首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   

2.
Aluminum (Al) toxicity is a major limiting factor for crop production in many acid soils in Brazil. Two greenhouse experiments were conducted to evaluate response of rice (Oryza saliva L.) and common bean (Phaseolus vulgaris L.) to Al levels on a Low Humic Gley acid soil. The Al levels created by liming were: 0,0.03, 0.10, 0.23, 1.03, and 3.83 cmolc kg‐1 of soil. Rice dry matter and grain yield were significantly improved (P<0.05) with increasing Al levels in the soil solution. However, common bean dry matter as well as grain yield were significantly (P<0.01) decreased with increasing Al levels. At 3.83 cmolc Al kg‐1 of soil, bean did not produce any dry matter or grain yield. On an average, Al decreased nutrient concentrations in the tops of rice plant except zinc (Zn) and manganese (Mn), but in bean crop almost all the nutrients concentrations were increased with increasing Al levels. Rice showed tolerance to Al toxicity, whereas, common bean was susceptible to toxicity of this element. For successful intensive crops production lime application will be necessary in Varzea soils especially for legume production.  相似文献   

3.
Productivity of resources on acid soils occupying one fourth of the total area in India is abysmally low. Lime is applied to such soils with the primary objective of increasing the productivity of crops by enhancing the availability of native and applied plant nutrients. Greenhouse pot experiments and laboratory experiments were conducted to evaluate the effects of lime and boron (B) on the availability of nutrients in soils and their uptake by plants. The application of lime enhanced the available nitrogen (N,), phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), and zinc (Zn) content in soils, which was reflected in their uptake by sunflower (Helianthus annus). On the contrary, availability of copper (Cu), iron (Fe), and manganese (Mn) in soil was reduced due to liming. Sunflower responded very well in terms of dry matter yield to B application to the extent of 175% and 188% under 1 and 2 mg kg?1 applied levels of B, respectively. Dry matter yield of sunflower was reduced to the tune of 29.2 and 42.7% under 2/3 and 1 lime requirement (LR), respectively, over control. Lime application at 1/3 LR with 2 mg kg?1 of applied B emerged as an optimum combination in acid soils.  相似文献   

4.
A greenhouse study was conducted to determine the effects of liming, molybdenum (Mo), and phosphorus (P) rates on yield, mineral and nutritional quality, and photosynthetic efficiency of Trifolium repens L. in two Andisols. The experiment used a factorial design with four, three, and two rates for Mo, P, and lime. Molybdenum and P application increased both shoot dry weight and Mo shoot concentration (10–30%). A strong competition for sorption sites between phosphate and molybdate resulted in an increase of available Mo in soil solution and therefore an increase of Mo uptake (20–40%). Significant increases (P ≤ 0.05) were observed in plants' mineral and nutritive quality and photochemical efficiency. This effect was greater in limed soils. Our results suggest a SPAD 50 value can be used as indicator of an adequate N shoot concentration in T. repens, and Mo fertilization is required to improve pasture yield and quality for livestock production.  相似文献   

5.
Abstract

Lime‐stabilized sludge (LSS) from dairy processing waste‐water treatment plants is a desirable product for land application. The material contains lime, which neutralizes soil acidity, and P, which is useful as a plant nutrient. The fineness of the lime and the solubility of P make LSS especially desirable in establishing forage legumes. This greenhouse study had two objectives: to determine a reasonable quantity of LSS for establishing forage legumes such as alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) and to prevent adverse effects on seedlings. Sludge was applied at 0, 2.5, 5.0, 7.5 g kg‐1 to an acid, low P soil in pots, and alfalfa and red clover seeds were sown. All treatments received 123 μg g‐1 potassium as KCl. A completely randomized design with four replications was used. Each species was handled as a separate study. Dry matter production was measured at one‐tenth bloom stage. Plant samples were analyzed for P, K, Ca, and Mg content. Soil samples taken at the end of the study were analyzed for pH, organic matter, Bray P, K, Ca, Mg, exchangeable Al, EC, and CEC. The higher quantities of LSS (7.5 g kg‐1 for alfalfa and 5.0 g kg‐1 for red clover) had negative effects on seedling germination and establishment. Lime‐stabilized sludge resulted in an increase in total nutrient uptake of Ca, Mg, K, and P up to 5.0 and 2.5 g kg‐1 in alfalfa and red clover, respectively. In both species significant dry matter yield increases were obtained with LSS up to 5.0 g kg‐1; however, 7.5 g kg‐1 caused a reduction in dry matter yield. Based on these results, applications of LSS at 5.0 for alfalfa and 2.5 g kg‐1 for red clover had positive effects in seedling establishment, nutrient uptake, and dry matter production. Lime‐stabilized sludge application resulted in significant increases in soil pH, available P, Ca, Mg, EC, and CEC; decreases were seen in neutralizable acidity and exchangeable Al levels in soil. This study indicates that LSS is appropriate for the acidic, low P soils of Southern Missouri for alfalfa and red clover establishment and production, if applied in appropriate quantities.  相似文献   

