首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
This study was conducted to examine the effect of inoculation of plant growth-promotion Rhizobacteria (PGPR) on phenological data, total yield and fruit quality characteristics of strawberry (Fragaria x ananassa Duch) cv. ‘Fern’ during 2006 and 2007. All bacterial root inoculations significantly increased yield per plant (1.98–20.85%), average fruit weight (3.05–19.26%) and first quality fruit ratio (10.30–32.05%) compared to control, whereas the bacterial inoculations did not affect leaf area, first flowering and harvest dates in strawberry cv. ‘Fern’. The bacteria also increased soluble solid content (SSC) and vitamin C in strawberry cv. ‘Fern’. The vitamin C contents of fruits ranged from 47.41 mg 100 g?1 (control) to 53.88 mg 100 g?1 (RC05), while SSC values varied between 10.16% (control) and 12.83% (RC01). Results of this study show that RC19 (Bacillus simplex), RC05 (Paenibacillus polymyxa), and RC23 (Bacillus spp.) have the potential to increase the yield and growth of strawberries.  相似文献   

2.
An experiment was conducted to study the response of two maize hybrids to external potassium (K) application under saline conditions. The data showed that there was an increase in the organic solute contents and sodium ion under salinity stress, though potassium, calcium, nitrogen and phosphorus were decreased. There was a non-significant effect of K application on glycinebetaine and total soluble sugar, however; the proline, protein and total free amino acids were increased with the application of external K. The enzymatic activity like nitrate reductase and nitrite reductase activity were severely reduced under salinity stress and improved by K application. The maize hybrids differed significantly for all the parameters discussed in the study except sugar, phosphorus and number of grain rows per cob. The increase in yield parameters was more pronounced under control than under saline conditions. The enhanced yield and yield components of these maize hybrids might be due to the quick response to external K application, resulting in high contents of leaf potassium, calcium, nitrogen and phosphorus. The results indicated that the maize hybrid ‘Pioneer32B33’ might perform better than ‘Dekalb979’ under saline conditions when sufficient potassium is applied in the rooting medium.  相似文献   

3.
以我国北方12个冬小麦品种(系)和美国德州3个冬小麦品种(系)为材料,在甘肃陇东黄土高原旱作和拔节期有限补灌条件下,研究了不同基因型小麦之间产量、水分利用效率(WUE)和灌浆期穗下节可溶性糖含量的差异。结果表明:不论旱作还是有限补灌,不同基因型冬小麦之间产量、WUE、穗下节可溶性糖含量均存在明显差异,随着灌浆过程的进行穗下节可溶性糖含量呈先升高后降低的变化趋势,灌浆中后期达到最大。小麦穗下节可溶性糖含量在旱作条件下高于有限补灌。在2008年9月至2009年6月生育期降雨较常年减少1/3,属于严重干旱年份,小麦灌浆初期和中期穗下节可溶性糖含量与籽粒产量和水分利用效率无明显相关性,但到灌浆中后期和后期却达到显著相关;小麦拔节期补灌100mm水分后,不同基因型小麦表现出明显的水分补偿或超补偿效应,并且灌浆期穗下节可溶性糖含量与产量、WUE均呈显著正相关,并在灌浆中后期和后期达到极显著相关。因此,旱地冬小麦灌浆中后期和后期穗下节可溶性糖含量可作为筛选高效用水品种的参考指标之一。  相似文献   

4.
Lettuce (Lactuca sativa L., cv. ‘Parris Island’) was grown hydroponically in autumn, winter and spring under five levels of nitrogen (N) fertilization. Plant biomass was highest in spring and lowest in autumn at N rates of 200 and 260 mg L?1, respectively. Increasing N application correlated positively with rates of photosynthesis, transpiration, stomatal carbon dioxide (CO2) conductance and leaf chlorophyll concentration. Photosynthetic rate, stomatal CO2 conductance, and chlorophyll a/b ratio were higher in spring than in autumn or winter. Nitrate concentrations within the leaves increased with increasing N application in all seasons. It is concluded that lettuce growth and yield is higher in spring than in winter or autumn due to enhanced photosynthesis thanks to increasingly favorable photoperiod. Regardless of season, high N rates promote yield but increase leaf nitrate concentrations. Therefore, for the production of healthy produce the recommended N rate should be based not just on yield but also on the nitrate content.  相似文献   

5.
Efforts to minimize water use in rice cultivation and stress tolerance are important in the present climate change scenario. Silica solubilizers might help in understanding the tolerance of plants to water deficit conditions or aerobic conditions. Rice cultivation in combination with silica was applied in the form of fertilizers (sodium silicate) and solubilizers (Imidazole and glycine) was studied in experimental farm and also in farmer's field. The varieties used were ‘KrishnaHamsa' (KH), ‘Rasi', ‘Jaya', hybrids ‘PA-6201' and ‘PHB-71' under aerobic conditions both in wet (Kharif) and dry (rabi) seasons. Transmission electron microscopy in this study provided evidence that silicon was deposited in the epidermal cell wall and the intercellular space of the silicon-treated rice leaves. The epidermal cell wall accumulation was absent in the control plants. Genotypic variation and treatment influences were observed for relative water content and cell membrane stability. Among the different rice cultivars ‘Rasi' followed by ‘PHB-71' and PA- 6201, were able to maintain cell membrane stability and chlorophyll content. Leaf rolling, chlorophyll, relative water contents, and dark adapted chlorophyll fluorescence were superior under aerobic conditions with application of solubilizers. However, significant differences in stomatal conductance were seen between seasons and genotypes. The silicon treated plants were able to maintain similar yields under aerobic conditions also as that of irrigated controls.  相似文献   

