共查询到20条相似文献,搜索用时 15 毫秒
1.
A. A. C. Purcino E. Paiva M. R. e Silva S. R. M. de Andrade 《Journal of plant nutrition》2013,36(7):1045-1060
Nitrogen (N) supply increased yield, leaf % N at 10 days after silking (DAS) and at harvesting, the contents of ribulose‐1,5‐bisphosphate carboxylase (RUBISCO) and soluble protein, and the activities of phosphoenolpyruvate carboxylase (PEPC), and ferredoxin‐glutamate synthase (Fd‐GOGAT), but not of glutamine synthetase (GS) for six tropical maize (Zea mays L) cultivars. Compared to plants fertilized with 10 kg N/ha, plants inoculated with a mixture of Azospirillum sp. (strains Sp 82, Sp 242, and Sp Eng‐501) had increased grain % protein, and leaf % N at 10 DAS and at harvest, but not grain yield. Compared to plants fertilized with either 60 or 180 kg N/ha, Azospirillum‐inoculated plants yielded significantly less, and except for GS activity, which was not influenced by N supply, had lower values for leaf % N at 10 DAS and at harvest, for contents of soluble protein and RUBISCO, and for the activities of PEPC and Fd‐GOGAT. Yield was positively correlated to leaf % N both at 10 DAS and at harvest, to the contents of soluble protein and RUBISCO, and to the activities of PEPC and Fd‐GOGAT, but not of GS, when RUBISCO contents and enzyme activities were calculated per g fresh weight/min. However, when enzyme contents and enzyme activities were expressed per mg soluble protein/min, yield was correlated positively to RUBISCO and PEPC, but negatively to GS. These results give support to the hypothesis that RUBISCO, Fd‐GOGAT, and PEPC may be used as biochemical markers for the development of genotypes with enhanced photosynthetic capacity and yield potential. 相似文献
2.
Abstract Root‐tip, 1‐cm of Sorghum bicolor (L.) Moench cv SC283, SC574, GP‐10, and Funk G522DR were exposed to calcium (45Ca2+) at pH 5.5 for 2‐hr in the presence of nitrate‐nitrogen (NO3?‐N) or ammonium‐nitrogen (NH4+‐N). Nitrate (0.1 mM) induced significantly increased 45Ca uptake in Funk G522DR, SC283, and GP‐10 while 0.01 mM NO3 ?‐N induced significantly increased 45Ca'uptake in SC574, but 45Ca absorption was significantly decreased at 1 mM NO3—N. In the presence of the NH4+ ion, 45Ca uptake was increased up to 8X that of the NH4 +‐N untreated roots. When ammonium chloride (NH4CI) was used, the Cl? tended to induce an increased 45Ca uptake. Cultivar variation was present. 相似文献
3.
A. Yilmaz H. Ekiz I. Gültekin B. Torun H. Barut S. Karanlik 《Journal of plant nutrition》2013,36(10):2257-2264
Field experiments were carried out to study the effect of different seed‐zinc (Zn) content on grain yield and grain Zn concentration in a bread wheat cultivar Atay 85 grown in a severely Zn‐deficient soil under rainfed and irrigated conditions for two years. Three groups of seeds with Zn contents of 355, 800, and 1,465 ng Zn seed‐1 were obtained through different number of foliar applications of ZnSO4.7H2O in the previous crop year. Experiments were carried out with 23 kg Zn ha‐1 (as ZnSO4.7H2O) and without Zn fertilization to the soil. Grain yield from seeds with 800 and 1,465 ng Zn seed‐1 content was significantly higher than that from low seed‐Zn, especially under rainfed conditions. In the first year, under rainfed and Zn‐deficient conditions, yield of plants grown from the highest seed‐Zn content was 116% higher than the yield of plants grown from the low seed‐Zn content. However, in the first year soil‐Zn application combined with low‐Zn seed resulted in a yield increase of 466% compared to nill Zn treatment with low‐Zn seed, indicating that higher seed‐Zn contents could not compensate for the effects of soil Zn application. Soil Zn application significantly increased Zn concentrations in shoot and grain. However, the effect of different seed Zn contents on Zn concentrations of plants was not significant, probably due to the dilution of Zn in tissues resulting from enhanced dry matter production. The results presented show that wheat plants grown from seed with high Zn content can achieve higher grain yields than those grown from the low‐Zn seed when Zn was not applied to the soil. Therefore, sowing seeds with higher Zn contents can be considered a practical solution to alleviate Zn deficiency problem, especially under rainfed conditions in spite of it being insufficient to completely overcome the problem. 相似文献
4.
