首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Iron (Fe) chlorosis is a major nutritional constraint to groundnut (Arachis hypogaea L.) productivity in many parts of the world. On‐farm research was conducted at a Fe‐chlorotic site to evaluate the performance of three genotypes (TMV‐2, ICGS‐11, and ICGV‐86031), three fertilizer practices [no fertilizer control, fanners practice (125: 200: 0 kg NPK ha?1), recommended practice (20: 50: 30 kg NPK ha?1)], and two Fe treatments (non‐sprayed control and foliar FeSO4 sprays) for their effect on Fe‐chlorosis and haulm and pod yields. These treatments were tested in a strip‐split plot design with four replicates. Results revealed that TMV‐2 and ICGS‐11 were susceptible to Fe‐chlorosis and produced significantly smaller haulm and pod yield, whereas, ICGV‐8603 1 was tolerant to Fe‐chlorosis. Farmer's fertilizer practice had the highest incidence of Fe‐chlorosis. Extractable Fe and chlorophyll content in the fresh leaves were the best indices of Fe‐status and were significantly (P<0.01) correlated with visual chlorosis ratings. Foliar application of FeSO4 (0.5 w/ v) was effective in correcting Fe‐chlorosis and increased pod yield by about 30 to 40% in susceptible genotypes. These results suggests that use of tolerant genotypes such as ICGV‐86031 or foliar application of FeSO4 in susceptible genotypes such as TMV‐2 and ICGS‐11 in combination with recommended fertilizer levels is an effective management package for alleviating Fe‐chlorosis in groundnut.  相似文献   

2.
Abstract

Plant analysis for total iron (Fe) is frequency used for diagnosis of Fe‐deficiency chlorosis. However, chlorotic plants frequency contained similar or higher amount of total Fe than the healthy green plants. The objectives of this study were to (i) determine if Fe chlorosis in citrus lemon can be diagnosed by total or active Fe and can be related to the degree of chlorosis, and (ii) determine the optimum extraction time and ratio of extracting solution to plant sample for extracting the active Fe. Leaf samples of different degrees of Fe chlorosis were sampled from different citrus lemon trees from three different sites. Total Fe was extracted with nitric acid (HNO3) and active Fe with o‐phenanthroline from lemon leaves. An extraction time of 20 and 45 hours and the ratios of the extractor to the sample of 5:l, 10:1, and 20:1 were investigated. The results indicated that an extraction time of 20 hours is enough for extracting the active Fe from citrus lemon leaves by o‐phenanthroline. The amount extracted by all ratios (5:1, 10:1, and 20:1) were detectable and at the same time similarly and consistency showed the differences in degrees of chlorosis in all plant samples. Total Fe content was always higher in moderately and severely chlorotic leaves compared to the green leaves and was not related to the degree of chlorosis. Therefore, total Fe cannot be used as a criteria to differentiate between the Fe‐deficient and non‐deficient plants. On the other hand, active Fe tended to decrease with the increase in the degree of chlorosis. The ratio of active to total Fe was calculated and was found to be closely correlated with the degree of chlorosis. This clearly illustrates the failure of plant analysis for total Fe and the effectiveness of active Fe and/or the ratio of active to total Fe for diagnosing Fe chlorosis.  相似文献   

3.
Susceptible Trifolium plants often exhibit symptoms of iron (Fe)‐deficiency chlorosis when grown on high pH, calcareous soils. A greenhouse method was developed to screen seedlings for Fe‐deficiency chlorosis. ‘Yuchi’ arrowleaf (T. vesiculosum Savi.) and ‘Dixie’ crimson (I. incarnatum L.) clover seedlings were grown in “Super Cell”; Cone‐tainers in six calcareous Texas soils differing in Fe and selected other chemical characteristics. At the fourth trifoliolate leaf stage, chlorosis was induced by saturating the soil for a minimum of 2 weeks. The soils differed in their capacity to induce chlorosis in both clovers. Yuchi was more susceptible than Dixie, showing a higher percentage of chlorosis in five of the six soils. The results indicate that this screening method would be a useful tool for studying Fe‐deficiency chlorosis in Trifolium spp.  相似文献   

