首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Zinc (Zn) and iron (Fe) deficiency-related health problems in humans may be solved by improving their concentration in edible grains. The study, conducted in 2015–16 and 2016–17, investigated the effects of soil and foliar application of Zn and foliar application of urea on grain Zn and Fe accumulation of chickpea grains. Soil application of ZnSO4 @ 25 kg ha?1 + foliar spray of ZnSO4 @ 0.5% at flowering and pod formation stages resulted in the highest Zn (45.06 & 44.69 mg Zn kg?1 grain in the first and second year of study) and Fe (59.74 & 62.88 mg Fe kg?1 grain) content. Urea application @ 2% at flowering and pod formation stages also resulted in the highest grain Zn (41.12 & 40.26 mg Zn kg?1 grain) and Fe (58.95 & 61.95 mg Fe kg?1 grain) content. Grain yield and protein content were significantly increased over control with these treatments. As compared to the sole application of Zn, the combined use of Zn and urea improved the grain Zn and Fe contents. Zinc and urea can be applied to improve Zn and Fe content in chickpea grains and, therefore, can help in ameliorating malnutrition in burgeoning human population.  相似文献   

2.
Abstract

Field experiments were conducted during 2013–2014 at Tashkent, Uzbekistan to evaluate the performance of chickpea variety “Jakhongir” with the variable proportion of nitrogen (N) and bio-fertilizer inoculation in the moderate saline (5.6?±?0.6?dSm?1) soil condition. The studied treatments were No control (non-fertilized), N1 mineral-N (50?kg?N?ha?1), N2, mineral-N (75?kg?N?ha?1), N3, mineral-N (100?kg?N?ha?1) equivalent 0%, 50%, 75%, and 100% from recommended rate for chickpea, Rhizobium inoculation (Bio)?+?No control, Rhizobium inoculation (Bio)?+?N1, Rhizobium inoculation (Bio)?+?N2, and Rhizobium inoculation (Bio)?+?N3. Seed inoculation with Rhizobium was significantly superior over no inoculation treatments at all rate of N fertilization. The middle rate of N fertilization 75?kg?N?ha?1 combined with biofertilizer inoculation had of superior effect on chickpea, producing 73.2% more yield (1.68?Mg ha?1), oil, protein, and sugar content performed 16.4%; 15.0%, and 17.9% higher value, respectively, in comparison to control.  相似文献   

3.
Poor zinc (Zn) nutrition of wheat is one of the main causes of poor human health in developing countries. A field experiment with no zinc and foliar zinc application (0.5% ZnSO4.7H2O) on bread wheat (8), durum wheat (3), and triticale (4) cultivars was conducted in a randomized block design with three replications in 2 years. The experimental soil texture was loamy sand with slightly alkalinity. The grain yields of bread wheat, triticale, and durum wheat cultivars increased from 43.6 to 56.4, 46.5 to 51.6, and 49.4 to 53.5 t ha?1, respectively, with foliar application of 0.5% ZnSO4.7H2O. The highest grain yield was recorded by PBW 550 (wheat), TL 2942 (triticale), and PDW 291 (durum), which was 5.22, 4.24, and 4.56% and significantly higher over no zinc. Foliar zinc application increased zinc in bread wheat, triticale, and durum wheat cultivars grains varying from 31.0 to 63.0, 29.3 to 61.8, and 30.2 to 62.4?mg kg?1, respectively. So, agronomic biofortification is the best way which enriching the wheat grains with zinc for human consumption.  相似文献   

4.
Multiple element analyses were carried out to investigate variation in element concentrations in barley grains of 336 genotypes. Of 13 elements analyzed, Ba ranged from 0.2 to 8.9?mg kg?1, Ca from 186.4 to 977.5?mg kg?1, Cu from 1.5 to 9.8?mg kg?1, K from 353.2 to 7721.5?mg kg?1, Mg from 1049.8 to 2024.2?mg kg?1, Mn from 8.1 to 22.9?mg kg?1, Na from 55.9 to 627.9?mg kg?1, P from 2272.9 to 5428.8?mg kg?1, S from 880.7 to 1898.0?mg kg?1, Si from 19.1 to 663.2?mg kg?1, and Sr from 0.35 to 2.62?mg kg?1 in the barley grain. The least square means showed high Zn, Fe, Mg, P, and S concentration in AM-64 and AM-228 genotypes. The principal component analysis of element concentration showed four PCs explained 64.3% total variance. Strong positive correlations (p?<?0.001) of Fe-Mn, Fe-S, S-Mn, Zn-P, Zn-Mg, Mg-P, Mg-Mn, and Ca-Sr were found. The identification barley genotypes that showed high elements concentration furnish valuable genetic resources for biofortification in future.  相似文献   

