首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alleviation by calcium (Ca) of inhibition of soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation by hydrogen (H) and aluminum (Al) was evaluated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment containing nutrient solution with treatments consisting of factorial combinations of either pH (4.0, 4.6, and 5.5) and Ca (0.2, 2.0, 10, and 20 mM), Al (7.5, 15, and 30 μM) and Ca (2.0,10, and 20 mM) at pH 4.6, or Ca (2, 7, and 12 mM) levels and counter ions (SO4 and Cl) at pH 4.6 and 15 μM Al. Length of tap roots and their laterals increased with solution Ca concentration and pH value, but decreased with increasing Al level. Length of both tap and lateral roots were greater when Ca was supplied as CaSO4 than as CaCl2, but increasing Ca concentration from 2 to 12 mM had a greater effect on alleviating Al toxicity than Ca source. In the absence of Al, relative root length (RRL) of tap and lateral roots among pH and Ca treatments was related to the Ca:H molar activity ratio of solutions (R2≥0.82). Tap and lateral RRL among solutions with variable concentrations of Al and Ca at pH 4.6 were related to both the sum of the predicted activities of monomeric Al (R2≥0.92) and a log‐transformed and valence‐weighted balance between activities of Ca and selected monomeric Al species (R2≥0.95). In solutions with 15 μM Al at pH 4.6, response of tap and lateral RRL to variable concentrations of CaSO4 and CaCl2 were related to predicted molar activity ratios of both Ca:Al3+ (R2≥0.89) and Ca:3 monomeric Al (R2≥0.90), provided that AISO4 and AI(SO4)2 species were excluded from the latter index. In all experiments H and Al inhibited length of lateral roots more than tap roots, and a greater Ca:H or Ca:Al concentration ratio was required in solutions to achieve similar RRL values as tap roots.  相似文献   

2.
Abstract

Hydroponic studies with soybean (Glycine max [L.] Merr.) have shown that µmol L?1 additions of Mg2+ were as effective in ameliorating Al rhizotoxicity as additions of Ca2+in the mmol L?1 concentration range. The objectives of this study were to assess the ameliorative effects of Mg on soybean root growth in acidic subsoils and to relate the soil solution ionic compositions to soybean root growth. Roots of soybean cultivar Plant Introduction 416937 extending from a limed surface soil compartment grew for 28 days into a subsurface compartment containing acid subsoils from the Cecil (oxidic and kaolinitic), Creedmoor (montmorillonitic) and Norfolk (kaolinitic) series. The three Mg treatments consisted of native equilibrium soil solution concentrations in each soil (50 or 100 µmol L?1) and MgCl2 additions to achieve 150 and 300 µmol L?1 Mg (Mg150 and Mg300, respectively) in the soil solutions. Root elongations into Mg-treated subsoils were compared with a CaCO3 treatment limed to achieve a soil pH value of 6. Subsoil root growth responses to the Mg treatments were less than for the lime treatments. Root length relative to the limed treatments for all subsoils (RRL) was poorly related to the activity of the soil solution Al species (Al3+ and Al-hydroxyl species) and Mg2+. However, the RRL values were more closely related to the parameters associated with soil solution Ca activity, including (Ca2+), (Al3+)/(Ca2+) and (Al3+)/([Ca2+] + [Mg2+]), suggesting that Ca could be a primary factor ameliorating Al and H+ rhizotoxicity in these subsoils. Increased tolerance to Al rhizotoxicity of soybean by micromolar Mg additions to hydroponic solutions, inducing citrate secretion from roots to externally complex toxic Al, may be less important in acid subsoils with low native Ca levels.  相似文献   