Previous studies have indicated that under hydroponic conditions, spring wheat (Triticum aestivum) plants produce higher grain yields, more tillers, and increased dry matter when continuously supplied with mixtures of NO3 and NH4 than when supplied with only NO3. The objective of this study was to determine if mixed N needs to be available before or after flowering, or continuously, in order to elicit increases in growth and yield of wheat. During vegetative development, plants of the cultivar ‘Marshal’ were grown in one of two nutrient solutions containing either a 100/0 or 50/50 mixture of NO3 to NH4 and, after flowering, half the plants were switched to the other solution. At physiological maturity, plants were harvested, separated into leaves, stems, roots, and grain and the dry matter and N concentration of each part determined. Yield components and the number of productive tillers were also determined. Availability of mixed N at either growth stage increased grain yield over plants receiving continuous NO3, but the increase was twice as large when the mixture was present during vegetative growth. When the N mixture was available only during vegetative growth the yield increase was similar to that obtained with continuous mixed N. The yield increases obtained with mixed N were the result of enhanced tillering and the production of more total biomass. Although plants receiving a mixed N treatment accumulated more total N than those grown solely with NO3, the greatest increase occurred when mixed N was available during vegetative growth. Because availability of mixed N after flowering increased the N concentration over all NO3 and pre‐flowering mixed N plants, it appears that the additional N accumulation from mixed N needs to be coupled with tiller development in order to enhance grain yields. These results confirm that mixed N nutrition increases yield of wheat and indicate that the most critical growth stage to supply the N mixture to the plant is during vegetative growth. 相似文献
5.
Conservation tillage systems, including ridge‐tillage, have become increasing popular with producers in the central Great Plains because of their effectiveness in controlling soil erosion and conserving water. A major disadvantage of the ridge system is that nutrient placement options are limited by lack of any primary tillage options. The objective of this research was to investigate the effects of method of phosphorus (P) placement and rate on irrigated grain sorghum [Sorghum bicolor (L.) Moench] grown in a ridge‐tillage system on a soil low in available P. This experiment was conducted from 1993 to 1995 on a producer's field near the North Central Kansas Experiment Field at Scandia, Kansas on a Carr sandy loam soil (course, loamy, mixed, calcareous, mesic, Typic Udifuvents). Treatments consisted of fertilizer application methods, surface broadcast, single band starter (5 cm to the side and 5 cm below seed), dual band starter (one band on each side of the row), and knifed in the center of the row middle (38 cm from each adjacent row). Each of these treatments was made at either 22 or 44 kg P2O5 ha‐1, and nitrogen (N) also was included at the rate of 13 kg ha‐1. Additional treatments were, a combination of 13 kg N and 44 kg P2O5 ha‐1 applied half broadcast and half as a single band starter, a 1:1 N:P2O5 ratio (44 kg N and 44 kg P2O5 ha‐1) applied as a single band starter, and a 3:1 ratio (134 kg N and 44 kg P2O5 ha‐1) applied as a single band starter. A no‐P check plot also was included. Broadcast and center‐of‐row middle knife applications were made approximately 1 week before planting. After planting, N was balanced on all plots to give a total of 180 kg ha‐1. Applied P treatments improved grain yield and nutrient uptake and consistently shortened the time from emergence to mid‐bloom in all 3 years of the experiment. On this low soil test P soil, treatments that subsurface banded P increased grain yield by 1.27 Mg ha‐1 compared to broadcast treatments. Placing N and P in a single starter band 5 cm to the side and 5 cm below the seed was as effective as placing a band on each side of the row. Knife applying N and P in the center of the row was not as effective as placement beside the row. Single band starter application of N and P in a 1:1 and or 3:1 N:P2O5 ratio consistently increased yields and nutrient uptake and shortened the time to mid‐bloom as compared to the single band starter treatment that provided only 13 kg N ha‐1. Over the 3 years of the study, these 1:1 and 3:1 N:P2O5 ratio starters were clearly superior to an other treatments. 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(13):1415-1428
