首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

A single application of polymer-sulfur coated urea (PSCU) and conventional urea (U) blends can supply nitrogen (N) throughout the maize (Zea mays L.) cycle but it could become harmful for plants if not properly placed in the soil due to a possible salt stress which would reduce dry weight (DW) and N uptake (NU) in maize. DW and NU in maize plant as well as soil pH and electrical conductive (EC) were evaluated in a greenhouse pot trial. Treatments consisted of different placements (0.05, 0.1 and 0.15 m below and 0, 0.05 and 0.1 m to the side of seed row) of fertilizers (70%PSCU + 30%U, and 100%U) applied at maize sowing in band at a rate equivalent to 180 kg N ha?1 in a Rhodic Eutrustox soil. Control treatment (without N) was also included. At V7 (vegetative leaf stage 7), N fertilizers placed 0.15 m below of seed row provided higher total DW, total NU, EC and pH (in fertilizer row) than 0.05 m and 0.1 m. 70%PSCU + 30%U provided higher total DW and total NU than 100%U in placement 0 m. In addition, 70%PSCU + 30%U placed 0.1 m to the side of seed row provided lower total NU and EC (in fertilizer row) than 0 m. 70%PSCU + 30%U and 100%U placement can negatively interfere maize in vegetative stage when applied incorporated in band at sowing. The proper placement for this condition was 0.15 m below and 0.1 m to the side of seed row.  相似文献   

2.
ABSTRACT

Blends of controlled-release urea (CRU) and conventional urea can be an alternative to conventional fertilization to improve nitrogen use efficiency (NUE) and reduce costs when applied as a single application to agricultural crops. Different indexes of NUE, grain yield, nutrient uptake and partitioning in maize (Zea mays L.) were investigated in field experiments. The treatments consisted of a single rate of 180 kg N ha?1 with different proportions of polymer-sulfur coated urea (PSCU) and conventional urea (U) applied incorporated at sowing (0.05 m below and 0.1 m to the side of the seed row) at two tropical sites (Site 1, Typic Haplustox; Site 2, Rhodic Haplustox) in Brazil. A control treatment (without urea-N) and a treatment with conventional urea management (UCM: 20% of urea-N applied as basal fertilizer and 80% of N applied as top dressing) were also included. This study demonstrates that blends of PSCU and U are efficient in supplying N throughout the maize cycle at a Typic Haplustox site when applied in a single application incorporated at sowing, resulting in high yields and adequate macronutrient uptake. PSCU improved NUE index compared to U and UCM. There was not response for N fertilization in the Rhodic Haplustox site.  相似文献   

3.
 We studied the relationship between urease activity (UA) and soil organic matter (SOM), microbial biomass N (Nbiom) content, and urea-N fertilizer assimilation by maize in a Dark Red Latosol (Typic Haplustox) cultivated for 9 years under no-tillage (NT), tillage with a disc plough (DP), and tillage with a moldboard plough (MP). Two soil depths were sampled (0–7.5 cm and 7.5–15 cm) at 4 different times during the crop cycle. Urea was applied at four different rates, ranging from 0 to 240 kg N ha–1. The levels of fertilizer N did not affect the UA, SOM content, and Nbiom content. No significant difference between the treatments (NT, DP, and MP) was observed for SOM during the experiment, probably because the major part of the SOM was in recalcitrant pools, since the area was previously cultivated (conventional tillage) for 20 years. The Nbiom content explained 97% and 69% of the variation in UA in the upper and deeper soil layer, respectively. UA and biomass N were significantly higher in the NT system compared to the DP and MP systems. The highest maize productivity and urea-N recovery was also observed for the NT system. We observed that the increase in urea-N losses under NT, possibly as a consequence of a higher UA, was compensated for by the increase in N immobilized in the biomass. Received: 2 July 1999  相似文献   