4.
Abstract

Iron deficiency in PI54619–5–1 soybeans (Glycine max L.) decreased growth 37% and decreased the rate of photosynthesis by 33%, but had no influence on the rate of transpiration. In another experiment Fe deficiency resulted in a mild 18% decrease in the photosynthetic rate and a slight decrease in the transpiration rate. There were no differences in leaf resistances.  相似文献   

5.
Tetraploid clones of Nilegrass (Acroceras macrum, Stapf.) develop a chlorosis resembling iron (Fe) deficiency on acid (pH 5.0) soils in the Midlands of KwaZulu, Natal, South Africa. Hexaploid and pentaploid clones appear more resistant to the disorder. Iron deficiency would not be expected in such acid soils, but foliar sprays of Fe sulfate reduce the symptoms within 24 hours. Aluminum (Al) toxiciry has been ruled out as a cause of this chlorosis on the basis of soil tests. Manganese (Mn)‐induced Fe deficiency has been postulated. Six Nilegrass clones, differing in ploidy levels, were grown under low Fe or high Mn levels in nutrient solutions, in Mn‐toxic soil, in calcareous soil and in a standard potting soil at pH 7.0. Differential chlorosis symptoms, similar to those observed in the field, were reproduced in plants grown in low Fe or high Mn solutions, in neutral potting soil and in calcareous soil at pH 7.8. Based on plant symptoms and dry weights, the tetraploids were generally more sensitive to these conditions than hexaploid or pentaploid clones. However, in Mn‐toxic soil, plants had leaf tip necrosis rather than the chlorosis typical of Fe deficiency. When grown in a standard potting soil at pH 7.0, plants showing chlorosis accumulated higher concentrations of phosphorus (P), Al, copper (Cu), Mn, Fe, and zinc (Zn) than non‐chlorotic plants. Differential susceptibility to chlorosis is apparently associated with interference of such elements in Fe metabolism, and not with differential Fe concentrations in plant shoots. Additional studies are needed to determine the chemical states of Fe and Mn in root zones and within plant shoots of these clones. Resolution of the differential chlorosis phenomenon would contribute to fundamental knowledge in mineral nutrition and could be helpful in tailoring plant genotypes to fit problem soils.  相似文献   

6.
Abstract

The release of soil phosphorus (P) to solution has been described by extraction of soil with iron (Fe)‐oxide coated paper strips. Little information is available, however, on where this P is coming from. The effect of removal of reversibly adsorbed soil P on the distribution of inorganic P forms was investigated for 12 Italian soils. Phosphate was removed from these soils by Fe‐oxide strips after incubation with P (0 and 100 mg P kg‐1) for 90 days. With no applied P, 3 to 17% of the total soil active P [saloid‐P, aluminum‐phosphate (Al‐P), iron‐phosphate (Fe‐P), and calcium‐phosphate (Ca‐P) was removed by the Fe‐oxide strips. The change in strip‐P following P addition (100 mg kg‐1 soil), ranged from 12.9 to 53.5 mg P kg‐1, with P coming almost entirely from the active P fractions. A close relationship between the changes in desorbed strip‐P after P equilibration and soil P sorption index (SI) was found for the studied soils (r2=0.96). Thus, the release of soil P for plant uptake or transport in runoff was a function of the amount of “actively”; sorbed P and an estimate of P sorption.  相似文献   

7.
Abstract

A pot experiment was conducted under natural climatic conditions to study the effect of low doses of gamma irradiation (0, 5, 10, and 20 Gy) on the performance of winter chickpea (Cicer arietinum L.) in the presence of increased supply of 15N labeled ammonium sulfate (0, 20, 50, and 100 kg N ha‐1). Presowing seed irradiation produced a significant increase in dry matter production (up to 3 6%) and total nitrogen yield (up to 45%). The stimulative effect of irradiation was more pronounced with the application of NH4 +‐N fertilizer. Seed irradiation increased the amount of N2‐fixation by 8–61% depending on the dose and level of NH4 +‐N fertilizer rate. A 10 Gy was found to be the optimal irradiation dose for enhancing N2‐fixation. High levels of NH4 +‐N decreased the percentage and the amount of N2‐fixation, but did not affect nodule formation. However, the presowing 10 Gy irradiation dose reduced the negative effect of ammonia‐N fertilizer on N2‐fixation. Therefore, we recommend irradiating chickpea seeds with a 10 Gy dose before planting in soil containing high levels of mineral nitrogen to reduce its negative effect on N2‐fixation.  相似文献   