Abstract A greenhouse study was conducted to evaluate the effects of normal and Fe‐treated plant material on Fe chlorosis and yields of grain sorghum. Pigweed, guar, clover, sunflower and wheat plants grown in the field for six weeks were sprayed with a 20% ferrous sulfate solution. The plants were harvested after 48 hours, air dried, then ground to pass through a 0.5 mm stainless steel seive. Different rates of normal and Fe‐treated plant material (0, 14.8, 22.2 and 29.6 Mg ha‐1) were added to the Pernitas fsl (Typic Agiustoll). Chlorosis increased with increasing rates of normal plant material added to the soil. Conversely, applications of Fetreated plant material reduced Fe deficiency chlorosis in grain sorghum. The order of effectiveness of Fe‐treated plant material was: sunflower > pigweed > guar > clover > wheat. There was no significant growth response to the untreated plant material. Growth responses to the Fe‐treated plant material were: sunflower > pigweed > guar > wheat > clover. Data obtained indicate that sunflower and pigweed are good Fe‐carriers and could be used to recycle Fe in the soil to correct Fe deficiency chlorosis and increase yields 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(11-12):2485-2491
Abstract In the attempt to find new products which release nutrients in gradual forms, the behavior of two commercial fertilizers was studied, Nitrophoska® (N) and urea (U), covered with two organic materials, humic acid (HA) and alginic acid (AA). The release of nitrogen from the fertilizers was determined by electroultrafiltration (EUF). These applied materials on the fertilizer surface resulted in a slowing of the release of nitrogen, although strictly speaking, these compounds do not function as coated fertilizers. Their effectiveness depends on the fertilizer, for with Nitrophoska®, the addition of alginic acid was more effective, while for urea, the addition of humic acid slowed the release of nitrogen. 相似文献
8.
Fawzia S. Al‐Yousif Mohammed H. Al‐Whaibi Sayeda O. El‐Hirweris 《Journal of plant nutrition》2013,36(6):1037-1052
Date palm (Phoenix dactylifera L. cv Khedhri) and sorghum (sorghum Sudan grass hybrid cv sugar Graze 11) plants were grown in vermiculite in a controlled environment and watered with a nutrient solution containing eight different concentrations of boron (B) (0 to 500 ppm), six months for date palm and four weeks for sorghum. The chlorophyll (Chl) content of the seedlings increased significantly with low concentrations of B for both date palm and sorghum, but no further significant increases were observed at higher concentrations. Generally, there was a positive correlation between B and calcium (Ca) content in the tissues of both seedlings when B concentrations were increased in the media. A negative correlation was found between B concentration in the media and the tissue content of phenolic compounds and the activity of some enzymes, such as polyphenol oxidase, IAA‐oxidase and phenylalanine ammonia‐lyase in the tissue, while there was a positive correlation in the case of peroxidase. Ribonucleic acid (RNA) increased significantly in date palm with the increase of B in the medium, but for sorghum, the increase occurred at 10–100 ppm and decreased at 300 and 500 ppm B in the media. 相似文献
9.
Igor Prsa Franci Stampar Dominik Vodnik 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(3):283-289
Abstract The aim of the present study was to estimate the influence of different rates of soil-applied nitrogen on leaf N and chlorophyll content and photosynthesis in ‘Golden Delicious’ apple trees. Three different treatments were included: the trees were either fertilized with 80 kg N ha?1 (N-80), 250 kg N ha?1 (N-250) or left unfertilized (CON). Fertilization increased leaf nitrogen content, with a more prominent effect in high N application level treatment. In all treatments, a slight seasonal decrease in leaf nitrogen content was observed. N-250 treatment resulted in higher chlorophyll content; a similar effect was found late in the season for N-80 treatment. Measurements of A-C i curves, performed on spur leaves, revealed a higher CO2 saturated photosynthetic rate in N-250 trees compared with low application level fertilized or unfertilized trees. No effect of N fertilization on carboxylation efficiency was found, as revealed by comparisons of the initial slopes of A-C i curves. The lack of positive effect is rather surprising, since the leaf N content was efficiently increased with application of fertilizer. Obviously, the existing pool of leaf nitrogen in non-fertilized trees does not limit Rubisco activity and efficiency. 相似文献
10.
Dong Wang Zhenzhu Xu Junye Zhao Yuefu Wang 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(8):681-692
Abstract Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1. 相似文献
11.