4.
Abstract

A field experiment was conducted at Star City (legal location SW6‐45‐16‐W2); Saskatchewan, Canada from May 2000 to June 2000, to measure nitrogen (N) and phosphorus (P) supply rates from fertilizer bands to the seed‐row of canola crop. Ion exchange resin membrane probes (PRSTM) were used to measure N and P supply rates in four treatments [80 kg N ha?1 of urea as side‐row band, 80 kg N ha?1 of urea as mid‐row band, check/no N (side‐row)/P side‐row, check/no N (mid‐row)/seed placed P]. The treatments were arranged in a randomized complete block design with four replications. Two anion and cation exchange resin probes (PRSTM) were placed in each plot in the seed‐row immediately after seeding and fertilizing. The probes were allowed to remain in the field for 2 days and replaced with another set of probes every 4 days for a total of 14 days until canola emerged. Ammonium‐N, nitrate‐N and P supply rates were calculated based on the ion accumulated on the probes. Urea side‐row band treatments (fertilizer N 2.5 cm to side of every seed‐row) had significantly higher cumulative available N supply rates than mid‐row band placement in which fertilizer N was placed 10 cm from the seed‐row in between every second seed‐row. No significant differences were observed in P supply rates. The higher N rates (120 kg N ha?1) resulted in lower grain yield in side‐row banding than mid‐row banding possibly due to seedling damage. However, the earlier fluxes of N into the seed‐row observed with side‐row banding may be an advantage at lower N rates in N deficient soils.  相似文献   

5.
6.
A field experiment was conducted during the kharif season of the crop year 2001 at the Indian Agricultural Research Institute, New Delhi, to study the comparative effects of organic and conventional farming on scented rice. Grain yield of rice increased significantly with increasing rate of fertilizer application only up to 60?kg N?+?13?kg P?+?17?kg K ha???1. The effect of 10 t ha???1 farmyard manure (FYM) was found to be similar to 60?kg N?+?13?kg P?+?17?kg K ha???1, whereas the effect of Sesbania green manuring (SGM) was similar to 120?kg N?+?26?kg P?+?34?kg K ha???1. Inoculation of BGA (Blue green algae) with FYM or SGM had no additional advantage over FYM or SGM alone. The highest yield (5.2 t/ha) of rice was obtained when FYM?+?SGM?+?BGA?+?PSB (Pseudomonas striata) were applied together. The yield obtained with this combination was significantly more than that obtained with 180?kg N?+?39?kg P?+?51?kg K ha???1. A similar trend was observed in N, P, and K uptake of rice. Inorganic nutrients had no significant effect on grain quality parameters like head rice recovery (HRR), kernel length (KL), kernel breadth (KB) and KL?:?KB ratio, whereas organic manures and biofertilizers resulted in an increase in HRR, KL and KL?:?KB ratio. A combination of FYM?+?SGM?+?BGA?+?PSB also resulted in highest organic C and available N content in soil and thus holds a promise for sustainable production.  相似文献   

7.
不同播量与行距对小麦产量与辐射截获利用的影响   总被引:1,自引:0,他引:1  
在田间试验条件下,设置了3个播种量(6 kg·667m 2、9 kg·667m 2和12 kg·667m 2)和3个种植行距(20 cm、25 cm和30 cm)共9个处理。通过测定小麦群体生长动态、辐射截获量和籽粒产量,研究分析不同行距和播种量对小麦产量形成和辐射利用效率的影响。结果表明:群体总茎数和叶面积指数表现为随播种量增大而增加;在相同播种量下,尽管20 cm行距的小麦分蘖数最高,但其有效成穗数却最低;叶面积指数与群体总茎数变化动态一致,而叶日积却表现为随行距和播量加大而增加。在相同播种量下,籽粒产量和辐射利用效率均随着种植行距增加呈递增趋势变化,在3个播种量下表现趋势一致。行距由20 cm增加到25 cm和30 cm,籽粒产量平均增加81.62 g·m 2和162.53 g·m 2,截获辐射利用效率平均增加0.18%和0.35%。产量和截获辐射利用率在行距间的差异均达到极显著水平,而播种量之间没有表现出显著差异,播种量和行距之间也没有明显互作效应。由此说明:调整行距对产量的影响作用大于调整播种量对产量的影响作用。因此,在水肥条件较好的黄淮海平原区小麦生产中,把传统种植行距15~20 cm调整为25~30 cm,播种量在常规播种量的基础上适量增加,可以提高小麦单产与辐射资源利用潜力。  相似文献   

