首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Abstract

Nitrogen‐form effect on nutrient uptake and the subsequent concentration of nutrients in turfgrass plant tissue has not been thoroughly investigated. This study evaluated the effects of clipping regime and N‐form on the tissue concentration of macronutrients and micronutrients and macronutrient uptake in ‘Penncross’ creeping bentgrass (Agrostis palustris Huds.). Turfgrass plugs were grown under greenhouse conditions in a modified Hoagland's solution with a combination of three nutrient solutions (100% NO3 ?, 100% NH4 +, and 50:50 ratio of NH4 +:NO3 ?) and two cutting regimes (cut and uncut). Concentrations of macronutrients and micronutrients were determined for shoot, root and verdure. Nutrient uptake was determined weekly. Uncut NO3 ?‐treated plants accumulated higher concentrations of K, Ca, Mg, B and Cu in the shoot tissue; P, K, Ca, Mg, B, Cu, Mn and Zn in the root tissue; and P, Ca, Mg, B, Fe and Mn in the verdure compared to uncut NN4 +‐treated plants. Nitrate uptake was greater with uncut NO3 ?‐treated plants than was NH4 + absorption with uncut NH4 +‐treated plants. Plants grown with the uncut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with the uncut NO3 ? and 50:50 treatments adsorbed higher amounts of P, K, and Ca compared to the NH4 + treatment. The cut NO3 ?‐treated plants accumulated higher concentrations of K in the shoot tissue; P, Ca, Mg, B, Cu, Fe and Mn in the root tissue; and B in the verdure than did the cut NH4 +‐treated plants. Cut NO3 ?‐treated plants adsorbed less NO3 ? than did cut NH4 +‐treated plants adsorbed NH4 +. The cut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with NO3 ? and 50:50 treatments, under both cutting regimes, resulted in higher concentrations of most macro‐ and micronutrients and greater nutrient uptake compared to the NH4 +‐treated plants.  相似文献   

2.
The absorption and assimilation of 15N‐labeled urea applied to the foliage of tall fescue (Festuca arundinacea Schreb.) and creeping bentgrass (Agrostis palustris Huds.) turf was examined under a controlled environment. Each source of N was dissolved in deionized water to a final concentration of 25 g N liter‐1 and spray‐applied at a rate of 5 g N m‐2. Absorption of the fertilizer‐N over a 72 hr period, as measured by 15N analysis of tissue digests, averaged 55% for the two species. Absorption was also estimated by a washing procedure which measured the urea remaining on the foliage, and by the increase in total N in the plant tissue.

There were no significant differences between the three methods in estimating absorption. Partitioning of the absorbed 15n between tissues averaged 37% in new leaves, 51% in old leaves and shoot tissue, and 11% in the roots. More than 90% of the absorbed urea‐N was hydrolyzed by 72 hr.  相似文献   

3.
An experiment was conducted with Phalaris aquatica L. cv. Sirolan under hydroponic conditions in the glasshouse at constant temperature of 25°C and natural sunlight. Plants were grown in double pot system with four sulfur and three molybdenum levels along with all the major‐ and micro‐nutrient elements. There was increase in growth, nitrate‐reductase activity and contents of most of the nutrient elements at all levels of sulfur and 1.68 μ/L molybdenum. Molybdenum at 3.36 μg/L level inhibited growth and nitrate‐reductase activity and decreased concentration of nutrient elements in plant. The inhibitory effect of higher level of molybdenum is perhaps mediated through its role in the nitrate‐reductase.  相似文献   

4.
Abstract

Pansies are one of the most popular annual bedding plants in the United States. Growth and uptake of essential nutrients as influenced by N‐form ratio was evaluated in pansy as well as what role pansy nutrition plays in the protection of pansy against feeding damage by white‐tailed deer provided by selected repellents. Plants were grown under three N‐form ratios: 100:0, 50:50, and 0:100NO3:NH4. Dry weight was highest for pansy treated with 100:0 and lowest for plants treated with 0:100 NO3:NH4 Mean quality ratings were 4.07 for pansies grown with 100:0,1.80 for pansies grown with 50:50, and 0.78 for pansies grown with 0:100. Potassium (K), magnesium (Mg), and manganese (Mn) content was lower in plants treated with 0:100 than in those treated with 100:0. Ammonium may have competed with these cations for uptake. Boron (B), copper (Cu), molybdenum (Mo), and aluminum (Al) content was highest in plants treated with N‐NH4. There was no significant difference shown in nutrient levels caused by repellent treatments. Feeding damage was shown to be affected by N‐form ratio only on Day 3 of the study. Of the three repellent treatments [Deer and Rabbit Repellent (Thiram), Deer Away purrescent egg spray, and no spray], Thiram provided the greatest protection to pansies over the study period.  相似文献   

