxidant activity were increased with saline irrigation, while leaf potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and boron (B) content decreased, suggesting a detrimental salinity effect. Despite the limited effect of increasing salinity on N content, NaCl-stressed vinca plants showed a marked decrease in nitrate reductase activity, which was associated with decreased leaf K and Fe total content. Mycorrhizal inoculation resulted in reduced growth when compared to non-AMF plants, regardless of salinity level. The K/sodium (Na) ratio decreased dramatically with increasing salinity regardless of AMF treatment. Suggesting, that the AMF isolate was not able to selectively uptake K and Ca, and avoid uptake of Na.  相似文献   

20.
Salt toxicity comprises of osmotic and ionic components both of which can severely affect root and shoot growth. In many crop species, supplemental calcium (Ca) reduces the inhibition of growth typical of exposure to salt stress. The objective of this study was to compare whole plant growth and physiological responses to interactive effect of salinity and Ca level on three forage species [African millet (AM), tall wheat grass (TW), and perennial ryegrass (PR)] differing in tolerance to sodium chloride (NaCl) salinity. Plants were grown under glasshouse condition and supplied with nutrient solution containing 0, 100, and 250 mM NaCl supplemented with 0.5, 5, or 10 mM calcium chloride (CaCl2). Plant growth, ionic concentration, water relations, and solute (proline and glycinebetaine) concentrations of the plants were determined two weeks after the salinity treatments. At 100 mM NaCl, there was a moderate reduction in dry matter (DM) production of all three species. A drastic decrease in DM occurred at 250 mM NaCl. Supplemental Ca reduced the adverse effects of salinity on all three species. The TW showed higher shoot and root growth in 100 and 250 mM NaCl than AM and PR. It also showed the highest DM at 5 and 10 mM Ca supplement. The shoot and root DM of TW increased by about 45 and 15%, respectively compared to the control. Chemical analysis indicated that in TW, Ca restricted both uptake and transport of sodium (Na) from root to shoot. It also increased Ca and potassium (K) concentrations in both organs. The transport of K and Ca from root to shoot of AM and PR were decreased by NaCl, but were restored with increasing Ca in the medium. The opposite occurred for Na. In PR, more K uptake was observed in shoot at 250 mM NaCl with 10 mM Ca supplement. The sap osmotic potential (ΨS) was the highest in TW at 10 mM Ca in the presence of 250 mM NaCl. Contribution of various solutes to the difference in ΨS among the species from the control and 250 mM salt treatment differed greatly. Supplemental Ca induced decline in the leaf ΨS of TW which was predominately due to K, glycinebetaine, Na and proline accumulation. Addition of 10 mM Ca to the growth medium maintained a low Na and a high K level. Accumulation of glycinebetaine and proline in leaf contributed the NaCl tolerance of TW. The presented results suggest that supplement Ca, not only improved ionic relations but also induced plant ability in production of compatible solutes (glycinebetaine and proline) and osmotic adjustment. Accordingly, genotype dependent capacity could be found using supplemental Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号