Predicting grain yield and protein content in winter wheat at different N supply levels using canopy reflectance spectra 总被引:6,自引:0,他引:6
A field experiment using a split-plot randomized complete block design with three replications was carried out to determine relationships between spectral indices and wheat grain yield (GY), to compare the performance of four vegetation indices (VIs) for GY prediction, and to study the feasibility of VI to estimate grain protein content (GPC) in winter wheat. Two typical winter wheat (Triticum aestivum L.) cultivars 'Xuzhou 26' (high protein content) and 'Huaimai 18' (low protein content) were used as the main plot treatments and four N rates, i.e., 0, 120, 210, and 300 kg N ha^-1, as the sub-plot treatments. Increasing soil N supply significantly increased GY and GPC (P ≤ 0.05). For the two cultivars combined, significant and positive correlations were found between four VIs and GY, with the strongest relationship observed when using the green ratio vegetation index (GRVI) at mid-filling. Cumulative VI estimates improved yield predictions substantially, with the best interval being heading to maturity stage. Similar results were found between VI and grain protein yield. However, when using cumulative VI, GPC showed no significant improvement. The strong relationship between leaf N status and GPC (R2 =0.9144 for 'Xuzhou 26' and R2 = 0.8285 for 'Huaimai 18') indicated that canopy spectra could be used to predict GPC. The strong fit between estimated and observed GPC (R2 = 0.7939) indicated that remote sensing techniques were potentially useful predictors of grain protein content and quality in wheat. 相似文献
12.
R. F. Brennan 《Journal of plant nutrition》2013,36(6):1159-1176
In a field experiment with wheat (Triticum aestivum L.), the effect of the percentage severity of take‐all on the production of dried tops and grain and the kernel weight (mg/seed) was measured when different amounts of phosphorus (P) fertiliser were applied. The soil was severely P deficient. The amounts of P fertitiser varied from nil P (deficient) to 40 kg P/ha (adequate) applied annually. The levels of Gaeumannomyces graminis tritici (Ggt) were generated by four cropping sequences. The levels of percent severity of Ggt on plant roots ranged from low (<10% of wheat plant roots infected) to high (70% of roots infected by Ggt). Yield of dried tops, grain, and kernal weight, all increased as the level of P applied increased, but the amount of Ggt infection decreased. No grain was produced where no P was applied. The percentage increase in yield due to declines in the severity of take‐all was greater as the level of P applied increased. Increasing levels of P fertiliser help control the severity of Ggt (%) only where the initial level of Ggt with nil P fertiliser are moderate to low. Where the levels of Ggt severity are >65% the effectiveness of P in reducing the levels of Ggt severity rapidly declined. The percentage severity of Ggt affected the efficiency of plants to use P fertilisers. For each cropping sequence, a Mitscherlich function described the grain yield response to P fertiliser. The maximum grain yield (A coefficient) and the curvature coefficient (C) both declined with increases in the level of Ggt severity (%). For example, the C was significantly reduced from 0.134±0.03 for the least Ggt severity (%) to 0.00446±0.001 where Ggt was not controlled. The kernal weight (mg/seed) was increased by P application and decreased by Ggt infection. 相似文献
13.
H. Ekiz S. A. Bagci A. S. Kiral S. Eker I. Gültekin A. Alkan 《Journal of plant nutrition》2013,36(10):2245-2256
Effects of varied irrigation and zinc (Zn) fertilization (0, 7, 14, 21 kg Zn ha‐1 as ZnSO47.H2O) on grain yield and concentration and content of Zn were studied in two bread wheat (Triticum aestivum), two durum wheat (Triticum durum), two barley (Hordeum vulgare), two triticale (xTriticosecale Wittmark), one rye (Secale cereale), and one oat (Avena sativa) cultivars grown in a Zn‐deficient soil (DTPA‐extractable Zn: 0.09 mg kg‐1) under rainfed and irrigated field conditions. Only minor or no yield reduction occurred in rye as a result of Zn deficiency. The highest reduction in plant growth and grain yield due to Zn deficiency was observed in durum wheats, followed by oat, barley, bread wheat and triticale. These decreases in yield due to Zn deficiency became more pronounced under rainfed conditions. Although highly significant differences in grain yield were found between treatments with and without Zn, no significant difference was obtained between the Zn doses applied (7–21 kg ha‐1), indicating that 7 kg Zn ha‐1 would be sufficient to overcome Zn deficiency. Increasing doses of Zn application resulted in significant increases in concentration and content of Zn in shoot and grain. The sensitivity of various cereals to Zn deficiency was different and closely related to Zn content in the shoot but not to Zn amount per unit dry weight. Irrigation was effective in increasing both shoot Zn content and Zn efficiency of cultivars. The results demonstrate the existence of a large genotypic variation in Zn efficiency among and within cereals and suggest that plants become more sensitive to Zn deficiency under rainfed than irrigated conditions. 相似文献
14.