3.
Abstract

Considerable uncertainty prevails concerning a suitable measure that can adequately describe Al phytotoxicity in nutrient and soil solutions. A study was conducted to evaluate the ability of a modified aluminon technique to discriminate between phytotoxic and non‐phytotoxic Al in solutions containing 80 μM Al with varying levels of CaSO4(625 to 10000 μM), at two pH levels (4.2 and 4.8). The concentration of Al measured by the modified aluminon technique ranged from 18.3 to 77.7 μM,thereby indicating substantial polymerization in some of the solutions. The greatest amount of polymerization occurred at pH 4.8 in the presence of 625 μM CaSO4. Increasing additions of CaSO4resulted in an increase in predicted activity of AlSO4 +at both pH levels. However, with increasing addition of CaSO4, the predicted activity of Al3+decreased at pH 4.2 or remained relatively constant at pH 4.8. The relationship between the sum of predicted activities of monomeric Al (SaAl mono.) in solution and tap root length of soybean [Glvcine max(L.) Merr.] cv. Lee was extremely poor, thereby indicating the inability of the modified aluminon technique to measure phytotoxic Al in solutions employed in the current study. This difficulty was due to failure of the modified aluminon technique to exclude lesser phytotoxic AlSO4 +species. The activity of Al3+was closely related to tap root length (R2= 0.865). The prediction of root length response to Al was further improved (R2= 0.899) by considering the solution Al index as: S[3aA13+ + 2aAl(OH)2+ + aA1(OH)+]. There was a poor relationship between tap root length and the concentration of polymeric Al, thus suggesting the lower phytotoxicity of this component under the prevailing solution conditions.  相似文献   

4.
Aluminum (Al) toxicity to plants in complete nutrient solutions is difficult to relate to Al activity in solution because of precipitation and complexation. Aluminum toxicity was studied for two seedling crops, sorghum (Sorghum bicolor L. Moench) and wheat (Triticum aestivum L. em Thell), at low levels (≤10 μM) in two incomplete nutrient solutions to study plant response to Al alone, Al+PO4 3‐, Al+OH, and Al+PO4 3‐+OH. Relative root length was the bioassay for Al toxicity. ‘Monomeric’ Al was measured using Aluminon and both root length and measured Al were compared to the theoretical Al in solution predicted by the MINTEQA2 equilibrium model.

Low levels of Al were toxic to plant roots with sorghum showing a decrease in relative root length from 1 to 10 μM Al, and wheat showing a decrease from 4 to 10 μM. A mono‐salt background solution (400 μM CaCl2) and a more complex base solution (CaCl2, KNO3, and MgCl2) gave similar root lengths and measured Al values. Phosphate and hydroxyl ameliorated Al toxicity and lowered measured Al in solution, but not to the extent predicted by the model. Adding phosphate (PO4 3‐) or hydroxyl (OH) raised the pH, but again not as high as the model predicted. The difference in toxicity and measured Al were most likely the result of polymers (Al+3) which are toxic, but not measured by the procedure used, or included in the model which showed the Al as being removed from solution by precipitation.  相似文献   

5.
Beneficial effects of aluminum (Al) on plant growth have been reported for plant species adapted to acid soils. However, mechanisms underlying the stimulatory effect of Al have not been fully elucidated. The aim of this study was to determine the possible contribution of photosynthesis, antioxidative defense, and the metabolism of both nitrogen and phenolics to the Al‐induced growth stimulation in tea (Camellia sinensis [L.] Kuntze) plants. In hydroponics, shoot growth achieved its maximum at 50 μM Al suply (24 μM Al3+ activity). A more than threefold increase of root biomass was observed for plants supplied with 300 μM Al (125 μM Al3+ activity). Total root length was positively related to root Al concentrations (r = 0.98). Chlorophyll a and carotenoid concentrations and net assimilation rates were considerably enhanced by Al supply in the young but not in the old leaves. Activity of nitrate reductase was not influenced by Al. Higher concentrations of soluble nitrogen compounds (nitrate, nitrite, amino acids) and reduction of protein concentrations suggest Al‐induced protein degradation. This occurred concomitantly with enhanced net CO2‐assimilation rates and carbohydrate concentrations. Aluminum treatments activated antioxidant defense enzymes and increased free proline content. Lowering of malondialdehyde concentrations by Al supply indicates that membrane integrity was not impaired by Al. Leaves and roots of Al‐treated plants had considerably lower phenolic and lignin concentrations in the cell walls, but a higher proportion of soluble phenolics. In conclusion, Al‐induced growth stimulation in tea plants was mediated by higher photosynthesis rate and increased antioxidant defense. Additionally, greater root surface area may improve water and nutrient uptake by the plants.  相似文献   