6.
ABSTRACT

The chickpea breeding program in India has not yet considered the genotypic variation in phosphorus (P) efficiency, despite the fact that the largest proportion of chickpea-growing soils are P deficient. Since general P application to chickpea is at sub-optimum levels, efficient P-utilizing genotypes will perform better than others under P-deficient conditions. High levels of P application may induce zinc (Zn) deficiency in plants grown on Zn-deficient soils. Twenty chickpea genotypes were evaluated for their P efficiency at varied levels of added P, and the effect of P levels on Zn, iron (Fe), copper (Cu), and manganese (Mn) nutrition was studied in pot-culture experiments. Three criteria were used for evaluating P efficiency; shoot dry-matter yield without P, P-uptake efficiency (PUPE), and P-utilization efficiency (PUSE). Under P-deficiency conditions (control), the genotypes BG-256, HK-94-134, Phule-G-5, and Vikash produced the highest shoot biomass. However, genotypes that were found to be superior in the absence of P did not perform in a similar way under optimum P supply. Root dry weight showed a highly significant correlation with P uptake at all P levels. In the case of PUPE, genotypes KPG-59 and Pusa-209 were found to be superior to others. With increasing P levels, PUSE declined in all the genotypes. Increasing P up to 13.5 mg kg?1 soil increased Zn concentration, while further increase led to decreased concentration. Genotypes KPG-59, BG-256, RSG-888, and JG-315 showed Zn concentrations below the critical limit of 20 μg Zn g?1 dry weight (DW) at the high level of P application (27.0 mg kg?1). Iron concentration decreased with increasing P levels. Up to 13.5 mg kg?1 P application, Cu concentration increased and thereafter decreased. Manganese concentration gradually increased with the increasing P levels studied. Based on three criteria, BG-256 can be recommended for use in P-deficient conditions and can be good germplasm source material for chickpea-breeding programs for evolving P-efficient genotypes. Results also suggest that when selecting P-efficient genotypes of chickpea, it is essential to apply deficient micronutrients.  相似文献   

7.
Molybdenum (Mo) is an essential micronutrient for crop plants, and its deficiency has been reported in many parts of the world. Two greenhouse experiments were conducted with the objective to determine Mo requirements of dry bean (Phaseolus vulgaris L.) grown on a Brazilian Oxisol with and without liming. The Mo treatments were 0, 5, 10, 15, and 20 mg kg?1. In one experiment dolomitic lime was added at the rate of 2.5 g per kg of soil before the application of Mo treatments and incubated 5 weeks before sowing. In other experiments, Mo treatments were same as the lime-added experiment but no lime was added. Most of the growth, yield, and yield components were significantly increased with the addition of Mo in both the experiment. Growth, yield, and yield components were increased in a quadratic fashion when Mo was applied in the range of 0 to 20 mg kg?1. Maximum shoot dry weight was obtained with the addition of 17 mg Mo kg?1 in the experiment with Mo rates without lime and 9.69 mg Mo kg?1 in the experiment of Mo rates with lime application. Maximum seed yield was obtained with the application of 10.48 mg Mo kg?1 in the experiment that did not receive lime along with Mo treatments and 10.28 mg Mo kg?1 in the experiment that received lime along with Mo treatments. Similarly, the maximum number of pods per plant was obtained with the addition of 9.33 mg Mo kg?1 in the experiment that did not receive lime and 8.83 mg Mo kg?1 in the experiment that did receive lime. Maximum root length was obtained with the addition of 12.38 Mo kg?1 in the experiment that did not receive lime and 9.75 mg Mo kg?1 in the experiment that received lime. Maximum root dry weight was obtained with the addition of 11.67 mg Mo kg?1 in the experiment that did not receive lime and 9.28 mg Mo in the experiment that received lime. Soil properties determined after harvest of dry bean plants were not influenced significantly with the addition of Mo in the Oxisol under investigation.  相似文献   