8.
采用淹水密闭培养-间歇淋洗法,研究了有机肥(猪粪和牛粪)与化肥(尿素)氮以不同比例配施后对水稻土铵态氮释放特征的影响。结果表明:与单施100%尿素处理相比,培养到28 d,配施有机肥处理(除80%尿素氮配施20%牛粪氮、70%尿素氮配施30%牛粪氮和50%尿素氮配施30%牛粪氮处理)显著降低土壤铵态氮的累积释放量,且随有机肥配施比例的增加降幅增大,降低幅度为5.78%~41.20%(P0.05);培养28~90 d,配施有机肥处理(50%尿素氮配施30%牛粪氮处理除外)的土壤铵态氮释放量显著提高;至培养90 d,50%尿素氮配施50%猪粪氮和80%尿素氮配施20%牛粪氮处理的土壤铵态氮累积释放量显著高于单施100%尿素处理,提高幅度分别为4.81%和9.32%(P0.05)。培养结束时,氮素减施20%(单施80%尿素氮、50%尿素氮配施30%猪粪氮和50%尿素氮配施30%牛粪氮)处理的土壤铵态氮累积释放量与单施100%尿素处理无显著差异。本研究表明,50%尿素氮配施30%猪粪氮既可以降低土壤铵态氮前期释放速率,又可以增加水稻土持续稳定的供氮能力,对减少氮肥损失维持作物生产具有重要意义。  相似文献   

9.
Conservation tillage systems, including ridge‐tillage, have become increasing popular with producers in the central Great Plains because of their effectiveness in controlling soil erosion and conserving water. A major disadvantage of the ridge system is that nutrient placement options are limited by lack of any primary tillage options. The objective of this research was to investigate the effects of method of phosphorus (P) placement and rate on irrigated grain sorghum [Sorghum bicolor (L.) Moench] grown in a ridge‐tillage system on a soil low in available P. This experiment was conducted from 1993 to 1995 on a producer's field near the North Central Kansas Experiment Field at Scandia, Kansas on a Carr sandy loam soil (course, loamy, mixed, calcareous, mesic, Typic Udifuvents). Treatments consisted of fertilizer application methods, surface broadcast, single band starter (5 cm to the side and 5 cm below seed), dual band starter (one band on each side of the row), and knifed in the center of the row middle (38 cm from each adjacent row). Each of these treatments was made at either 22 or 44 kg P2O5 ha‐1, and nitrogen (N) also was included at the rate of 13 kg ha‐1. Additional treatments were, a combination of 13 kg N and 44 kg P2O5 ha‐1 applied half broadcast and half as a single band starter, a 1:1 N:P2O5 ratio (44 kg N and 44 kg P2O5 ha‐1) applied as a single band starter, and a 3:1 ratio (134 kg N and 44 kg P2O5 ha‐1) applied as a single band starter. A no‐P check plot also was included. Broadcast and center‐of‐row middle knife applications were made approximately 1 week before planting. After planting, N was balanced on all plots to give a total of 180 kg ha‐1. Applied P treatments improved grain yield and nutrient uptake and consistently shortened the time from emergence to mid‐bloom in all 3 years of the experiment. On this low soil test P soil, treatments that subsurface banded P increased grain yield by 1.27 Mg ha‐1 compared to broadcast treatments. Placing N and P in a single starter band 5 cm to the side and 5 cm below the seed was as effective as placing a band on each side of the row. Knife applying N and P in the center of the row was not as effective as placement beside the row. Single band starter application of N and P in a 1:1 and or 3:1 N:P2O5 ratio consistently increased yields and nutrient uptake and shortened the time to mid‐bloom as compared to the single band starter treatment that provided only 13 kg N ha‐1. Over the 3 years of the study, these 1:1 and 3:1 N:P2O5 ratio starters were clearly superior to an other treatments.  相似文献   