The irrigation and nitrogen (N) requirements of potatoes (cv. Delaware) were determined using sprinklers in a line‐source design on a Spearwood sand. Irrigation water was applied at 73 to 244% of the daily pan evaporation (Epan) and N at 0 to 800 kg N ha‐1 (total applied) as NH4NO3 in 10 applications post‐planting. There was a significant yield (total and marketable) response to irrigation, at all levels of applied N, and N at all levels of applied water (P<0.001). The interaction between irrigation and N was also significant (P<0.001). There was no significant yield response to irrigation from 149% Epan (i.e., W3 treatment) to 244% Epan (i.e., W6 treatment). Irrigation at 125 and 150% of Epan was required for 95 and 99% of maximum yield, respectively, as determined from fitted Mitscherlich relationships. Critical levels of N required for 95 (417 kg ha‐1) and 99% (703 kg ha‐1) of maximum yield were also determined from a Mitschlerlich relationship fitted to the average of the W3 to W6 treatments. The percent total N and nitrate‐N in petioles of youngest fully expanded leaves required for 95 and 99% of maximum yield was 1.78 and 2.11, respectively, at the 10 mm tuber stage, and 0.25 and 0.80% at the 10mm plus 14 day stage (from quadratic regressions). There was a significant (P≤0.001) increase in N uptake by tubers with level of applied N from 57 kg ha‐1 at 0 kg applied N ha‐1 to 190 kg ha‐1 at 800 kg applied N ha‐1 (from a Mitscherlich relationship fitted to the average of W3 to W6 treatments). After accounting for N uptake from soil reserves (57 kg N ha‐1), apparent recovery efficiency (RE) of fertilizer N by tubers [RE=(Up‐Uo/Np) where Up=uptake of N by the crop, Uo=uptake in absence of applied N and Np is the level of applied N, expressed as a fraction] declined from 0.28 at 100 kg applied N ha‐1 to 0.17 at 800 kg applied N ha‐1. There was a linear increase in ‘after cooking darkening’ (i.e., greying) of tubers with increasing level of applied N. Conversely, ‘sloughing’ (i.e., disintegration) of tubers decreased (inverse polynomial) with increasing level of applied N. Rate of irrigation had no effect on these cooking qualities. Reducing applied irrigation and N from levels required for 99% of maximum yield to levels required for 95% of maximum yield would not lead to a significant reduction in profit. This would increase apparent recovery efficiency of applied N by plants, maintain tuber quality, and reduce the impact of potato production on the water systems of the Swan coastal plain. 相似文献
15.
R. F. Brennan 《Journal of plant nutrition》2013,36(12):2639-2651
Five field experiments measured the effect of three sources of nitrogen (N) fertilizer, applied at 45 kg N/ha, on the incidence of take‐all and grain yield of wheat. The N fertilizers were ammonium sulphate, ammonium chloride and sodium nitrate. Compared with the nil N treatment, ammonium nitrogen fertilizer, either as ammonium sulphate (ASdr) or ammonium chloride (ACdr) drilled with the seed, lowered the severity of take‐all. Sodium nitrate topdressed (SNtd) to the soil surface reduced the severity of take‐all in three of the five experiments, while ammonium sulphate topdressed (AStd) reduced the severity in four experiments. Ammonium sulphate and ammonium chloride drilled with the seed were equally effective in reducing the severity of take‐all in three of the five experiments. However, ACdr was more effective than ASdr in reducing the severity of take‐all in one experiment, whereas ASdr was more effective than ACdr in another experiment. In experiments 1 and 5, the reduction in take‐all severity between the ASdr and ACdr treatments did not affect grain yield. Results suggested that grain yield losses from take‐all are most severe where wheat plants are deficient in N. Fertilizers containing chloride are unlikely to control take‐all disease of wheat on soils of southwestern Australia. 相似文献
16.