6.
A hydroponics study was carried out to evaluate the effect of three plant growth promoting rhizobacteria (PGPR) namely, Bacillus mucilaginosus, Azotobacter chroococcum, and Rhizobium spp. on their ability to mobilize potassium from waste mica using maize and wheat as the test crops under a phytotron growth chamber. Results revealed that PGPR significantly improved the assimilation of potassium by both maize and wheat, where waste mica was the sole source of potassium. This was translated into higher biomass accumulation, potassium content and uptake by plants as well as chlorophyll and crude protein content in plant tissue. Among the rhizobacteria, Bacillus mucilaginosus resulted in significantly higher mobilization of potassium than Azotobacter chroococcum and Rhizobium inoculation. Overall, inoculation of maize and wheat plants with these bacteria could be used to mobilize potassium from waste mica, which in turn could be used as a source of potassium for plant growth.  相似文献   

7.
The effects of swine manure extract (SME) as foliar fertilizer (FSME), soil fertilizer (SSME), and both soil and foliar fertilizer (FNSSME) on leaf nitrogen (N) concentration, chlorophyll content, total potassium (K) in plant parts and starch content in the fresh roots, compared to a conventional, chemical fertilizer (CF) were studied in cassava cultivar ‘Hauybong 60’. The results showed that plants on FNSSME had the highest chlorophyll contents and SPAD values at four months after planting (MAP). Cassava plants treated with SSME and FNSSME had highest starch content and was significantly higher than in plants treated with CF and a FSME. There was a strong, positive relationship between the leaf nitrogen concentration and chlorophyll content in cassava at 6 MAP. The results of the study indicated that an application of FNSSME to cassava plants could provide a higher chlorophyll content and higher tuber quality of the plants than those applied with chemical fertilizer.  相似文献   

8.
The effects of irrigation water rates and seed bed shapes on changes in soil water and salinity status, bulk density, root growth and dry matter (DM) weights of wheat plants (Triticum aestivum L.) were investigated with a split plot design in a field trial in Zahak Agricultural Research Station in Sistan, Iran in 2005. Irrigation intervals after 80 and 160 mm evaporation from class A evaporation pan were used as main plot. Flat surface, single, triple, and six-row beds with a 20 cm row space were used as subplots. Each treatment was replicated four times. Volumetric soil water content and soil electrical conductivity (EC) were measured using Time Domain Reflectometry (TDR) at 0 —20, 20 —40 and 40 —60 cm depths at nine different times during the growing season. Soil water contents were also measured at 0 —10 and 10 —20 cm depths using standard sampling rings at four different times. The three and six-row beds increased the EC of the saturated paste extract with the more frequent irrigation intervals in this coarse textured soil. Soil water content, DM, and root density were always greater with the more frequent irrigations (shorter irrigation intervals). Root density was greatest in 0 —20 cm depth with the single row bed treatment. Grain yield and root density were greatest with single row bed treatment due to the bed shape at the root development stage (possibly due to a reduced mechanical resistance). A greater soil water content by the short irrigation interval increased grain yield and root density via reducing mechanical resistance. With the loamy sand, bulk density and mechanical resistance increased rapidly after cultivation. Bed shape at root development stage might have enhanced root growth and the crop yields. Apparently, mechanical resistance was the most limiting factor with these loamy sand soils than salinity.  相似文献   

9.
在温室中以养分平衡的肥料组合和含250mg/L NH_4~+的组合栽培万寿菊(Tagetes patula L.)。每种组合中以一半植株每天每盆加250 mL 27.5 mmol/L NaCl溶液,进行盐胁迫处理。盐处理结果,使每株鲜重、株高和开花数都减少。盐处理2周后,根、叶细胞膜相对透性显著增加,叶子热处理渗出物中游离NH_4~+、根渗出物中Na~+。以及叶子中的过氧化物酶、Mg~(2+)-ATP酶和Ca~(2+)-ATP酶活性都明显提高,而根、叶渗出液的pH和蛋白质含量显著降低。根渗出物中游离NH_4~+、K~+和Ca~(2+)含量,叶子中叶绿素、可溶性蛋白质、无机磷和多酚氧化酶活性也下降,但未发现叶子渗出物中Na~+有所增加。在正常营养条件下,盐胁迫对叶子中的类胡萝卜素和花青素影响较小,但高NH_4~+处理使这些色素含量显著降低。高NH_4~+一般使NaCl的效应加剧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号