5.
The relative effectiveness of Amberlite IRC‐50 resin, in a recirculating ion exchange column, and several concentrations of MES [2(N‐mor‐pholino)ethanesulfonic acid] were evaluated for control of nutrient solution pH of hydroponically cultured soybean (Glycine max [L.] Merr. cv Williams). A low buffering capacity, urea‐based nutrient solution was used. MES buffer, at the concentrations evaluated (1,2, 4, and 10 mM), was less effective at maintaining desired pH than the IRC‐50 resin system. The pH of the 4.0 mM MES buffered nutrient solution decreased from 6.5 to below 4.0 in five days with 25 to 30 day old plants. By comparison, the pH of the IRC‐50 resin buffered nutrient solution dropped from 6.5 to 5.9 during the same period. Nitrate uptake by 27 to 29 day‐old plants was significantly slower when solutions were buffered with MES than with IRC‐50 resin. Rate of nitrate uptake decreased with increasing MES buffer concentrations and decreasing pH in short‐term studies on plants previously grown on IRC‐50 resin buffered nutrient solution. Mass of the plants grown on IRC‐50 resin buffered nutrient solution equaled or exceeded that of plants grown on 1, 2, or 4 mM MES. Total elemental uptake (mg/plant) by plants grown on nutrient solution buffered by IRC‐50 resin, for the ten elements tested, was equal to or greater than uptake by plants grown on nutrient solution buffered by 1, 2, or 4 mM MES. It is concluded that IRC‐50 resin in recirculating columns provides better pH control than does MES buffer for hydroponically grown soybean.  相似文献   

6.
The effects of the photoperiodic induction of flowering on nutrient uptake were studied using genetic lines of pea (Pisum sativum). Nitrogen, K, P, Mn, Fe, and Cu concentrations in the plants were higher in short days (SD) (vegetative), Mg concentrations were higher in long days (LD) (reproductive). Ca, B, and Zn levels appeared to be unrelated to light regimes or flower induction. Plants grown in LD had higher total uptake of most elements, because of substantially higher dry matter production. Low light treatments that stimulated flowering had less effect on nutrient composition than LD (full light). The nutrient concentrations of a photoperiod‐insensitive line were less affected by light regime, and total uptake appeared to be primarily dependent on photosynthate production. It was concluded that the induction of flowering does not impose special demands on nutrient uptake, and that, although photoperiod affected nutrient content, the effect was indirect.  相似文献   

7.
Pot experiments were conducted in the greenhouse to study the effect of nitrogen (N) nutrition on photosynthesis and water relations of barley plants under salinity conditions. Nitrogen decreased the sodium (Na) content and increased the potassium (K) content in shoots. The net photosynthetic rate of leaves increased significantly with added N increasing from 0 to 100 mg N/kg soil. The activity of ribulose 1,5 bisphosphate carboxylase (RuBPCase) in leaves of high‐salt plants was lower, and in leaves of the low‐salt plants higher than that in control plants. The photosynthetic rate was reduced by sodium chloride (NaCl) and was significantly correlated with total soluble protein per unit leaf area. At each N level, stomatal conductance in leaves was reduced considerably by salt. Proline content of leaves increased with increasing N level. It was higher in leaves of salt‐treated plants than in those of control plants. The osmotic potential of leaves decreased with increasing N applied, and the turgor pressure of high N plants remained higher under salt treatment condition.  相似文献   

