首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro propagated plums of St. Julien GF 655–2 [Prunus insititia (L.)] (655–2), Damas GF 1869 [Prunus domestica (L.)] (D1869), and Clark Hill Redleaf [Prunus salicina (Until.) X Prunus cerasifera (Ehrh.)] (CHR), were grown in the greenhouse in nutrient solutions of 2, 6, 22, 66, 202, and 404 μM Ca for 96 days. 655–2 plants became severely chlorotic in Ca treatments of 66, 202, and 404 μM concentration after 86 days of growth. D1869 plants in 202 and 404 μM Ca exhibited slight interveinal chlorosis of new growth, while CHR exhibited no chlorosis at any Ca concentration. The best tissue nutrient indicator of chlorosis among rootstocks was foliar P/Fe and P/Zn ratios. 655–2 plants absorbed more P at higher Ca concentrations than did the other rootstock, resulting in the highest stem and leaf P/Fe, and P/Zn ratios. CHR plum may provide an easily propagated, chlorosis‐resistant rootstock for use on calcareous soils.  相似文献   

2.
For dicots, bicarbonate (HCO3‐) is regarded as a main factor in the induction of iron (Fe) chlorosis in calcareous soils, and sand and solution culture. In sand culture experiments, peach [Prunus persica (Batsch) L.] rootstock developed chlorosis only when HCO3‐ levels were equal to or higher than 6 mM. Above this level, chlorosis increaeed as HCO3‐ level was increased. In spite of the lack of chlorosis at to or below 6 mM of HCO3‐, large growth reductions (40–60% reduction in fresh shoot weight) were seen in all rootstocks, although the tolerant rootstock had less reduction than the more susceptible rootstocks. Shoot growth was affected by HCO3‐ more than was root growth.  相似文献   

3.
Iron deficiency stress was induced in cultivars, PKV‐7237, Morden and EC‐68414 of sunflower (Helianthus annuus L) by first growing them in full nutrient medium and transferring to minus Fe medium after a month. The minus Fe nutrient medium was changed again at 13 and 26 days. The change in pH and the degree of chlorosis were recorded. It was found that the pH decreased rapidly in all cultivers from 6.4 to 3.8 in 5 days. The cv. Morden was found more tolerant to the stress than others. Furthermore, the flavinlike pigments as shown by the yellow coloration of the medium were more intense in PKV than in Korden, and were very much less in EC. It was also noted that the pH reduction was non‐redumptive, a feature observed even after transferring twice to fresh minus Fe medium adjusted to pH 6.4. The results of the experiments showed that as long as Fe absorbed from the pre‐stress medium was available in the root, the chlorosis was not severe; but once it was nearly depleted, chlorosis appeared and persisted for a long time.  相似文献   

4.
Abstract

Plant growth is frequently limited by Fe‐related chlorosis on calcareous soils and by mineral toxicities on strongly acid soils and mine spoils. Better adapted varieties are needed for both soil situations, which are not always economically correctable. In a search for such geraplasm, 4 species (20 accessions) of Eragrostis were grown in greenhouse pots of a calcareous soil at pH 7.3. Two species were also compared on acid mine spoil at pH 3.5 and 4.7.

Species, and accessions within species, differed significantly in tolerance to the calcareous soil, as measured by susceptibility to chlorosis and yield of plant tops. The range in top yield was 11‐fold for accessions of Eragrostis capensis, 3‐fold for Eragrostis lehmanniana, and 1.7‐fold for Eragrostis superba. Eragrostis plana (P.I. 364340) was more tolerant to acid mine spoil (pH 3.5) but less tolerant to calcareous soil (pH 7.3) than Eragrostis superba (P.I. 364833).

Chlorosis and poor growth of certain accessions on calcareous soil (pH 7.3) were not explained by specific mineral deficiencies or toxicities. However, the tops of chlorosis‐susceptible accessions had lower ratios of Fe/Mn, Fe/Zn, and Fe/Cu than those of chlorosis‐resistant accessions. This imbalance is believed to interfere with Fe metabolism in plant tops.