8.
Phosphorus (P) deficiency is one of the most yield limiting factors for dry bean (Phaseolus vulgaris) production in tropical acid soils. Dry beans are invariably grown as mono-crops or as inter-crops under the perennial tropical crops. Information is limited regarding the influence of phosphorus fertilization on dry bean yield and yield components and P use efficiency in tropical acid soils. A greenhouse experiment was conducted to evaluate the influence of phosphorus fertilization on dry bean growth, yield and yield components and P uptake parameters. Phosphorus rates used were 0, 50, 100, 150, 200, and 250 mg P kg?1 of soil. Soil used in the experiment was an acidic Inceptisol. Grain yield, shoot dry weight, number of pods, and 100 grain weight were significantly (P < 0.01) increased with phosphorus fertilization. Maximum grain yield, shoot dry matter, number of pods, and 100 grain weight were obtained with the application of 165, 216, 162, and 160 mg P kg?1 of soil, respectively, as calculated by regression equations. Grain yield was significantly and positively associated with shoot dry weight, number of pods, P concentration in grain and total uptake of P in shoot and grain. Phosphorus use efficiency defined in several ways, decreased with increasing P rates from 50 to 250 mg P kg?1 of soil. Maximum grain yield was obtained at 82 mg kg?1 of Mehlich 1 extractable soil P. Results suggest that dry bean yield in Brazilian Inceptisols could be significantly increased with the use of adequate rates of phosphorus fertilization.  相似文献   

9.
Abstract

A laboratory incubation experiment was conducted to study the influence of organic matter and lime application on the recovery of added boron (B) by four different extractants (hot‐CaCl2, mannitol‐CaCl2, tartaric acid, and ammonium acetate) in two B‐deficient acid alluvial soils. Soils were brought to four relatively constant pHs and three organic matter levels before application of B. Recovery percentages of 23.9 to 60.9 of added B by the four extractants indicate a soil fixation of B. This is more so in fine‐than in coarse‐textured soils. Both liming (from pH 4.8 to 6.8) below neutrality and organic matter application increased such recovery of added B in all the extractable forms, the effect being more pronounced in fine‐than in coarse‐textured soils. A positive interaction between liming and organic matter particularly at the latter's higher level was observed. Complexation of added B and coating of the surfaces of Fe‐and Al‐oxides by soluble organic compounds are suggested as the possible reasons for such increased recovery of added B in soils.  相似文献   

10.
The influences of seed molybdenum (Mo) and application of Mo on nitrate reductase activity(NRA) in seedling stage, shoot dry matter in stem elongation stage, and grain yields in harvesting stage were compared among 35 winter wheat cultivars grown on acid yellow brown earths. Seedling NRA was significantly and positively correlated with seed Mo content regardless of further molybdenum application. The correlation of both shoot dry matter in stem elongation stage and grain yields to seed Mo content were also significant in a much less degree under Mo deficiency, but not after molybdenum application. Molybdenum application significantly increased seedling NRA, shoot dry matter in stem elongation stage and grain yields for most cultivars. There were no obvious relationships between molybdenum efficiency ratios and seed molybdenum content. These showed that seed Mo was very important for plant growth, but it was not sufficient to complete the whole life of plant. Therefore, Mo must be applied in order to get satisfactory grain yields from most cultivars. However, a high Mo efficiency genotype (97003) was promising to adapt to Mo deficient soils without added Mo.  相似文献   