8.
A growth chamber experiment was initiated with two field moist, marginal and acidic (pH 5.1–5.2) soils of the Lily series (Typic Hapludults) in order to determine the need for improved legume‐rhizobia symbioses for forage species of current, or potential, use in the renovation of Appalachian hill‐land pastures. One soil was from an abandoned pasture having broomsedge (Andropogon virginicus L.) as the predominant vegetation, whereas the other was from a minimally‐managed pasture dominated by orchardgrass (Dactylis glomerata L.). Treatments included inoculation (or no inoculation) and the addition of aluminum, nil, or lime to provide a range of soil acidities. Both soils contained effective populations of naturalized rhizobia for white clover (Trifolium repens L.) and red clover (Trifolium pratense L.), but low and/or ineffective naturalized populations of rhizobia for alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), bigflower vetch (Vicia grandiflora Scop.), and flatpea (Lathyrus sylvestris L.). Seed inoculation, by lime‐pelleting, was highly beneficial in establishing effective symbioses for all these latter species. The addition of low levels of aluminum or lime (1.5 and 2.0 cmol/kg soil, respectively) had little effect on any of the symbioses, with the exception of those for alfalfa. Thus, an improved legume rhizobia symbiosis would not seem to be a prerequisite for renovating pastures established on chemically similar ultisols with the forage legume species examined in this study, especially if the pasture has at least some history of management.  相似文献   

9.
Abstract

Overwintering soil temperature may influence crop response to phosphorus (P) and indices of P availability in the humid, temperate, transitional climate of Tennessee. The effects of P fertilization and soil incubation temperature on sorghumsudangrass (Sorghum bicolor x S. Sudanese) grown on a Typic Hapludalf was investigated in a greenhouse study. In order to determine the effect of temperature on P availability, soils were incubated prior to cropping, at a constant temperature of 6°C or an average diurnal temperature of 24 and 36°C. Reagent grade Ca(H2PO4)2.H2O was used as the fertilizer source and applied at rates of 0, 10, 20, and 30 mg P kg‐1 for the first test and 0, 20, 40, 60, and 80 mg P kg 1 for the second test. Critical P concentration in the shoots for optimum yield was found to be 1.3 mg g‐1, corresponding to soil solution and labile P concentrations of 5.5 μmol L‐1 and 167 μg g‐1, respectively. Optimum yield occurred for applications of >65 mg P kg‐1 and was unaffected by soil incubation temperature. Applied P rates affected extractable P by five chemical extractants (Bray I, Bray II, Mehlich I, Mehlich III, and Mississippi), but soil incubation temperature had no affect. The extractants, however, were poorly correlated to plant P uptake and no one extractant appeared preferable to the others as an indicator of P availability.  相似文献   

10.
Abstract

Long‐term potassium (K) fertilization practices are likely to affect the K content of soils. This study assessed the effect of long‐term K fertilization strategies for corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotations on extractable K in the soil profile of a major Iowa soil type at two locations. The soil type was a Webster fine‐loamy, mixed, mesic, Typic Haplaquoll at both sites. Soil samples were collected from the 0–15, 15–30, 30–60, and 60–90 cm depths after 17 years (Site 1) or 19 years (Site 2) of K fertilization with combinations of two initial rates and four annual rates. The initial rates were 0 and 1,344 or 1,120 kg K ha‐1 at Site 1 and 2, respectively, and the annual rates ranged from 0 to 100 kg K ha‐1. Samples were analyzed for ammonium acetate‐extractable K (STK) and nitric acid (HNO3)‐extractable nonexchangeable K (HNO3‐K). Concentrations of STK and HNO3‐K in the top 0–15 cm soil layer at the two sites were higher for the high initial K rates and were linearly related with the annual K rate. Results for the subsoil layers varied between sites and extractants. At Site 1, annual rates of 30 kg K ha‐1 or higher resulted in a relative accumulation of HNO3‐K in the 15–30 cm layer. At Site 2, these rates resulted in relative accumulations of STK in the 30–60 cm layer and of HNO3‐K in the 60–90 cm layer, but with relative depletions of STK in the 15–30 and 60–90 cm layers. Thus, use of one extractant may not always be sufficient to evaluate cropping and fertilization effects on subsoil K. Long‐term K fertilization of corn and soybean rotations affected extractable K of both the topsoil and subsoil. The effects on subsoil K, however, were smaller compared with effects on the topsoil and varied markedly between sites, subsoil layers, and extractants.  相似文献   