Results suggested that superior strains of Eragrostis species can be selected for adaptation to calcareous or acid soils and that certain accessions characterized in these studies can be useful in studying the physiological mechanisms of mineral stress resistance in plants.  相似文献   

5.
A comparative study was carried out on the effectiveness of several commercial Fe‐compounds applied through the soil as well as via leaf spray, with a view to control the Fe‐chlorosis in Verna lemon trees directly grafted on sour orange rootstock, with a Salustiano orange tree as intermediate. The results obtained during 1985 confirm the conclusions of previous experiments: The most effective treatments were the leaf spray with Fe‐polyflavonoids, though it is interesting that Fe‐chelates applied to soil were also highly effective, as Fe leaf levels were higher than 100 ppm one month after treatments.  相似文献   

6.
Abstract

Iron (Fe) chlorosis is a major nutritional constraint to groundnut (Arachis hypogaea L.) productivity in many parts of the world. On‐farm research was conducted at a Fe‐chlorotic site to evaluate the performance of three genotypes (TMV‐2, ICGS‐11, and ICGV‐86031), three fertilizer practices [no fertilizer control, fanners practice (125: 200: 0 kg NPK ha?1), recommended practice (20: 50: 30 kg NPK ha?1)], and two Fe treatments (non‐sprayed control and foliar FeSO4 sprays) for their effect on Fe‐chlorosis and haulm and pod yields. These treatments were tested in a strip‐split plot design with four replicates. Results revealed that TMV‐2 and ICGS‐11 were susceptible to Fe‐chlorosis and produced significantly smaller haulm and pod yield, whereas, ICGV‐8603 1 was tolerant to Fe‐chlorosis. Farmer's fertilizer practice had the highest incidence of Fe‐chlorosis. Extractable Fe and chlorophyll content in the fresh leaves were the best indices of Fe‐status and were significantly (P<0.01) correlated with visual chlorosis ratings. Foliar application of FeSO4 (0.5 w/ v) was effective in correcting Fe‐chlorosis and increased pod yield by about 30 to 40% in susceptible genotypes. These results suggests that use of tolerant genotypes such as ICGV‐86031 or foliar application of FeSO4 in susceptible genotypes such as TMV‐2 and ICGS‐11 in combination with recommended fertilizer levels is an effective management package for alleviating Fe‐chlorosis in groundnut.  相似文献   

7.
Manganese (Mn) toxicity in plants is often not a clearly identifiable disorder and it can interfere with the absorption, translocation, and utilization of other elements such as Ca, Mg, Fe, and P. Soil conditions, management factors, and the use of different genotypes of rootstock can determine the degree of Mn toxicity and of interaction with other elements in the orchard. Five plants of the cultivar ‘Big Top’® grafted onto itself, onto plum rootstock ‘Mr.S.2/5’ and onto hybrid peach x almond rootstock ‘GF677’ were grown in 25-L containers under three treatments, 0, 20, 30% concentration of total lime, obtained by mixing powdered CaCO3 to a sandy soil. Plants were fertilized with manure and a solid fertilizer early in April and irrigated in summer periodically with water rich in manganese. After just 28 d, active lime caused a decrease of chlorophyll SPAD index especially in plants grafted on itself, while those grafted on the tolerant ‘GF677’ rootstock behaved better than those grafted on ‘Mr.S.2/5.’ From June to September, irrigation caused increases in soil Mn concentration and Mn concentration in control plants. This caused first a serious defoliation in Big Top / Big Top plants and then a re-greening of cultivar grafted onto ‘Mr.S.2/5’ and ‘GF677,’ probably due to the interaction between iron and manganese at high pH. In particular the 20% CaCO3 addition to the soil preserved the plants of cultivar grafted onto ‘Mr.S.2/5’ from Mn toxicity, as shown by their high chlorophyll content and growth and lower Mn leaf concentrations. Plants grafted onto ‘GF677’ rootstock showed the best behaviour under 30% CaCO3 treatment associated to higher Fe(III)-reducing capacity and photosynthetic activity. Rootstocks and soil conditions (lime and waterlogging) influenced mineral status and growth of the peach cultivar ‘Big Top,’ particularly by interacting together and modifying Fe-Mn availability.  相似文献   

8.
This study addressed some complementary aspects related to plant Fe nutrition. A field and a greenhouse experiment were conducted to monitor changes in chlorophyll, Fe3+, Fe2+, Ca2+ and K+ along with the progressive evolution of lime‐induced chlorosis, and following soil (Fe‐EDDHA, Fe‐EDTA, Fe‐DTPA, DTPA) and foliar (Fe‐EDDHA, FeSO4, “Fe‐Metalosate") treatments, in a chlorosis‐susceptible ornamental plant, Hydrangea macrophylla, over a year's growing period. Though soil Fe‐EDDHA was the most effective compound in alleviating chlorosis symptoms, it became less so with time and was only partly effective as a foliar spray. Leaf analysis showed that as chlorosis intensified and chlorophyll content decreased, phenanthroline ‐ Fe (Fe2+) decreased with corresponding increases in total iron (Fe3+) and K+ concentrations. The reliability of these chlorosis‐indicators was confirmed as the reverse changes occurred upon chlorosis plant recovery.  相似文献   