5.
Chickpea legumin has been purified and incubated under oxidizing conditions with linoleic acid to investigate the influence of this acid on the structure and nutritional quality of the protein. At the end of the incubation time, >30% of the linoleic acid was oxidized. The oxidized linoleic acid was highly detrimental to legumin, and the electrophoretic pattern of the protein was completely changed after the incubation period. Nevertheless, neither polymerization nor cleavage of the protein was observed as deduced from gel filtration chromatography, suggesting that the changes observed in native electrophoresis were probably due to oxidation of legumin. The incubation of legumin with linoleic acid also produced a diminution of the contents of methionine and histidine, by 81.3 and 24.3%, respectively. Finally, in vitro protein digestibility of chickpea legumin was also seriously affected by the incubation with linoleic acid, decreasing from 84.1 to 69.2%.  相似文献   

6.
Abstract

A field experiment was conducted during two consecutive growing seasons (2013 and 2014) to evaluate the effects of inoculations with Rhizobium and Azotobacter on the growth and yield of two chickpea (Cicer arietinum L.) varieties under saline (5.8 dS m?1) arid condition. The single treatment of either Rhizobium or Azotobacter exhibited to promote the growth of chickpea to some level, however, co-inoculation produced more effects and increased the shoot dry weight (30.3 and 26.4%), root dry weight (17.5 and 26.3%), nodule number (79.1 and 43.8 piece per plant), nitrogen content in roots (9.62 and 10.9%), in shoots (12.6 and 8.3%) and seed protein (7.1 and 4.3%) in both Flip06-102 and Uzbekistan-32 chickpea varieties compared to the control. Our studies showed that the highest yield response of 429 (27.9%) and 538 (23.9%) kg?ha?1 over the control was revealed by the co-inoculation with Rhizobium and Azotobacter inoculants in Flip 06-102 and Uzbekistan-32, respectively. A new introduced Flip 06-102 chickpea variety was more salt tolerant and had higher root nodulation than the local Uzbekistan-32 chickpea variety. Nitrogen (N), phosphorus (P), and potassium (K) contents in the shoots and roots were significantly (p?Rhizobium plus Azotobacter could be applied to improve the vegetative growth and yield of chickpea and to alleviate the effects of salt stress.  相似文献   

7.
Summary Soil solarization greatly reduced the native chickpea Rhizobium population. With inoculation, it was possible to increase the population of the Rhizobium in solarized plots. In the 1st year, 47% nodulation was obtained with chickpea inoculant strain IC 59 when introduced with a cereal crop 2 weeks after the soil solarization and having a native Rhizobium count of <10 g-1 soil, and only 13% when introduced 16 weeks after solarization at the time the chickpeas were sown, with 2.0×102 native rhizobia g-1 soil. In the non-solarized plots inoculated with 5.6×103 native rhizobia g-1 soil, only 6% nodulation was obtained with the inoculant. In the succeeding year, non-inoculated chickpea was grown on the same plots without any solarization or Rhizobium inoculation. The treatment that showed good establishment of the inoculant strain in year 1 formed 68% inoculant nodules. Other treatments indicated a further reduction in inoculant success, from 1%–13% to 1%–9%. Soil solarization thus allowed an inoculant strain to successfully displace the high native population in the field and can serve as a research tool to compare strains in the field, irrespective of competitive ability. In year 1, Rhizobium inoculation of chickpea gave increased nodulation and increased plant growth 20 and 51 days after sowing, and increased dry matter, grain yield, and grain protein yield at maturity. These beneficial effects of inoculation on plant growth and yield were not measured in the 2nd year.Submitted as Journal Article No. JA 945 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India  相似文献   

8.
Field experiments were conducted during summer (2013/2014) and winter (2014) in two different soil types to evaluate the effect of biochar and P fertilizer application on growth, yield, and water use efficiency of chickpea. Soil types include Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design and replicated three times. Biochar application at 5 t ha?1 significantly increased biomass, grain yield and water use efficiency of biomass production (WUEb) in the clay soil compared to 10 and 20 t ha?1. However, the increase was attributed to the addition of P fertilizer. Biochar application had no effect on yield components in the loamy sand soil, but P fertilizer addition increased number of seeds/pod in the loamy sand soil and number of pods/plant in the clay soil. Biochar and P fertilizer application on growth and yield of chickpea varied in soil types and seasons, as the effect was more prominent in the clay soil than the loamy sand soil during the summer sowing.  相似文献   