10.
J. O. AZEEZ 《土壤圈》2009,19(5):654-662
Low soil nitrogen (N) and weed infestations are some of the major constraints to maize production in Nigeria.A split-split plot experiment in a randomized complete block design with three replicates was established at two sites with different agroecological zones,Ikenne (Typic Paleudalf) and Shika (Typic Tropaquept),in Nigeria in 2002 and 2003 rainy seasons to investigate the responses of four maize genotypes (Oba super II,Low N pool C2,TZB-SR,and ACR 8328 BN C7) to N fertilizer applied at four rates,0,30,60,and 90 kg N ha-1,and three weed pressure treatments,no weed pressure (weekly weeding),low weed pressure (inter-row weekly weeding),and high weed pressure (no weeding throughout the growing season).Growth and yield parameters of maize and weeds were taken at flwering and harvest.The results indicated that there was a significant reduction in maize leaf area,leaf area index,and photosynthetically active radiation due to weed interference at both sites.The application of nitrogen at 90 kg N ha-1 significantly increased maize leaf area.Reductions in maize growth and yield at flowering and harvest were significant due to weed interference at both Ikenne and Shika,thus showing that the reductions in maize growth and yield due to weed interference were not ecological zone specific even though weed species and their seed banks may differ.Ameliorative management options could thus be the same in the two agroecological zones.Application of 90 kg N ha-1 led to a significant increase in maize grain yield at Shika while there was no fertilizer effect at Ikenne on grain yield.There was no significant difference between 60 and 90 kg N ha-1,suggesting that 60 kg N ha-1 could be a possible replacement for the higher fertilizer rate at least for the identified maize genotypes.Low weed pressure treatment led to 26% and 35% reductions in maize grain yield at Ikenne and Shika,respectively,while 22% and 51 % reductions,respectively,were observed due to high weed pressure.Generally,maize grain yield was higher at Ikenne than Shika.The maize genotypes Low N pool C2 and ACR 8328 BN C7 performed better than the other genotypes at Ikenne while the maize genotype Oba super II had the best performance at harvest at Shika.Application of nitrogen increased weed biomass at flowering at Ikenne.The maize grain yield was highest in the N-efficient genotypes,Oba super II and Low N pool C2;the susceptible genotype TZB-SR had the least yield at Shika.There existed a negative and significant correlation between maize grain yield and weed biomass at both sites.  相似文献   

11.
Field experiments were conducted for two years to find out the appropriate sowing configuration and rate of nitrogen (N) for sustained yield and improved water use efficiency of hybrid Bt cotton irrigated through surface drip irrigation. Drip irrigation under normal sowing, in which equal quantities of water and N were applied as check-basin irrigation, resulted in an increase of 389 and 155 kg ha?1 in seed cotton yield compared with check-basin irrigation during the first and second year, respectively. Normal paired row sowing under a drip irrigation system, in which only 50% of irrigation water was applied compared with normal sowing, produced a yield similar to normal sowing under drip irrigation during both years, resulting in 22% higher water use efficiency. Dense paired row sowing under drip irrigation, in which only 75% irrigation water was applied compared with normal sowing, increased the mean seed cotton yield by 5% and water use efficiency by 19%. Decrease in the rate of nitrogen application (from 150 to 75 kg N ha?1) caused a decline in seed cotton yield and water use efficiency under all the methods of sowing, but the reverse was true for agronomic efficiency of N.  相似文献   