9.
Iron (Fe)-deficiency chlorosis causes considerable yield losses in chickpea (Cicer arietinum L.) when susceptible genotypes are grown in calcareous soils with high pH. The most feasible method for alleviating Fe deficiency is the selection of suitable cultivars resistant to Fe deficiency chlorosis. ICC 6119 (desi type), which is Fe-deficient chlorosis, was crossed with CA 2969 and Sierra (kabuli types), resistant to Fe deficiency chlorosis. Inheritance of resistance to Fe deficiency in chickpea revealed that the resistance was controlled by a single dominant gene in these genotypes crossed. A negative selection for resistance to Fe deficiency chlorosis will be effective after segregating generations.  相似文献   

10.
Some Kentucky bluegrass (KBG; Poa pratensis L.) is susceptible to iron (Fe)-deficiency chlorosis. Under Fe-deficiency stress, phytosiderophore is produced and released by the roots of many grasses to solubilize soil Fe and enhance uptake. In other species, quantifying phytosiderophore screens for Fe-deficiency resistant cultivars. A hydroponic study was conducted at 1 and 10 μM solution Fe to variously stress ‘Baron’, ‘Award’, ‘Limousine’, and ‘Rugby II’ KBG cultivars. One μM Fe solution produced more Fe-deficiency stress in all cultivars compared to 10 μM, resulting in greater chlorosis and phytosiderophore release but reduced shoot and root Fe concentrations and shoot weight. Of the four cultivars, Baron was the most susceptible to Fe deficiency and exhibited severe Fe chlorosis and low shoot Fe but, surprisingly, produced the most phytosiderophore. These results imply that Fe-deficiency susceptibility in KBG may be less related to phytosiderophore release and more related to inefficient uptake or utilization mechanisms.  相似文献   

11.
Sorghum (Sorghum bicolor L. Moench) cv. CSH‐7, an Fe‐efficient hybrid was grown and subjected to Fe‐deficiency stress. The nutrient medium was extracted for isolation of reductant chemicals. By means of thin layer chromatography, I.R. spectrum and HPLC analysis, dibutyl phthalate was identified as the principal component. This chemical was not found in the nutrient medium extracted before the onset of chlorosis or in that after the plants recovered from chlorosis. Furthermore, synthetic dibutyl phthalate and that obtained from the exudate when supplied to the nutrient medium caused greening of chlorotic sorghum in 24 hours. Evidence that the root medium of the Fe‐efficient sorghum can induce recovery of an Fe‐inefficient sorghum grown together, has also been obtained. It is concluded that dibutyl phthalate released by the Fe‐efficient sorghum subjected to stress, is responsible for making Fe available for utilisation. The mechanism of action of dibutyl phthalate on chlorosis recovery is still an open question.  相似文献   

12.
The effects of Zn‐stress on pH of the nutrient medium and the occurrence of Zn deficiency symptoms were examined in 12 cotton and 10 peanut cultivars widely grown in several parts of India. It was found that many of the cotton cultivars were able to reduce the pH, but however unable to recover from Zn deficiency. In contrast, all the peanut cultivars tested did not develop Zn‐chlorosis when subjected to Zn‐stress, although the pH reduction was less significant. The study with these crop cultivars revealed that Zn‐stress tolerance response was not related to pH changes in general. The mechanism by which the peanut cultivars made Zn available and thus averted the onset of Zn‐chlorosis was therefore not adaptive to the changes in pH. This feature appeared to be different from the pattern of correlative pH reduction and recovery from Fe‐chlorosis observed in several Fe‐stress tolerant crop cultivars.  相似文献   