11.
A pot experiment was conducted to investigate the influence of phosphate (P) application on diethylene triamine pentaacetic acid (DTPA)–extractable cadmium (Cd) in soil and on growth and uptake of Cd by spinach (Spinacia oleracea L.). Two soils varying in texture were contaminated by application of five levels of Cd (NO3)2 (0, 20, 30, 40, and 60 mg Cd kg–1). Three levels of KH2PO4 (0, 12, and 24 mg P kg–1) were applied to determine immobilization of Cd by P. Spinach was grown for 60 d after seeding. Progressive contamination of soils through application of Cd affected dry‐matter yield (DMY) of spinach shoot differently in the two soils, with 67% reduction of DMY in the sandy soil and 34% in the silty‐loam soil. The application of P increased DMY of spinach from 4.53 to 6.06 g pot–1 (34%) in silty‐loam soil and from 3.54 to 5.12 g pot–1 (45%) in sandy soil. The contamination of soils increased Cd concentration in spinach shoots by 34 times in the sandy soil and 18 times in the silty‐loam soil. The application of P decreased Cd concentration in shoot. The decrease of Cd concentration was higher in the sandy soil in comparison to the silty‐loam soil. Phosphorus application enhanced DMY of spinach by decreasing Cd concentration in soil as well as in plants. The results indicate that Cd toxicity in soil can be alleviated by P application.  相似文献   

12.
Abstract

A study to investigate the effect of lime on dry matter yield of maize (Zea mays) and beans (Phaseolus vulgaris) and nodulation of beans grown in three tropical acid soils (two humic Nitosols and one humic Andosol) was carried out in a greenhouse. The soils ranged from 4.2 to 5.0 in pH; 1.74 to 4.56 in %C; 21.0 to 32.0 meq/100g in CEC; 5.10 to 8.10 meq/100g in exchange acidity; 0.60 to 3.20 meq/100g in exchangeable (exch.) Al and 0.13 to 0.67 meq/ 100g in exch. Mn.

Exchange acidity and exch. Al decreased with increasing levels of lime in the three soils. Exchangeable Al was reduced to virtually zero at pH 5.5 even in the soils which had appreciable initial amounts. Exchangeable Mn also decreased with increasing levels of lime in the two Nitolsos. Exceptional results, however, were obtained with the Andosol where exch. Mn increased ten‐fold with the first level of lime and then decreased with subsequent levels.

In all the soils, mean dry matter yield of beans and maize, and mean nodule dry weight of beans generally increased significantly with increasing lime levels up to pH value of 6.0. The dry matter yield of beans and maize, and nodule weight of beans, however, decreased progressively with increasing lime levels beyond pH 6.0 value. pH range of 5.5 to 6.0 was considered optimum for the growth of maize and beans, and nodulation of beans in these soils.  相似文献   

13.
Phosphorus (P) deficiency is a principal yield‐limiting factor for annual crop production in acid soils of temperate as well as tropical regions. The objective of this study was to screen nine corn (Zea mays L.) genotypes at low (0 mg P kg‐1), medium (75 mg P kg‐1), and high (150 mg P kg‐1) levels of P applied in an Oxisol. Plant height, root length, shoot dry weight, root dry weight, shoot‐root ratio, P concentration in shoot and root, P uptake in root and shoot, and P‐use efficiency parameters were significantly (P<0.01) influenced by P treatments. Significant genotype differences were found in plant height, shoot and root dry weight, P uptake in root and shoot, and P‐use efficiency. Based on dry matter production and P‐use efficiency, genotypes were classified as efficient and responsive, efficient and nonresponsive, nonefficient and responsive, and nonefficient and nonresponsive.  相似文献   

14.
Abstract

Critical values of boron (B) for wheat nutrition in soil and plant were determined through a pot experiment with twenty-one surface soils of Alluvial flood plain and Red-latertic belt comprising three major soil orders (Entisols, Alfisols, Inceptisols) with four levels of boron. Application of boron significantly increased the dry matter yield as well as uptake of B by plants. Critical concentration of hot calcium chloride (CaCl2) extractable B in soil for wheat was found to be 0.53?mg?kg?1. The critical plant B concentration varied with growth stages and values were 7.4?mg?kg?1 at panicle initiation and 4.18?mg?kg?1 at maturity, respectively. The findings of this investigation also recommend the application of 2?kg?B?1?ha?1 for ensuring B sufficiency to wheat in Indo-gangetic alluvial and Red-Lateritic soils.  相似文献   