12.
通过分析裂区设计下的6个处理,即小麦季深耕和旋耕2个主处理×玉米季免耕播种、行间深松和行内深松3个副处理:(1)旋耕+免耕播种(RT—NT);(2)旋耕+行间深松(RT—SBR);(3)旋耕+行内深松(RT—SIR);(4)深耕+免耕播种(DT—NT);(5)深耕+行间深松(DT—SBR);(6)深耕+行内深松(DT—SIR),对土壤养分含量和作物产量影响,筛选适宜于小麦—玉米轮作体系的耕作模式。结果表明,各处理土壤养分含量在小麦、玉米两季中均随土层深度增加而降低。小麦季,旋耕处理0—10cm土层土壤全氮、碱解氮、有效磷含量、硝态氮含量显著高于深耕处理;但深耕增加当季30—40cm土层土壤有机质、全氮、碱解氮、有效磷、硝态氮、铵态氮含量。玉米季,DT—NT处理0—30cm土层有机质含量较RT—NT处理增加40.1%~64.3%。RT—SBR、RT—SIR处理显著提升土壤0—30cm全氮含量,其中RT—SBR处理0—10cm土层全氮含量最高,为1.4g/kg。RT—SIR处理显著增加0—20cm土壤碱解氮含量,较RT—NT显著增加15.0%~25.3%。在0—40cm土层,DT—SBR处理的有效磷含量最高,而RT—SBR处理的速效钾含量最高。DT—SIR处理显著提升20—50cm土层硝态氮和铵态氮含量,其中硝态氮含量为8.5~30.4mg/kg,铵态氮含量为2.6~8.9mg/kg。与小麦季相比,玉米季提升10—20cm土层有机质含量、0—50cm土层的碱解氮、有效磷、速效钾含量以及40—50cm土层的硝态氮、铵态氮含量。DT—SBR和DT—SIR处理穗长、百粒重、收获指数和产量显著高于其他处理,且二者产量较RT—NT处理显著增加6.4%~10.8%。玉米季DT—SIR处理的肥料偏利用率和经济效益最高。综上所述,深耕+行内深松处理有利于增加土壤养分含量,且增产效果较好,在本研究中最优。  相似文献   

13.
To evaluate the soil‐fertility sustainability of the fallow systems, nutrient concentrations and NH4+‐N mineralization were determined in different soil and fallow types in the humid forest zone of southern Cameroon. Two experiments were conducted, the first comprised planted leguminous tree Calliandra calothyrsus, planted leguminous Pueraria phaseoloides, and regrowth mainly composed of Chromolaena odorata on the Typic Kandiudult. The second experiment made up of a fallow dominated by C. odorata, a fallow with C. odorata removed, and a P. phaseoloides fallow on the Rhodic Kandiudult, Typic Kandiudult, and Typic Kandiudox. In the first experiment, available P, Ca2+, K+ concentrations and effective CEC under C. calothyrsus were, respectively, 40%, 22%, 45%, and 15% lower when compared to P. phaseoloides but no differences were found between soils under P. phaseoloides and C. odorata. Mineralization of NH4+‐N was higher under C. calothyrsus than under C. odorata‐ and P. phaseoloides‐fallow types, indicating the impoverishment of organic material under the former. In the second experiment, the beneficial effect of P. phaseoloides was found in the Rhodic Kandiudult in the 0–10 cm layer throughout its low NH4+ release from mineralization. In the Typic Kandiudult, no differences in NH4+‐N mineralization were found between C. odorata and P. phaseoloides fallows. In the Typic Kandiudox, there was no difference in NH4+ mineralization between the three fallow types. According to the nutrient concentrations and NH4+ mineralization, the fertility sustainability of the different fallow types may be ranked as follow: P. phaseoloidesC. odorata > C. calothyrsus > fallow without C. odorata.  相似文献   