13.
《Journal of plant nutrition》2013,36(7):1451-1465
Abstract

The experiment considered Vitis vinifera L. cv. “Pinot blanc” clone VCR5 grafted on a lime‐susceptible (3309 C) and a lime‐tolerant (41 B) hybrid rootstock and grown in 45 L pots of a calcareous and a non‐calcareous soil. Each treatment included plants bearing clusters and plants without clusters; in the latter case the bunches were removed 15 days before blooming. During the third growth year, shoot length, leaf chlorophyll (Chl), and mineral element concentrations were recorded. At the end of the growing cycle the grapevines were divided into leaves, shoots, berries, cluster stems, trunk, roots, and dry matter and mineral element composition per organ were analyzed. The 41 B rootstock showed its lime‐tolerance by exhibiting little reduction of shoot length when grown in the calcareous soil as compared to the non‐calcareous one, while 3309 C growing in the calcareous soil induced a dramatic shoot length reduction. The rootstock also affected the leaf chl concentration according to the known degree of lime‐tolerance/susceptibility: “Pinot blanc” grafted on 3309 C and growing on the calcareous soil showed chlorotic leaves while the plants grafted on 41 B had green leaves; cluster removal did not affect leaf chl. The fruit load (expressed as berry dry matter) was strongly affected by the soil and the rootstock; in the calcareous soil 41 B rootstock produced twice as high cluster dry matter than did 3309 C. A higher macronutrient uptake for the plants growing under lime‐stress conditions was affected by 41 B rootstock. Cluster removal in plants grown on calcareous soil produced different effects, as follows: in the case of 41 B rootstock, a redistribution of photosynthate to other sinks like shoot tip and roots occurred, while in the case of 3309 C only the roots benefited. Under lime‐stress condition the plants grafted on 41 B took up more iron (recorded as total amount in the leaves) than did those grafted on 3309 C.  相似文献   

14.
A method has been developed to consistently induce increases in root ferric chelate reductase activity in the fruit tree rootstock GF 677 (Prunus amygdalopersica) grown under iron (Fe) deficiency. Clonal GF 677 plants were grown hydroponically in a growth chamber with 0 or 90 μM Fe(III)‐EDTA. Root ferric chelate reductase activity was measured in vivo using BPDS. Plants grown without Fe developed visible symptoms of chlorosis and had lower root ferric chelate reductase activities than those grown with Fe. Root ferric chelate reductase activities were 0.1–1.9 and 0.6–5.3 nmol of Fe reduced per gram of fresh mass and minute, respectively, in Fe‐deficient and sufficient plants. However, when plants grown without Fe for several days were resupplied with 180 μM of Fe(III)‐EDTA, FC‐R activities increased within 1 day. The FC‐R values after Fe resupply were 20‐fold higher than those found in Fe‐deficient plants and 5‐fold higher than those found in the Fe‐sufficient controls. After three days of the Fe treatments the FC‐R activities had decreased again to the control values. The reduction of Fe was localized at the subapical root zone. In the conditions used we have found no decreases of the nutrient solution pH values, indicating that this type of response is not strong enough to be detected in peach tree rootstocks. Also, no major changes in root morphology have been found in response to Fe deficiency. This ferric chelate reductase induction protocol may be used in screening assays to select rootstock genotypes tolerant to Fe chlorosis.  相似文献   

15.
The jute (Corchorus capsularis L.) cv. 3RC‐212 which is Fe‐efficient, was subjected to Fe‐deficiency stress, and the nutrient medium was examined for chemicals, when the plants became chlorotic and the pH was lowered to about 4. While phenolic acids could not be detected, DBP (dibutyl phthalate) was identified in the extract by means of TLC and HPLC. The effect of DBP and caffeic acid was studied in JRC‐212 and DBP was found to cause recovery of the plants from chlorosis in 5 days. The chemicals, PA (phthalic acid), a derivative of DBP (50 mg/1) were supplied to chlorotic plants of JRO‐632, an Fe‐inefficient jute cultivar, and both the chemicals were effective in chlorosis recovery. PA application caused more rapid greening than DBP.

Jute is the second crop species in which DBP is identified in the root exudate. The detection of DBP was first recorded in sorghum CSH‐7.  相似文献   


16.
Iron (Fe) deficiency has been a widespread problem in peanut (Arachis hypogaea L.) grown on calcareous soils of northern China and has resulted in significant yield losses. Field observations showed considerable variability in visual chlorosis symptoms among peanut cultivars in the same soil. The objective of this study was to confirm the genetic differences in resistance to Fe-deficiency chlorosis in peanut and to identify feasible indicators for screening Fe-efficient genotypes. Resistance to Fe chlorosis of sixteen peanut cultivars grown on calcareous soil was evaluated in the field and physiological responses to Fe-deficiency stress were studied in nutrient solution. There were significant differences in resistance to Fe-deficiency chlorosis among the sixteen peanut cultivars tested, which was identified with SPAD readings, active Fe concentrations in young leaves in the early growth stages, and the pod yield. For Fe-resistant peanut cultivars, Fe-reduction capacity and quality of releasing hydrogen ions from roots increased under Fe-deficiency stress. Highly correlated relationships were observed between the summation of root Fe reduction and field chlorosis scores for sixteen cultivars (r2 = 0.79). It was concluded that Fe-reduction capacity was a better physiological indicator for screening Fe-efficient peanut genotypes of the mechanisms measured.  相似文献   