8.
An experiment developed in soilless culture was used to study the effect of several levels of cobalt (Co) (0, 5, 15, and 30 mg.L‐1) on yield and nutrient evolution of the tomato fruits (Lycopersicon esculentum M. cv. Ramy). The incidence of this pollutant in leaf chlorophyll contents was also studied. Increasing concentration of Co in nutrient solution reduced drastically yield in tomato plants. Total, a and b chlorophyll contents were affected by Co level in nutrient solution. A significant increase of nitrogen (N), phosphorus (P), calcium (Ca), and copper (Cu) in the fruit in function of Co treatments were observed. Similar evolution in iron (Fe) and manganese (Mn) fruit content affected by Co presence in higher treatment were obtained. No significant effect of Co presence on potassium (K), magnesium (Mg), sodium (Na), and zinc (Zn) fruit contents were observed. Cobalt absorption was very high, with values of Co in fruit around 250 μg Co g‐1.  相似文献   

9.
Nutrient uptake by snapdragon (Antirrhinum majus L. ‘Peoria') was compared at five root‐zone temperatures: 8, 15, 22, 29, and 36°C. Uptake of nitrate (NO3 ‐N), ammonium (NH4 +‐N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), boron (B), iron (Fe), manganese (Mn), and zinc (Zn) responded quadratically to increasing root‐zone temperature. Greatest nutrient uptake temperature varied with nutrient but ranged from 15 to 29°C. Uptake of copper (Cu) and molybdenum (Mo) were unaffected by root‐zone temperature. Dry weight gain and stem length also responded quadratically to increasing root‐zone temperature. Optimal temperatures for nutrient uptake and growth were similar, averaging 22°C. These results indicate increasing or maintaining root‐zone temperatures near 22°C maximizes growth and nutrient uptake of snapdragons.  相似文献   

10.
Abstract

Dicyandiamide (DCD) is a nitrification inhibitor that has been proposed for use in drill‐seeded rice. Immobilization of fertilizer NH4 +‐N by soil microorganisms under aerobic conditions has been found to be significantly enhanced in the presence of a nitrification inhibitor. The objective of this laboratory study was to determine if DCD significantly delayed nitrification of urea‐derived N, and if this enhanced immobilization of the fertilizer N in the delayed‐flood soil system inherent to dry‐seeded rice culture. Nitrogen‐15‐labeled urea solution, with and without DCD (1: 9 w/w N basis), was applied to a Crowley silt loam (Typic Albaqualf) and the soil was incubated for 10 weeks in the laboratory. The soil was maintained under nonflooded conditions for the first four weeks and then a flood was applied and maintained for the remaining six weeks of incubation. The use of DCD significantly slowed the nitrification of the fertilizer N during the four weeks of nonflooded incubation to cause the (urea + DCD)‐amended soil to have a 2.5 times higher fertilizer‐derived exchangeable NH4+‐N concentration by the end of the fourth week. However, the higher exchangeable NH4+‐N concentration had no significant effect on the amount of fertilizer N immobilized during this period. Immobilization of the fertilizer N appeared to level off during the nonflood period about the second week after application. After flooding, immobilization of fertilizer N resumed and was much greater in the (urea + DCD)‐amended soil that had the much higher fertilizer‐derived exchangeable NH4 +‐N concentration. Immobilization of fertilizer N appeared to obtain a maximum in the urea‐amended soil (18%) about two weeks after flooding and for the (urea + DCD)‐amended soil (28%) about four weeks after flooding.  相似文献   

11.
Many producers are using foliar fertilizers on seedling cotton (Gossypium hirsutum L.) with the intent of promoting early vigor and increasing yields. However, the hypothesis that foliar feeding young cotton increases seedling vigor and yield has not been rigorously tested. We conducted 5 studies during 1990 to 1992 to investigate the value of one, two or three foliar applications of 12–48–8 fertilizer to seedling cotton. Two studies also included foliar‐applied urea. Plant height and whole‐plant phosphorous (P) and nitrogen (N) were determined two weeks after each application in two studies. Yield and P and N concentrations were not influenced by foliar fertilizers in any study. Seedling height was not influenced by applications of 12–48–8. A slight early‐season height advantage was observed with foliar‐applied urea at one location. Our results suggest that application of foliar N and P fertilizers to seedling cotton has little agronomic value.  相似文献   