9.
Chickpea protein isolate was used as starting material for the production of hypoallergenic protein hydrolysates. Western blotting of the protein isolate showed that IgE in sensitized patient sera strongly bound to the basic polypeptidic chains and recognized the acidic ones of 11S globulin. During the hydrolysis process by the individual and/or sequential action of endo- and exoproteases, a high reduction of antigenic activity was observed. Results suggest that the presence of intact or partially hydrolyzed basic polypeptide chains of 11S globulin are responsible for the formation of IgE complexes in protein hydrolysates obtained by exoprotease treatment; however, the digestion of these polypeptide chains by individual action of endoprotease caused a high loss of antigenic activity. The most effective reduction of antigenicity, >90%, was observed in extensive hydrolyzed chickpea proteins obtained by sequential treatment with endo- and exopeptidases. This chickpea protein hydrolysate could be useful for the elaboration of specialized hypoallergenic food products.  相似文献   

10.
Summary Antibiotic-resistant Rhizobium spp. strains have been used in ecological studies of legumerhizobia symbiosis. It has been suggested that in the course of acquiring resistance against high doses of antibiotics, rhizobia might lose their symbiotic effectiveness. Evidence both for and against this argument has been presented (Kremer and Peterson 1982; Materon and Hagedron 1983). This communication reports our experience with streptomycin-resistant (Str+) mutants of chickpea Rhizobium spp. strains. Parent strains were used as controls.Research paper No. 5233 from the Experiment Station, G.B.P.U.A.&T. Pantnagar, Nainital  相似文献   

11.
The use of efficient bio-inoculants in chickpea is the best way to increase crop productivity under rainfed conditions. To assess the combined effect of bio-inoculants on crop yield, field experiments were conducted during Rabi seasons at Research Station, Punjab Agricultural University, Ballowal Saunkhri, Punjab, India. The application of different bio-inoculants significantly improved number of pods, grain and straw yield of chickpea over the un-inoculated treatment. The combined application of Rhizobium + PSB?+?AM fungi?+?azotobactor inoculums as seed treatment with 75% of recommended phosphorus produced highest grain yield. The nodule count, nodule weight, per cent root colonization of AM fungi and different enzymes activities in soil were also highest in combined bio-inoculants treatment. The present study concluded that combined application of bio-inoculants (Rhizobium, PSB, AM fungi and azotobactor) can save 25% of recommended phosphorus by sustaining the crop yield and improving the soil health.  相似文献   

12.
Summary Chickpea cultivars (Cicer arietinum L.) and their symbiosis with specific strains of Rhizobium spp. were examined under salt stress. The growth of rhizobia declined with NaCl concentrations increasing from 0.01 to 2% (w : v). Two Rhizobium spp. strains (F-75 and KG 31) tolerated 1.5% NaCl. Of the 10 chickpea cultivars examined, only three (Pusa 312, Pusa 212, and Pusa 240) germinated at 1.5% NaCl. The chickpea — Rhizobium spp. symbiosis was examined in the field, with soil varying in salinity from electrical conductivity (EC) 4.5 to EC 5.2 dSm-1, to identify combinations giving satisfactory yields. Significant interactions between strains and cultivars caused differential yields of nodules, dry matter, and grain. Four chickpea — Rhizobium spp. combinations, Pusa 240 and F-75 (660 kg ha-1), Pusa 240 and IC 76 (440 kg ha-1), Pusa 240 and KG 31 (390 kg ha-1), and Pusa 312 and KG 31 (380 kg ha-1), produced significantly higher grain yields in saline soil.  相似文献   

13.
Summary N accumulation, nodulation, and acetylene reduction activity were measured at frequent intervals during the growth of two chickpea genotypes, and N2 fixation was estimated by an isotope-dilution method, using safflower as a non-N2-fixing reference. Safflower was more efficient at N uptake than both the chickpea genotypes for at least the first 50 days and thus could not be used as an accurate reference control. We recommend that further work should employ non-nodulatiog genotypes of chickpea as reference plants and use slow-release forms of 15N fertilizer. Direct genotype comparison by isotope dilution estimated that genotype K 850 fixed 16–18 kg ha–1 more N than G 130, and this difference was supported by the greater nodule mass and acetylene reduction activity in the K 850 cultivar. Inoculation with an ineffective chickpea Rhizobium sp. led to 69% nodulation on cultivar K 850 but only 33% on G 130. While nodule weight, N uptake, and acetylene reduction activity decreased with inoculation in K 850, the isotope dilutions were similar for both inoculation treatments. The lack of a significant effect on N2 fixation was ascribed to the partial success of inoculant establishment.Published as Journal Article No. JA 692 of the International Crops Research Institute for the Semi Arid Tropics, Patancheru, A.P. 502324, India  相似文献   