17.
The phenomenon of Fe‐stress response mechanism was examined using papaya as a test fruit plant species. This plant behaved like the many Fe‐efficient crop cultivars, reduced the pH of the minus Fe nutrient medium, followed by recovery from chlorosis. The response mechanism was observed in both the 2 cultivars, CO‐1 and CO‐3. Evidence obtained with this plant supports the widespread occurrence of the mechanism in diverse crop species ‐ grain, vegetable and fruit crop plants too.  相似文献   

18.
Fe‐deficiency chlorosis was induced in 4 lentil (Lens esculenta Moench) and 7 sesame (Sesamum indicum L.) cultivars by growing them in full nutrient solution for 20 days and then in the nutrient medium without Fe. In lentil cv. VL‐1, a mild chlorosis appeared but turned green after 14 days of stress. However, this recovery was not paralleled by a decrease in pH of the medium. In sesame, there were differences in the degree of tolerance. The cv. T‐13 did not develop any chlorosis, and the pH was found to steadily decrease to 4.5. The cv. SP‐1181 lowered the pH to only 5.6, and did not recover from the chlorosis. A second pattern was noted in VS‐2, TS‐25, TMV‐3 and TMV‐4; these cultivars reduced the pH to between 4.1 and 4.5; these showed a mild chlorosis which disappeared later.

The results show that the pH reduction is not a requisite for chlorosis recovery, at least in some crop cultivars. There are obviously some other mechanism which makes Fe available to the chlorotic leaves. It is suggested that a retranslocatlon of Fe from the older leaves may take place under the stress condition through some physiological process.  相似文献   


19.
Abstract

Iron (Fe) chlorosis, an Fe deficiency commonly observed in grapevines cultivated on calcareous soils, generally inhibits plant growth and decreases yield. The objective of this research was to relate the incidence of Fe chlorosis in vines of the Montilla‐Moriles area, southern Spain, to indigenous soil properties. Thirty‐five grapevines (V. vinífera L. cv. Pedro Ximenez grafted on V. berlandieri×V. rupestris 110 Ritcher) showing different degree of Fe chlorosis were selected from 13 vineyards. The leaf chlorophyll concentration (estimated by the SPAD value measured with a Minolta meter) was positively correlated with the contents in different soil Fe forms but not with alkalinity‐related soil properties (pH, calcium carbonate equivalent, and active lime). The acid NH4 oxalate‐extractable Fe (Feo) was the most useful simple variable to predict the occurrence of Fe chlorosis. A Feo/active lime ratio of 25×10–4 was found to be useful to class soils into two groups according to the probability of inducing Fe chlorosis.  相似文献   

20.
Iron chlorosis tolerant soybeans exhibit chlorosis symptoms in the Red River Valley of North Dakota and Minnesota. Previous research suggests that chlorosis was generally related to high calcium (Ca) carbonate levels in the soil, so a relationship of chlorosis with the presence of Calciaquoll (carcareous at the surface, with very high levels of calcite in the subsurface) and non‐Calciaquoll soil types would be expected. Six sites each in 1996, 1997, and 1998 were studied to identify soil factors correlated with the incidence and degree of chlorosis. Gradients between green soybeans and severely chlorotic plants were established, soil type was determined at the green and chlorotic gradient endpoints, and soil samples were taken at the 0–15 cm depth at each gradient location. Iron chlorosis symptoms were filmed using a video recorder. The images recorded were then analyzed using an image analyzer to give a digital chroma number. The digital values were correlated with soil factors to determine the degree of relationship of symptoms with each factor. Soil type differences were only associated with chlorosis at four of twelve sites. Both Ca carbonate equivalence and soluble salts were most often correlated with chlorosis symptoms. The relationship of iron chlorosis with soluble salts, along with soil carbonate level, appears to be a factor that should be considered in soybean chlorosis resistance breeding for the Red River Valley. A greenhouse experiment was conducted which was unsuccessful in duplicating field chlorosis symptoms when gypsum and Ca carbonate was added to soil obtained from non‐chlorotic areas. The study was able to show a decrease in soybean nodule number with increasing Ca carbonate and gypsum levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号