15.
The application of zinc (Zn) fertilizer to lentil is an agronomic strategy that has the potential to improve yield and enhance grain Zn concentration. A pot study was conducted to determine if Zn fertilizer applied to three popular Saskatchewan lentil cultivars could increase yield and concentration of Zn in the grain. The effects of soil and foliar applied Zn forms, including ZnSO4, Zn chelated with EDTA, Zn lignosulphonate, and a control were evaluated. Forms of Zn were not found to significantly increase yield (P = 0.828) or grain Zn concentration (P = 0.708) in any of the lentil cultivars tested. Fertilization with soil applied ZnSO4 resulted in significantly (P < 0.0001) higher amounts of residual available Zn in the soil relative to other Zn treatments. Soil fertilized with ZnSO4 had 1.13 mg kg?1 diethylenetriaminepentaacetic acid (DTPA)-extractable Zn compared to 0.84 mg Zn kg?1 and 0.77 mg Zn kg?1 in the soil and foliar applied chelated Zn, respectively.  相似文献   

16.
The present study was conducted with an objective to estimate the distribution of boron (B) application in various soil fractions and their plant response for assessing the availability in the soil. Two soils (alluvial and red soil) and five levels of B (0, 0.5, 1, 2 and 3?mg B kg?1 soil) were applied in the pot experiment, and pots were sown with cauliflower (Sabour Agrim) arranged in a completely randomized block design (CRD) with three replications. Result showed that the curd yield of cauliflower increased significantly upto 2?mg B kg?1 soil irrespective of soils. The percent yield increase was 14.78 and 15.01 in alluvial and red soil over the control, respectively. The initial total B content was 35.88 (alluvial soil) and 15.51 (red soil) mg·kg?1. The mean content of Fraction I, II, III, IV and V in alluvial soil was 1.11, 1.54, 0.65, 1.49, and 95.18% and in red soil was 2.68, 4.47, 6.62, 2.50, and 83.59% of the total soil B, respectively. For changes in amount of B fractions due to B applications there was significant effect on all the fractions except Fraction II. The increase in apparent B uptake was 0.43?mg B kg?1 in alluvial soil and 0.25?mg B kg?1 in red soil over the control (0?mg B kg?1 soil). Regression equation of yield and B fractions showed the relationship between first four fractions to the yield. Residual fraction was found to be collinear during calculation. Overall the study predicted the bioavailability and dynamics of B in the two distinct soils.  相似文献   

17.
Abstract

The effect of zinc–phosphorus (Zn‐P) interaction on Zn efficiency of six wheat cultivars was studied. The higher dry matter yields were observed when Zn was applied at 5 µg g?1 soil than with no Zn application. Phosphorus applications also increased dry matter yield up to the application of 25 µg P g?1 soil. The dry matter yield was significantly lower at the P rate of 250 µg g?1 soil. At the Zn‐deficient level, the Zn‐efficient cultivars had higher Zn concentrations in the shoots. Zinc concentrations in all cultivars increased when the P level in the soil was increased from 0 to 25 µg P g?1 soil except for the cv. Durati, in which Zn concentrations decreased with increases in P levels. However, when Zn×P interactions were investigated, it was observed that at a Zn‐deficient level, Zn concentrations in the plant shoot decreased with each higher level of P, and more severe Zn deficiency was observed at P level of 250 µg g?1 soil.  相似文献   

18.
Abstract

Mungbean [Vigna radiata (L). Wilczek] grown in rainfed calcareous soils suffers with phosphorus (P) deficiency. In view of high cost and low use efficiency of P fertilizer, greenhouse, incubation, and field experiments were carried out for determining P deficiency diagnostic criteria and efficient method of P fertilizer application in mungbean. In a pot culture experiment using a P‐deficient Typic Ustocherpt, maximum increase in grain yield with P was 686% over the control; and fertilizer requirement for near‐maximum (95%) grain yield was 30 mg P kg‐1 soil where fertilizer was mixed with the whole soil volume (broadcast) and 14 mg P kg‐1 where mixed with 1/4th soil volume (band placement). In a field experiment on a P‐deficient Typic Camborthid, however, maximum increase in grain yield was 262% over the control. Band placement resulted in 73% fertilizer saving as P requirement was 66 kg ha‐1 by broadcast and only 18 kg ha‐1 by band placement. Critical P concentration range appears to be 0.27–0.33% in young whole shoots (≤30 cm tall) and 0.25–0.30% in recently matured leaves. In an incubation study using the same Typic Ustochrept, P extracted by the sodium bicarbonate (NaHCO3), the ammonium bicarbonate‐diethlylenetriaminepentaacetic acid (AB)‐DTPA), and the Mehlich 3 soil tests correlated closely with each other, P concentration of whole shoots, and total P uptake by mungbean plants. Critical soil test P levels for pot grown mungbean were NaHCO3,9 mg kg‐1; AB‐DTPA, 7 mg kg‐1; and Mehlich 3, 23 mg dm‐3 soil. The more efficient and economical ‘universal’ soil test, AB‐DTPA, is recommended for P fertility evaluation of calcareous soils.  相似文献   