11.
Bermudagrass (Cynodon dactylon L.) is a warm season perennial that is well adapted in the southern Great Plains. It is one of the region's most important forage crops used for livestock production, and is commonly grown without legume interseeding. Recent research has investigated ways of improving the quality and quantity of this forage. The objectives of this study were to determine the effect of interseeded legumes and phosphorus (P) fertilizer on bermudagrass pasture forage yield and crude protein content. One experiment was initiated in 1993 in eastern Oklahoma in an established bermudagrass pasture. Red clover (Trifolium pratense L.), ladino clover (Trifolium repens L.), and two varieties of alfalfa (Medicago sativah), ’alfagraze’ and'common’, were interseeded by hand into an established stand of bermudagrass. The effect of P on forage yield and crude protein was evaluated using a 30‐kg P ha‐1 rate applied at establishment versus no applied P. Forage yield was collected three times throughout the growing season each year from 1994 through 1997. When both alfalfa varieties were interseeded into a bermudagrass pasture without applying additional P fertilizer, forage yields for the legume‐grass mixtures decreased below those obtained from the monoculture bermudagrass in the first year of the stand. The alfalfa variety ‘alfagraze’ interseeded into established bermudagrass decreased total forage yield over the entire 4‐yr study. Interseeded red clover and ladino clover increased crude protein of the forage compared with monoculture bermudagrass the first two years of the study, with red clover continuing to increase crude protein in the fourth year. However, when 30 kg P ha‐1 was applied to the bermudagrass prior to establishment of the legumes, no change in yield or protein was observed for both alfalfa varieties’ interseeding treatments versus the unfertilized mixtures. Although forage yield may not be increased, interseeding legumes into established bermudagrass could provide an efficient way to improve pasture crude protein without the use of inorganic fertilizers. However, if alfalfa ('common’ or ‘alfagraze') is interseeded, additional P may need to be applied at legume establishment to prevent possible yield decreases.  相似文献   

12.
The effects of DBP (Dibutyl phthalate) and PA (Phthalic acid) supplied to the nutrient medium of Fe‐deficiency stressed sorghum cultivars, CSH‐5, 2077‐A, and CS‐3541 were examined. It was found that both the chemicals (50 mg/1) caused recovery of the cultivars CSH‐5 and 2077‐A in 4 days of treatment. Furthermore, the growth of roots, especially the adventitious roots, was increased by the chemicals.  相似文献   

13.
The Fe‐inefficient T203 and the Fe‐efficient A7 and Pioneer 1082 (P1082) soybeans (Glycine max (L.) Merr.) were grown hydroponically with no (0 mg Fe L‐1 ; ‐Fe) and a minute level (0.025 mg Fe L‐1 ; +Fe) of Fe to (a) compare their responses to Fe‐deficiency stress and (b) relate Fe‐efficiency in soybeans to their ability to initiate the Fe‐stress‐response mechanism at low levels of Fe. With no Fe in solution, P1082 released similar levels of H+ ions, but released less reductant from their roots and there was less reduction of Fe3+ to Fe2+ by their roots than by A7 roots. These responses were also one day later and occurred after a more severe chlorosis and a lower leaf Fe had developed in P1082 than in A7. With 0.025 mg L‐1 of solution Fe, it was not necessary for the Fe‐stress response mechanism to be fully activated to make Fe available in A7 soybean, whereas a strongly enhanced Fe stress response was observed in P1082. Increased Fe uptake and regreening of leaves immediately succeeded initiation of the Fe stress response in both cultivars and at both levels of Fe. Thus, P1082 was slightly less efficient than A7 soybean, but would be classed more efficient than the previously studied soybean cultivars A2, Hawkeye, Bragg, Pride, Anoka, and T203. These results support the hypothesis that the most efficient soybeans are those which can initiate the Fe‐stress response mechanism with little or no Fe in the growth medium. The near simultaneous occurrence of the factors in the Fe‐stress response mechanism (H ion and reductant release, reduction of Fe to Fe by roots), and the immediate increase in leaf Fe and chorophyll contents following that response suggest that all these factors act in concert, not independently, to aid in the absorption and transport of Fe to plant tops.  相似文献   