6.
Copper (Cu) phytotoxicity is closely related to pH and Cu activity in solution. The effect of pH on growth and uptake of Cu by Swingle citrumelo rootstock seedlings were investigated in solution culture with varying Cu activities. Copper activities of either 0.05, 0.5, 5, and 10 μM at pH 5 and 6 were maintained by adding copper sulfate (CuSO4) to the hydroponic solution based on the calculation by GEOCHEM computer program. After 42 days, root and shoot growth decreased significantly in solutions where Cu activities were greater than 0.5 μM. The concentration of Cu in roots are greater and the dry weights of roots and shoots were less in solutions at pH 6 than those at pH 5. A 200‐fold increase in Cu activity in solution resulted in a corresponding increase in concentration of Cu in the root but not in the shoot.  相似文献   

7.
Effects of various aluminum (AlCl3) concentration and exposure times (6, 12, and 24 h and 3 d) on growth and potassium (K) transport were studied in two wheat species (Triticum aestivum L. cv. Jubilejnaja 50 and Triticum durum Desf. cv. GK Betadur) grown in low salt conditions hydroponically. In longer (3 d) Al exposure times at pH 4.1, the inhibition of root growth appeared at 10 μM Al3+ treatment in GK Betadur, and at 50 μM Al3+ treatment in Jubilejnaja 50. Shoot growth was not influenced by Al3+ treatment, except at 100 μM in 7 d experiments. In 6, 12, and 24 h Al3+ exposure times, at low pH, the K+(86Rb) influx in roots increased as the Al3+ concentration increased in the outer medium in both species. It also appeared in K+(86Rb) transport toward the shoots, except by higher Al3+ treatments of GK Betadur seedlings. At the same time, in longer‐term (3 d) Al3+ treatments, a striking inhibition were observed in K+(86Rb) influx and K+ concentration of roots and shoots. The K+concentration of roots and shoots measured at the end of 24 h Al3+ exposure times was significantly not affected by Al3+ treatment. Durum wheat proved to be more sensitive to the Al toxicity than common winter wheat.  相似文献   

8.
Three experiments were conducted in which roots of two species of Lotus were immersed for up to 40 min in complete nutrient solutions containing 6, 15 or 25 μM Al. The two species tested were L. pedunculatus cv. Grasslands Maku (Al‐tolerant) and L. corniculatus cv. Maitland (Al‐sensitive). There was an initial rapid (< 5 min) decrease in solution Al at 25 μM Al. The effect was less marked with solution Al ≤ 15 μM. The decrease in solution Al was greater in the Al‐sensitive Maitland than in the Al‐tolerant Grasslands Maku, particularly when expressed on the basis of root fresh mass and root length. Root cation‐exchange capacity (CEC) was lower in Grasslands Maku than in Maitland, viz. 23.9 vs 36.5 mmol kg‐1 dry mass. Maitland roots removed more Al from solution than did those of Maku on the basis of total exchange capacity.

We propose a mechanism of Al tolerance on the basis of the results of this study and of other published information, viz. that differential Al tolerance results from differences in root CEC. Aluminum‐tolerant genotypes have roots with low CEC, and high Al activities (> 20 μM in the case of Grasslands Maku) are required to precipitate the relatively highly methylated pectins associated with low CEC. In contrast, relatively low activities of Al would precipitate the pectins in plants with roots of high CEC. This would decrease the protective capacity of the pectins, enabling the toxic, monomeric Al ions to come in contact with a number of Al‐sensitive compounds or processes in the cell wall, plasmalemma, or cell cytoplasm.  相似文献   