12.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

13.
A study was undertaken to evaluate the yield, fruit size, and vegetative growth of three strawberry cultivars inoculated with three vesicular‐arbuscular mycorrhizal (VAM) species at three phosphorus (P) fertility levels. Vesicular‐arbuscular mycorrhiza inoculation and P fertility had no effect on inflorescence or flower number, total yield, fruit weight, or crown number. Higher levels of P did not increased total dry shoot weight, total fresh shoot, weight leaf area, total dry root weight, and leaf number in the present of VAM. However, the cultivars responded differently to VAM inoculation. Vesicular‐ arbuscular mycorrhiza inoculation in combination with P at all levels increased total dry and fresh shoot weight, leaf area, and leaf number compared to application of P alone. The results indicated that it may be possible to increase strawberry stolon production by inoculating the strawberry plants with VAM, a technique which might be useful in nurseries to produce certified strawberry plants.  相似文献   

14.
Foliar concentrations of eight essential elements were measured in three sizes of Metrosideros polymorpha tree seedlings that had been subjected to five different light levels as part of a canopy thinning experiment in a Hawaiian montane rain forest. Most element concentrations were reduced by increased light intensity, but this was statistically significant only for Ca, Mg, and Zn. N and P concentrations markedly decreased with increasing plant size. No element exhibited consistent concentration increases in response to higher light or greater size. As in temperate herbaceous species, lower element concentrations associated with larger or more illuminated plants may represent a dilution effect related to the cumulative amount of C fixed in the lifetime of individual leaves. The rapid growth of newly unshaded seedlings may result in nutrient limitations in seedlings not rooted in mineral soil.  相似文献   

15.
Two independent trials were conducted on a creeping bentgrass (Agrostis stolonifera L.) putting green (PG) to evaluate early-response of canopy quality, growth, and nutrient use to rate and/or type of foliarly-applied nitrogen (N) fertilizer. Treatments were prepared using soluble ‘Amine’ or ‘Salt’ 15N–0 phosphorus (P)–5.8potassium (K) fertilizer and applied N at 0, 24.5, 37, or 49 kg ha?1. Clipping yields were weighed and digested for N content. Normalized differential vegetative (NDVI) and dark green color (DGCI) indices were determined by canopy reflectance. Relative to the Salt fertilizer, the Amine supported greater mean growth and N offtake rates and higher mean NDVI and DGCI. Two and five days after treatment (DAT), salt-fertilizer treated plots showed lesser canopy quality relative to Amine. These differences increased with N rate, likely due to the greater solute concentration of the Salt fertilizer. Eight to 21 DAT, fewer differences were observed by fertilizer type or rate.  相似文献   

16.
Growth of vinca [Catharanthus roseus (L.) G. Don ‘Grape Cooler'] was compared under several cultural conditions. Conditions investigated included two types of media (a peat‐lite mix and a mix containing 25% pine bark) and five types of nutrient charges in the peat‐lite media (sulfated micros, chelated micros, sulfated or chelated micros with pH adjustment to 5.5, and no charge). Nitrogen (N) source effect on growth was also investigated. Plants were grown at five different ratios of nitrate‐N to ammonium‐N. Greatest growth as measured by shoot length and shoot dry weight occurred in the peat‐lite media at either the sulfated micro or chelated micros adjusted to pH 5.5 and at the highest ratios of nitrate‐N to ammonium‐N. Root dry weight and growth were negatively affected by high levels of ammonium‐N in the fertilizer solution.  相似文献   

17.
Tobacco plants (Nicotiana tabacum L. cv NC82) were supplied with (NH4)2SO4, or NH4Cl at root‐zone pH of 6.0 and 4.5 in hydroponic culture for 28 days. Dry matter accumulation, total N and C content, and leaf area and number were not affected by the NH4 + source or root‐zone pH. Plants supplied with NH4C1 accumulated up to 1.2 mM Cl g DW‐1, but accumulated 37% less inorganic H2PO4 and 47% less SO4 2‐ than plants supplied with (NH)2SO4. The large Cl accumulation resulted in NH4C1 –supplied plants having a 31% higher inorganic anion (NO3 , H2, PO4 , SO4 2‐, and Cl) charge. This higher inorganic anion charge in the NH4C1‐supplied plants was balanced by a similar increase in K+ charge. Plants supplied with NH4Cl accumulated greater concentrations of Cl in leaves (up to 5.1% of DW) than plants supplied with (NH4)2SO4 (less than ‐% DW). Despite the high Cl concentration of leaves in NH4Cl supplied plants, these plants showed no symptoms of Cl toxicity. This demonstrates that toxicity symptoms are not due solely to an interaction between high Cl concentration in tissue and NH4 + nutrition. The increase in root‐zone acidity to pH 4.5 from 6.0 did not induce toxicity symptoms.  相似文献   