14.
Although a positive response to iron (Fe) is, usually, expected in calcareous soils; this has not been always the case; and in some instances a depressing effect has been observed. An induced micronutrient imbalance is suspected. This experiment was designed to study the effect of Fe fertilizer on the plant micronutrients. Twenty three highly calcareous soils (18–46% calcium carbonate equivalent; pH 7.7–8.4; and a wide range of extractable Fe) from southern Iran were used in an eight‐week greenhouse experiment to study the effect of Fe fertilizers on soybean [Glycine max (L.) Merr.] growth and chemical composition. The statistical design was a 23 × 3 factorial arranged in a completely randomized block with three replications. Treatments consisted of 23 soils and three levels of applied Fe (0, 10, and 20 mg Fe/kg as FeEDDHA). Uniform doses of nitrogen (N), phosphorus (P), copper (Cu), manganese (Mn), and zinc (Zn) were applied to all pots. Dry matter (DM) and micronutrients concentrations and uptakes of plant tops were determined and used as the plant responses. Application of Fe either had no significant effect on DM or even decreased it. The plant concentration and uptake of Fe increased significantly in all soils. The concentrations and uptakes of Cu and Zn did not change but those of Mn decreased significantly. The negative effect of Fe application was, therefore, attributed to the interference of Fe with Mn nutrition. The mechanism involved appears to be the restriction in Mn translocation from soil to root and/or from root to the plant tops.  相似文献   

15.
Abstract

The effect of additional iron (Fe) on arsenic (As) induced chlorosis in barley (Hordeum vulgare L. cv. Minorimugi) was investigated. The treatments were: (1) 0?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (control), (2) 33.5?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (As-treated) and (3) 33.5?μmol?L?1 As?+?50?μmol?L?1 Fe3+ (additional-Fe3+) for 14?days. Arsenic and Fe3+ were added as sodium-meta arsenite (NaAsO2) and ethylenediaminetetraacetic acid-Fe3+, respectively. Chlorosis in fully developed young leaves was observed in the As-treated plants. The chlorophyll index and the Fe concentration decreased in shoots of the As-treated plants compared with the control plants. Arsenic reduced the concentration of phosphorus, potassium, calcium, magnesium, manganese, zinc and copper. The additional-Fe3+ treatment increased the chlorophyll index in plants compared with the As-treated plants. Among the elements, Fe concentration and accumulation specifically increased in the shoots of additional-Fe3+ plants compared with As-treated plants, indicating that As-induced chlorosis was Fe-chlorosis. Arsenic and Fe were mostly concentrated in the roots of the As-treated plants. Despite inducing chlorosis in the As-treated plants, phytosiderophores (PS) accumulation in the roots and release from the roots did not increase, rather PS accumulation decreased, indicating that As toxicity hindered PS production in the roots. The PS accumulation in the roots was further reduced in the additional-Fe3+ treatment.  相似文献   

16.
Abstract

The Tesponse of ambient nitrous oxide (N2O) emissions to four levels of simulated rainfall (5, 10, 20, and 40 mm) was assessed using large‐diameter cores of undisturbed soil in a greenhouse. The soil cores were taken from the two dominant soil‐landform groups present in the study area: Mollic Albaqualfs in footslope complexes and Typic Haploborolls in shoulder complexes. The footslope complexes had higher ambient N2O emission than the shoulder complexes at all rainfall levels which was attributed to the differences in inherent characteristics of the soils occurring at these landscape positions. This demonstrates the importance of a spatially‐based investigative approach to account for landscape‐scale differences in soil characteristics when investigating N2O emission at a large scale. Rainfall level strongly influenced the aeration status of the soil which, in turn, affected N2O emission. Rainfall showed to be a potential suitable parameter in a predictive model for N2O emissions (R2 = 0.73** and 0.57** on the footslope and shoulder complexes, respectively). Nitrous oxide emissions also occurred in bursts following high rainfall levels; major increases were observed following 20 and 40 mm rainfall. At these rainfall levels, the N2O fluxes from the footslope and shoulder complexes returned to the background level after 48 h and 24 h, respectively. In addition to an appropriate spatial sampling scheme, this study also illustrates the importance of rainfall in deriving a reliable temporal sampling scheme that would include rainfall‐induced episodic emissions to obtain meaningful N2O flux estimates. The potential of using rainfall data for predicting N2O emission activity warrants further investigation under actual field condition.  相似文献   