《Communications in Soil Science and Plant Analysis》2012,43(3-4):301-312
Abstract Field experiments with barley were conducted on stubble of cereal grains in northcentral and central Alberta to determine the effect of N rate (25, 50, and 100 kg N/ha) on yield, N recovery and the relative efficiency (RE) of fall versus spring application of incorporated urea to barley. In most instances fall‐applied N was inferior to spring‐applied N and there were large differences in yield and N uptake of barley grain between fall‐ and spring‐applied N. The differences generally increased with increasing N rate for yield and N uptake, but decreased substantially for N use efficiency and % N recovery. As the N rate increased from 25 to 100 kg N/ha average RE of fall‐ versus spring‐applied N increased from 47 to 73% for yield increase and from 42 to 69% for N recovery. The increased RE with increasing N rate did not imply that the greatest level of N reduced the quantity of over‐winter N loss. Instead the results indicated that a lower proportion of the yield or N uptake was lost from fall application when the greatest rate of N was applied. 相似文献
17.
R. F. Brennan 《Journal of plant nutrition》2013,36(2):349-358
Five field experiments are described which measured the effect of three sources of nitrogen (N) fertilizer, applied at 45 kg N/ha, on the incidence of take‐all and grain yield of wheat. The N fertilizers were ammonium sulphate, ammonium chloride, and sodium nitrate. Compared with the Nil N treatment, ammonium‐nitrogen fertilizer, either as ammonium sulphate (ASdr) or ammonium chloride (ACdr) drilled with the seed, lowered the severity of take‐all. Sodium nitrate topdressed (SNtd) to the soil surface reduced the severity of take‐all in three of five experiments, while ammonium sulphate topdressed (Astd) reduced the severity in four of the five experiments. Ammonium sulphate and ammonium chloride drilled with the seed were equally effective in reducing the severity of take‐all in three of the five experiments. However, ACdr was more effective than ASdr in reducing the severity of take‐all in one experiment whereas ASdr was more effective than ACdr in another experiment. In these two experiments (1 and 5), the effects of the reduction in take‐all severity between the ASdr and ACdr treatments did not affect grain yield. The results suggest that grain yield losses from take‐all are most severe where wheat plants are deficient in N. Chloride containing fertilizers are unlikely to control take‐all disease of wheat on soils of southwestern Australia. 相似文献
18.
《Communications in Soil Science and Plant Analysis》2012,43(4):345-350
Abstract Cotton petioles from irrigated plants grown under varying nitrogen regimes were analyzed for nitrate‐N (NO3‐N). The most recent, fully matured petioles were selected. The concentration of NO3‐N in the petioles was related to applied N rates and the yields of lint obtained. The concentration of NO3‐N for any given N application declined as the season progressed. The concentration of petiole nitrate increased at all sampling dates as the rate of applied N increased. The relationship between applied N and NO3‐N concentrations was most predictable when samples were collected two weeks after the initiation of squaring. The influence of applied N on the concentration of petiole nitrate was also greatest at this stage. The diagnosis of either N deficiency or excess N would be feasible by petiole analysis when the effects of stage of growth could be separated from the effects of soil N. 相似文献
19.
《Communications in Soil Science and Plant Analysis》2012,43(5-6):711-724
Abstract An upland rice variety IAC‐47 was grown in a greenhouse to determine the effect of foliar nitrogen (N) supplementation during grain development on the activity of the N assimilation enzymes, nitrate reductase (NR) and glutamine synthetase (GS), on free amino‐N content and leaf soluble sugars, and on grain crude protein content. At 10 and 20 days after anthesis (DAA), the leaves were fertilized with a liquid fertilizer containing 32% N as 12.8% urea, 9.6% ammonium (NH4), and 9.6% nitrate (NO3) in increasing rates corresponding to 0,20+20, 40+40, and 60+60 kg N ha‐1. Leaves were collected twice (at 12 DAA and 14 DAA for GS activity, sugar and amino‐N content, and at 11 and 13 DAA for NRA) after each application of leaf N. The late foliar application of N increased significantly grain crude protein without a corresponding decrease in grain weight. The NR activity (NRA) increased after the foliar application of N. In the flag leaf, 60+60 kg N ha‐1 (21 DAA) resulted in higher NRA (20x over the control), while GS activity was smaller than the control. At 22 DAA there was an increase in GS activity in the flag leaf at 20+20 N level. However, the GS activity decreased as applied N levels increased. Also at the 20+20 level, there were increases in free amino‐N in the flag leaf and second leaf at the final harvest. Throughout the experiment, plants at the 60+60 N level had the lowest levels of soluble sugars. Increases in crude protein were highest at 40+40 N level (27.9%), followed by 60+60 (18.7%). 相似文献