14.
The root-knot nematode, Meloidogyne javanica (Treub) Chitwood is an important parasite of chickpea (Cicer arietinum L.). Four chickpea genotypes were evaluated for tolerance to M. javanica in naturally infested fields at three locations. Each genotype was evaluated for number of galls, gall size, root area covered with galls and number of egg masses produced. All the cultivars were susceptible or highly susceptible. Seed yield, weight of 100 undamaged seeds, total dry matter and plant height were compared with checks. Chickpea cultivar Annigeri and a local check were used as nematode susceptible checks in all locations. The four promising nematode tolerant genotypes produced significantly greater yield and total dry matter than the checks in fields naturally infested with M. javanica at three locations. These M. javanica tolerant lines represent new germplasm and they are available in the chickpea genebank at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) bearing the identification numbers ICC 8932, ICC 11152, ICCV 90043 and ICCC 42.  相似文献   

15.
To study the effects of organic and inorganic nitrogen (N) on yield and nodulation of chickpea (Cicer arietinum L.) cv. ILC 482, a spilt-plot experiment based on randomized complete block design with four replications was conducted in 2008 at the experimental farm of the Agriculture Faculty, University of Mohaghegh, Ardabili. Experimental factors were inorganic N fertilizer at four levels (0, 50, 75, and 100 kg ha?1) in the main plots that applied in the urea form, and two levels of inoculation with Rhizobium bacteria (with and without inoculation) as subplots. Nitrogen application and Rh. inoculation continued to have positive effects on yield and its attributes. The greatest plant height, number of primary and secondary branches, number of pods per plant, number of filled and unfilled pods per plant, number of grains per plant, grain yield, and biological yield were obtained from the greatest level of N fertilizer (100 kg urea ha?1) and Rh. inoculation. Application of 75 and 100 kg ha?1 urea showed no significant difference in these traits. Furthermore, the greatest rate of N usage (100 kg urea ha?1) adversely inhibited nodulation of chickpea. Number and dry weight of nodules per plant decreased significantly with increasing N application rate. The lowest values of these traits recorded in application of 100 kg ha?1 urea. Results indicated that application of suitable amounts of N fertilizer (i.e., between 50 and 75 kg urea ha?1) as starter can be beneficial to improve nodulation, growth, and final yield of inoculated chickpea plants.  相似文献   

16.
Summary The influence of three inoculum rates on the performance of three chickpea (Cicer arietinum L.) Rhizobium strains was examined in the field on a Mollisol soil. Increasing amounts of inoculum improved the performance of the strains. A normal dose (104 cells per seed) applied at different intervals gave non-significant increases in nodulation, nitrogenase activity (acetylene reduction assay), nitrogen uptake and grain yield. A ten-fold increase in inoculum increased nodule number, shoot dry weight, nitrogenase activity (ARA) and grain yield, but increases over the control were significant only for nodule dry weight and nitrogen uptake by shoot and grain. The highest level of inoculum (100 × normal) significantly increased nodule dry weight, grain yield, total nitrogenase activity (ARA) and nitrogen uptake by shoot and grain. Strain TAL 620 was more effective than the other two. Combined nitrogen (60 kg N ha–1) suppressed nodulation and nitrogenase activity (ARA).Research paper No. 4345 from the Experiment Station, G. B. P. U. A. & T., Pantnagar, Nainital, U. P.  相似文献   

17.
An experiment was conducted under greenhouse conditions to test the symbiotic performance and plant nutrient uptake of the twelve nationally registered chickpea cultivars (‘Çak?r’, ‘I??k-05’, ‘Can?tez-87’, ‘Hisar’, ‘Ya?a-05’, ‘Azkan’, ‘Küsmen-99’, ‘Gökçe’, ‘Damla-89’, ‘Diyar-95’, ‘Aziziye-94’, and ‘?zmir-92’) in Turkey. Inoculation with Mesorhizobium ciceri increased the average nodule number by 687%, nodule weight by 257%, plant height by 6%, shoot dry weight by 12%, root dry weight by 21%, chlorophyll content by 4.2%, nitogen (N)% by 7.9%, and total N by 22.7%. Averaged across chickpea cultivars, inoculation also significantly increased sulfur (S) by 14.4%, phosphorus (P) by 1.9%, magnesium (Mg) by 13.8%, potassium (K) by 6.2%, calcium (Ca) by 17.4%, copper (Cu) by 4.5%, iron (Fe) by 16.5%, manganese (Mn) by 10.9% and zinc (Zn) uptake by 9.4%. The macro- and micronutrient uptake of cultivars significantly correlated with their nitrogen content and the magnitude of response to inoculation in relation to nodulation, plant growth, nitrogen fixation, and nutrient uptake significantly varied among cultivars. Based on the amount of fixed N and plant nutrient uptake, ‘Azkan’, ‘Aziziye-94’, ‘Küsmen-99’, ‘Diyar-95’, and ‘Hisar’ were the genotypes with the most positive response to inoculation. Our data showed that nodulation, nitrogen fixation, plant dry matter production, and macro- and micronutrient uptake of the inoculated chickpea can be improved by selecting the best compatible cultivar.  相似文献   