17.
In growth chambers, cotton (Gossypium hirsutum L. genetic selection ‘M8') was grown in a synthetic growth medium under four light regimes: low pressure sodium (LPS), LPS + Incandescent (Inc), cool white fluorescent (CWF) and CWF + Inc lamps at 22 C under LPS lamps. Less chlorosis developed at 26 C than at 22 C and less under LPS + Inc than under LPS lamps. All plants were green under CWF and CWF + Inc light. Green and chlorotic plant tissue contained about the same concentrations of Fe. The proposed hypothesis was that chlorotic tissue’ contained less Fe2+ than green tissue. Chlorotic leaves treated with FeSO4 turned a green color. Enough CWF + Inc light passed through an intact leaf to reduce Fe3+ to Fe2+ in vitro. Also in vitro, Fe3+ was reduced by CWF, by Inc, but not by LPS light. The amount of Fe3+ reduced during an illumination period was directly proportional to the quantity of light used. In vitro, citrate and malate enhanced Fe3+ reduction, whereas phosphate, pyrophosphate, OH, Cu2+, Ni2+, Mn2+, Zn2+, and Fall inhibited Fe3+ reduction by light. Orthophosphate was about 8 times as effective as organic P in decreasing Fe3+ reduction. Citrate largely alleviated the inhibitory effects of Pi and pH (up to pH 6). The data also provide a possible explanation of a role for many of the elements known to induce or aggravate Fe chlorosis (inhibit Fe3+ reduction). Quantity and quality of light apparently play key roles in plant growth as related to reduction of Fe3+ to Fe2+ in plant tops.  相似文献   

18.
Abstract

Iron from a mixture of Fe oxide and metallic Fe was more available to corn (Zea mays L.) than it was to soybeans when the plants wore grown in calcareous soil or in nutrient solution. All this Fe, however, was DTPA (diethylene triamine pentaacetic acid) extractable. In solution culture the Fe was available to the soybean (Glycine max L.) plants unless CaCO3 was included in the nutrient solution.  相似文献   

19.
Two Ca‐efficient and 3 Ca‐inefficient tomato lines selected on the basis of dry matter production, Ca concentrations in tissues, and severity of Ca deficiency symptoms were grown in nutrient solutions containing 6 levels of total Ca ranging from 15 to 365 mg in 70 mg increments. All lines responded to increased Ca supply by increasing in dry weight and by accumulating Ca. The critical Ca concentrations in the shoots were 0.25% and 0.40% on a dry weight basis for the efficient and inefficient lines, respectively. Concentrations of Ca, K, Mg, P, and NO3 were lower in shoots and except for Mg were lower in roots of efficient plants than in the inefficient plants. For all lines as more Ca was available in the media and as Ca increased in the shoots and roots, the concentrations of the nutrients other than Ca declined. The declines in concentrations of K and Mg were not due to dilution by higher dry matter production in the efficient lines relative to the inefficient ones, although the total accumulation of Ca, P, and NO3 did not vary with Ca supplied. Antagonism among cations may account for differences in efficiency among lines of tomato.  相似文献   

20.
Research on the reduction of iron (Fe) by plant‐root exudates has been conducted using hydroponic solutions containing Fe salts or chelates. These solutions, however, fail to reflect the true soil environment because plants derive their majority requirement from the solid Fe(III) sources. An in vitro Geoponic system (IVGS) is developed to study the reduction of Fe‐bearing clay minerals, i.e., Upton and SWa‐1 (smectite), and Si‐containing amorphous Fe oxide by soybean‐root exudates. Surface sterilized soybean seeds, [Glycine max (L.) Men.] cv. Williams (marginally susceptible to Fe chlorosis), were germinated in presterilized glass culture tubes containing semi‐solid agar media (sucrose free) and Fe minerals. These tubes were placed in an incubator programmed for a white‐fluorescent light cycle for 16 h and temperature setting of 25±2°C. After 15 d of plant growth, the system was analyzed for Fe2+ and total Fe. The amount of structural Fe reduction was 0.012, 0.095 and 0.182 mmol/g for Upton, SWa‐1, and Si‐containing amorphous Fe oxide samples, respectively. The reduction of structural Fe in the Fe containing minerals was likely caused by phenolic root exudates which oxidized to diquinones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号