14.
Abstract

A field study was conducted during kharif (rainy season) to study nutrient uptake, nitrogen use efficiencies, and energy indices in soybean under various tillage systems with crop residue and nitrogen levels after combine harvested wheat for two consecutive years. The treatments included three planting methods (Happy Seeder sowing, Straw Chopper?+?Zero Tillage sowing and Conventional sowing) and four nitrogen levels (0, 75, 100, and 125% recommended nitrogen). Nitrogen (N), phosphorus (P), and potassium (K) uptake by seed and straw were significantly higher in Happy Seeder sowing than Straw Chopper?+?Zero Tillage sowing and conventional sowing. Agronomic efficiency, physiological efficiency, and apparent recovery were not influenced significantly by different planting methods whereas partial factor productivity, energy output, net energy, energy use efficiency, and energy productivity were significantly higher in Happy Seeder sowing than Straw Chopper?+?Zero Tillage sowing and conventional sowing. N and P uptake by seed and straw increased significantly from 0 to 75 and 75 to 100% recommended N and similar trend was found in K uptake by seed and straw. Agronomic efficiency, apparent recovery and energy output were increased up to 100% recommended N. However, partial factor productivity was decreased significantly with increase in N levels and physiological efficiency was not influenced significantly by different N levels.  相似文献   

15.
A 2‐yr study was conducted to evaluate the effect of within‐row spacing and nitrogen (N) fertility on sweetpotato [Ipomoea batatas (L.) Lam.] yield and quality. Conducted in North Alabama on a Hartsells fine sandy loam (fineloamy, siliceous, thermic Typic Hapludult), the study consisted of four replications of a factorial arrangement of four within‐row spacings (15, 20, 25, and 30 cm) and 4 N fertility rates (0, 36, 72, and 108 kg N/ha). Nitrogen fertilization did not affect yield or quality of harvested storage roots and there was no significant interaction between row spacing and N rate in either year. In 1994, greatest total yield ofsweetpotatoes occurred with the narrowest within‐row spacing (15 cm), but in 1995 within‐row spacing did not affect total yield. In 1994, as within‐row spacing increased, yield of Jumbo sweetpotatoes increased.  相似文献   

16.
Abstract

Yield and kernel quality of rainfed maize as affected by N fertilizer has been generally evaluated through the application of granular N sources at high rates. The purpose of this work was to estimate the response of maize yield and quality (kernel hardness—floating index, weight and test weight -, P uptake and protein) to foliar N application and preceding granular N. Data for this report were collected in 2014 and 2015 in a long-term experiment established in 2002 under permanent beds in a split plot arrangement. Main plot treatments were three foliar N rates (0, 4.5 and 9?kg ha?1) laid out on the top of four preceding granular N rates (0, 20, 40 and 60?kg ha?1) applied from 2002 to 2013 as subplots. Weather conditions were relatively wetter in 2014 than 2015. In 2014, test weight and floating index improved over that in 2015. Foliar application of 9?kg N ha?1 enhanced yield and protein. In 2014, yield response to preceding N rates showed an increasing trend whereas in 2015 response was null. Kernel P uptake response to preceding N rates showed a differential reaction among foliar N rates; 9?kg ha?1 showed the greatest uptake. Kernel floating index was associated to kernel P uptake. Apparently, this relationship has not been previously reported. Results suggests that the application of 9?kg N ha?1 to foliage of rainfed maize grown in permanent beds has the potential to substitute the traditional fertilization practice of granular N sources.  相似文献   

17.
Baby spinach is rich in phytochemicals that provide great benefits to consumers’ health. The study aim was to investigate the effect of the growth harvest stage, postharvest storage duration and temperature on quality of baby spinach leaves. A 3?×?5?×?3 factorial experiment was laid out in a randomised complete block design with four replicates per treatment. The treatments were arranged as follows namely: stage I [28 days after sowing (DAS)], stage II (35 DAS)and stage III (42 DAS), and leaves were kept up to 12 d at three different temperatures – 4, 10 and 20°C. The study demonstrated that the overall appearance and odour were both well maintained in the leaves of baby spinach harvested at stage II. The baby spinach harvested 28 DAS led to higher content of iron [1.13?mg?g?1 dry weight (DW)], magnesium (14.4?mg?g?1 DW), and zinc (0.17?mg?g?1 DW). The highest level of total antioxidant activity (0.43?mg?g?1 DW) and flavonoids (12?mg?g?1 DW) after 12 d of storage was observed in baby spinach leaves at stage I when stored at 4°C. Therefore, baby spinach leaves harvested 28 DAS and store at 4°C for 6 d improved shelf life and nutraceutical quality. Thus, early harvest of fresh produced baby spinach harvested in order to attain high phytochemical and mineral content when stored at low temperature (4°C) without exceeding 6 days is recommended.  相似文献   