19.
Fertilization of grain legumes with zinc (Zn) can affect both marketable yield and Zn content of the grain, which is important in addressing human nutritional deficiencies in certain regions of the world. A pot experiment was conducted to determine the response of three different market classes of lentil to Zn fertilization using ten surface soils from Saskatchewan (Canada). The distribution of Zn among labile and stable fractions chemically separated from the soil was also determined in the ten prairie soils and related to the lentil responses observed. The three market classes of lentils (large and small green, small red) were grown without Zn (control), and with 2.5 and 5 kg Zn ha?1 added as zinc sulfate to each soil prior to planting. Zinc fertilizer application significantly influenced grain yield and was soil dependent. A significant increase in grain yield over the control was observed from application of Zn on some low organic matter, high pH Brown Chernozem soils whereas a decrease in grain yield over control was observed in other soils such as a Black Chernozem of high organic matter content and low (<7) pH. Lack of positive yield response to addition of Zn were related to measured high diethylene triamine pentaacetic acid (DTPA) extractable and plant root simulator (PRS) resin membrane probe Zn, and large amounts of native Zn in exchangeable and iron/manganese (Fe/Mn) oxide bound fractions. Application of Zn fertilizer generally increased the grain concentration of Zn. For example, an increase of ~20% in Zn concentration over control was observed when 5 kg Zn ha?1 was added to a loamy textured low organic matter Brown Chernozem soil. Overall, small green lentil was more consistent in producing a positive response to Zn fertilizer application on soils with low plant available Zn compared to large green lentil and small red lentil.  相似文献   

20.
Berpura alluvial soil series of the Indo‐Gangetic Plains is situated in the Ambala District of the Haryana State of India. Soils of this series had medium concentrations of both potassium (K) and phosphorus (P) and large concentrations of sulfur (S) before 1970. To study different fractions of K, Olsen P, and 0.15% calcium chloride (CaCl2)–extractable (available) S of soils of the Berpura series and to create nutrient indexing of rice crops growing on this series, surface soil samples were collected from 100 farmers' fields after the harvest of the wheat crop in 2005. During kharif season of same year, samples of upper two leaves at anthesis growth stage of rice crop were also collected from the same 100 farmers' fields that had earlier been sampled for soil analysis. Analysis of soil samples showed more K depletion in soils of this series, of which 86% of farmers' fields were deficient in ammonium acetate (NH4OAc) K (available K). Thirty and 62% of leaf samples of the rice crop growing on the 100 fields of this series were extremely and moderately deficient in K, respectively. The mean values of water‐soluble, exchangeable, nonexchangeable, lattice, and total K were 10.6, 30.3, 390.0, 8204, and 8635 mg kg?1, respectively. In soils of this series, 0.123, 0.351, 4.517, and 95.009% of total K were found in water‐soluble, exchangeable, nonexchangeable, and lattice K forms, respectively. On the other hand, long‐term farmers' practice of more application of P fertilizer in wheat crop has resulted in P buildup in the soils of the Berpura series. Olsen P in soils of farmers' fields of this series ranged from 9.0 to 153.0 mg kg?1, with the mean value of 41.8 mg kg?1. Eighty‐two percent of leaf samples of rice crops grown on this series without application of P fertilizer were sufficient in P. The analysis of soil and rice crops for P and K proved the suitability of 0.5 M sodium bicarbonate (NaHCO3) and 1 N NH4OAc for extracting available P and K, respectively, in alluvial soils of the Indo‐Gangetic Plains. The 0.15% CaCl2–extractable S in this soil ranged from 9.6 to 307 mg kg?1 with a mean value of 34.6 mg kg?1. Four and 26% of soil samples had low and medium, respectively, in 0.15% CaCl2–extractable S. S deficiency was recorded in rice crops, as 29% of the leaf samples were extremely deficient in S and 58% were moderately deficient in S. This indicated the unsuitability of the 0.15% CaCl2 to extract available S from the Udic ustochrept utilized for cultivation of rice crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号