18.
In the self-pollinated crops such as chickpea, induction of male sterility by deployment of chemical hybridizing agents (CHAs) facilitating "two-line" approach holds immense potential in heterosis breeding. A total of 40 test CHAs comprising 20 ethyl oxanilates and 20 pyridones were screened as potential CHAs on chickpea (variety BG 1088) at 500, 800, and 1000 ppm. Three test compounds mostly having either F (4)/Br (5)/CF(3) (19) at the para position of the aryl ring from a pool of 20 ethyl oxanilates were identified as the most potent CHAs causing >or=99% induction of pollen sterility and >90% total flower sterility at 1000-ppm test concentration. Among pyridone derivatives, N-(4-chlorophenyl)-5-carbethoxy-4,6-dimethyl, 1,2-dihydropyrid-2-one (26) was found to be the most active. Quantitative structure activity relationship (QSAR) analysis has revealed a direct involvement of Swain-Lupton field constant, F(p), with the target bioactivity which implied that field rather than resonance effect (R) had a positive effect on the activity. The real guiding principle for selectivity was found out to be the hydrophobic parameter pi value. The QSAR models indicated that increased steric bulk at the 4-position on the phenyl ring is associated with enhanced activity. The CHAs appeared to act by mimicking UDP-glucose, the key substrate in the synthesis of callose, or lead to an imbalance in acid-base equilibrium in pollen mother cells resulting in dissolution of callose wall by premature callase secretion.  相似文献   

19.
The field experiment studied the effect of irrigation [irrigation 15 days before sowing (DBS), irrigation 15 DBS + rice straw mulch, irrigation 7 DBS and irrigation 7 DBS + one irrigation at flower initiation] and biofertilizers [no biofertilizer (control), Rhizobium inoculation and Rhizobium inoculation + phosphate-solubilizing bacteria (PSB)] on chickpea growth. In mulch treatment, paddy straw mulch was applied at 4 t ha?1 one day after pre-sowing irrigation and was retained until sowing. Pre-sowing irrigation at 15 DBS showed 28.7 and 30.0% less plant stand than irrigation applied 15 DBS + straw mulch and irrigation applied 7 DBS, respectively. Nodulation was significantly higher with irrigation 15 DBS + mulch and irrigation 7 DBS than with irrigation applied 15 DBS. The grain yield was 16.6, 20.3 and 44.0% higher in irrigation 15 DBS + mulch, irrigation 7 DBS and irrigation 7 DBS + irrigation at flowering treatments, respectively, over irrigation at 15 DBS. Rhizobium inoculation significantly improved the number of nodules and nodule dry weight compared with no treatment. Grain yield was significantly higher with Rhizobium than in untreated plots. Water use efficiency was highest when irrigation was applied 7 DBS.  相似文献   

20.
A field experiment was conducted to investigate the role of boron and zinc on growth, yield and quality of onion. There were eight treatment combinations consisted of four levels of boron (0, 0.1, 0.2 and 0.5%) and 4 levels of zinc (0, 0.1, 0.2 and 0.5%) were applied as foliar spraying. application of 0.5% boron significantly increased the growth (plant height, 63.93cm and number of leaves per plant, 7.25), yield (30.74 t ha?1) and quality (total soluble solids, 13.45 0B and pyruvic acid 5.94 µmol g?1) of onion. Among various levels of zinc 0.5% exhibited the best growth (plant height, 67.25cm and number of leaf per plant, 7.75), yield (33.34 t ha?1) and quality (total soluble solids, 14.57 0B and pyruvic acid, 5.86 µmol g?1) attributes of onion. These results suggest that the foliar application of boron and zinc significantly influenced the growth, yield and quality of onion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号