18.
Changes in soil properties and vegetable growth were quantified on a low-fertility tropical soil. Four treatments (two composts, urea, and control) were applied to an Oxisol (Rhodic Haplustox, Wahiawa series) in a field on Oahu, Hawaii. Chinese cabbage (Brassica rapa, Chinensis group) and eggplant (Solanum melongena) were grown sequentially as test crops. Soil quality as measured by hot-water-soluble carbon, dehydrogenase activity, and cation exchange capacity (CEC) increased by compost amendments. Total organic carbon or carbon dioxide (CO2) respiration rate did not correlate with the soil amendments. Nitrogen (N) nutrition was the main factor that improved growth and carotenoid content in cabbage. The urea treatment promoted better growth in cabbage, whereas good-quality compost, made of grass clippings/tree trimmings, lime, and rock phosphate yielded better growth in eggplant, suggesting organic N requires time to mineralize and to be available to crops.  相似文献   

19.
Application of a basal dose of fertilizer nitrogen (N) at sowing of maize has been always practiced in general recommendations in Egypt and elsewhere. A field experiment in two consecutive years (2015 and 2016) was conducted to assess the usefulness of application of a dose of N fertilizer at sowing of maize in calcareous soil at West Delta, Egypt. The treatments consisted of N fertilizer levels of 0, 240, 280, and 320 kg N ha?1 applied in three equal split doses. The first dose for each level was practiced at 0, 7, 14, and 21 days after sowing (DAS). The results indicated that practicing the first dose of N fertilizer at 0 or 7 DAS resulted in highest normalized difference vegetation index (NDVI) at early growth stage. However, the NDVI at later stages dramatically modified to reach highest when practicing the first dose at 14 or 21 DAS. Grain yields of maize when applying the first dose at 14 or 21 DAS were always significantly higher than when applied at 0 or 7 DAS. This was consistent with N fertilizer-use efficiencies. By just postponing the first dose of N from 0 to 14 DAS resulted in an increase of 7.7–13.5% in recovery efficiency and 1.1–2.7 kg grain kg?1 N in agronomic efficiency in both seasons. This study evidenced that application of N fertilizer early at sowing of maize is not necessary as it could resulted in low N-use efficiency.  相似文献   

20.
Quantitatively, nitrogen (N) is the foremost nutrient for maize crops (Zea mays L.), but the N source to increase the grain productivity still needs more investigation. Thus, the aim of this experiment was to study sources, rates and time of N application on the crop yield and agronomic characteristics of the maize under no-tillage system. The experiment was carried out during two growing seasons on an Oxisol under the factorial 5 × 3 × 3 scheme with five N rates (0, 50, 100, 150, and 200 kg ha?1) and three sources (ammonium-sulfate-nitrate as inhibitor of the nitrification (ASN+I), ammonium sulfate (AS) and urea); we applied them two times with four replicates: first time at the sowing or later under side dressing when the plants had the six leaves stage. In the first year, the sources of N had no influence on the number of grain line /ear (NGLE), grain number/line (GNL), total number of grain/ear (TNFE), biomass of 100 grain, plant height (PH), height of the first ear insertion (AFEI) and stalk diameter, in contrast with the foliar N content and the crop yield. Early fertilization with N at the sowing time can afford applications as well as the total side dressing. The increase of the rates had positive influence on the N foliar content, plant height and 100 grains biomass. The highest productivities were found with rates above the threshold of 150 kg ha?1, no matter the sources and the fertilization time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号