18.
Abstract

Fly ash, a by‐product of coal combustion, is often stored in landfills. Stabilization of fly ash deposits can be hindered by phytotoxic levels of B and soluble salts in the ash. Two greenhouse studies were conducted with the objective of improving cover crop establishment on landfills containing fly ash. In one experiment, eight cover crop species were screened for tolerance to fly ash and fly ash‐amended soil, as measured by seedling emergence and early shoot growth. Hairy vetch, red clover, and tall fescue were identified as having the best potential for stabilization of fly ash deposits. Another experiment determined if amending fly ash with a co‐compost, produced from municipal refuse and sewage sludge, would improve the establishment and growth of tall fescue and Korean lespedeza. The co‐compost had no effect on fescue alone, but increased emergence and early growth of lespedesa and a fescue‐lespedeza mixture.  相似文献   

19.
Abstract

Two greenhouse studies were conducted to evaluate the effect of B, Mn and Zn on nodulation and N2‐fixation of southernpea (Vigna unguiculata (L.) Halp.) cultivars ‘Freezegreen’, ‘Mississippi Silver’ and ‘Pinkeye Purple Hull’. The cultivars were grown in plastic pots with a Norfolk sandy loam (fine, loamy siliceous thermic, Typic Paleudult) soil treated with B, Mn and Zn at rates of 0, 5, 10 and 20 kg/ha each at pH levels 5.5, 6.0 and 6.5. At pH 6.5 all micronutrient treatments significantly increased nodulation and N2‐fixation over the control (no micronutrient applied). The effects of B, Mn and Zn on nodulation and N2‐fixation depended on the cultivar and soil pH. For plants given the 5 kg/ha B and Mn treatments, ‘Mississippi Silver’ produced the highest number of nodules and ‘Pinkeye Purple Hull’ the least. At 20 kg/ha Zn, nodulation of ‘Freezegreen’ was highest and ‘Pinkeye Purple Hull’ the lowest. As a whole, maximum nodulation was at 5 kg/ha B and Mn and 20 kg/ha for Zn. Nitrogen fixation rates responded similarly except that the optimum rate for Zn was 10 kg/ha. Seed yield of plants peaked at 5 kg/ha for B and 10 kg/ha for Zn, indicating a possible relation of N2‐fixation to seed yield.  相似文献   

20.
The effect of salinity on growth response, nitrogen (N) fixation and tissue mineral content was investigated for four legumes: faba bean (Vicia faba L), pea (Pisum sativum L), soybean (Glycine max L), and common bean (Phaseolus vulgaris L). Plants were grown in a vermiculite culture system supplied with a N‐free nutrient solution with the addition of 0, 50, and 100 mM NaCl. Plants were harvested at the beginning of the flowering period and the dry weights of shoots and roots and acetylene reduction activity (ARA) were evaluated at the same time plant tissues were analysed for N, potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) contents.

The depressive effect of saline stress on ARA of nodules was directely related to the salt induced decline in dry weight and N content in shoots. Growth inhibition by NaCl treatments was greater for the pea than for other legumes, whereas the soybean was the most salt‐tolerant Saline stress also affected the N content in shoots and roots. In general the N content accumulated in the shoot and Na in the roots of the four legumes tested, while K accumulated both organs. The acquisition of other macronutrients differed according to the legume species. The legumes most sensitive were P. sativum and V. faba which accumulated Ca in shoot and Mg both in the shoot and the roots. On the contrary, in G. max and P. vulgaris, the two most salt tolerant legumes, accumulated Mg in the roots and Ca in both vegetative organs. Our results suggest a relationship between the salt‐tolerant range in legumes and the macronutrient accumulation in vegetative organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号