9.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

10.
White clover (Trifolium repens L., cultivar Huia), a dominant forage legume in Appalachia, usually grows poorly on acidic soils common to the region. The effects of bulk solution concentrations of calcium (Ca), hydrogen (H), and aluminum (Al) on the relative root growth (RRG) of white clover were determined using one‐ to three‐day‐old seedlings to assess the relative toxicity of H+ and Al. The RRG was affected by bulk solution concentrations of Ca, Al, and pH, in a manner indicative of significant interactions among these parameters. The RRG was directly related to the activities of Al3+ or H+ at the surface of the root as calculated by the Gouy‐Chapman‐Stern model. Fifty percent inhibition of RRG occurred at activities of 5 and 200 μM Al3+ and H+, respectively. A large part of the interaction between bulk solution concentrations of Ca, Al, and H could be explained by how these parameters affected the activities of these ions at the root surface.  相似文献   

11.
The effect of varying solution calcium (Ca) and magnesium (Mg) concentrations in the absence or presence of 10 μM aluminum (Al) was investigated in several experiments using a low ionic strength (2.7 × 10‐3 M) solution culture technique. Aluminium‐tolerant and Al‐sensitive lines of wheat (Triticum aestivum L.) were grown. In the absence of Al, top yields decreased when solution Ca concentrations were <50 μM or plant Ca concentrations were <2.0 mg/g. Top and root yields decreased when solution Mg concentrations were <50 μM or plant Mg concentrations were <1.5 mg/g. There were no differences between the lines in solution or plant concentrations at which yield declined. Increasing solution Ca concentrations decreased plant Mg concentrations in the tops (competitive ion effect) but increased plant Mg concentrations in the roots of wheat. This suggests that Ca is competing with Mg when Mg is transported from the roots. Increasing solution Mg concentrations decreased plant Ca concentrations in the tops and the roots (competitive ion effect). In the roots, increasing solution Mg concentrations decreased plant Ca concentrations at a lower solution Ca concentration in the Al‐sensitive line than the Al‐tolerant line. In the presence of Al, increasing solution Ca and Mg concentrations increased yield (Ca and Mg ameliorating Al toxicity). Yield increased until the sum of the solution concentrations of the divalent cations (Ca+Mg) was 2,000 μM for the Al‐tolerant line or 4,000 μM for the Al‐sensitive line. The exception was that yield decreased when solution Mg concentrations were > 1,500 μM and the solution Ca concentration was 100 μM (Mg exacerbating Al toxicity). The ameliorative effects of solution Ca or Mg on Al tolerance were not related to plant Ca or Mg concentrations per se.  相似文献   

12.
13.
Aluminum (Al) toxicity was studied in two tomato cultivars (Lycopersicon esculentum Mill. ‘Mountain Pride’ and Floramerica') grown in diluted nutrient solution (pH 4.0) at 0, 10, 25, and 50 μM Al levels. In the presence of 25 and 50 μM Al, significant reduction was found in leaf area, dry weight, stem length, and longest root length of both cultivars. Growth of ‘Floramerica’ was less sensitive to Al toxicity than growth of ‘Mountain Pride’. Elemental composition of the nutrient solutions were compared immediately after the first Al addition and four days later. The uptake of micronutrients copper (Cu), manganese (Mn), molybdenum (Mo), zinc (Zn), boron (B), and iron (Fe) from the nutrient solution was reduced in both cultivars with increasing Al levels. Nutrient solution Al gradually decreased in time for every treatment; less in cultures of ‘Floramerica’ than in ‘Mountain Pride’. Aluminum treatments decreased the calcium (Ca), potassium (K), magnesium (Mg), Mn, Fe, and Zn content in the roots, stems, and leaves. Aluminum treatment promoted the accumulation of P, Mo, and Cu in the roots, and inhibited the transport of these nutrients into stems and leaves. At 25 and 50 μM levels of Al, lower Al content was found in the roots of cv. “Floramerica’ than in the roots of cv. ‘Mountain Pride’.  相似文献   

14.
At the pH levels found in acid soils (4.5 to 5.5), theoretical equilibrium models predict that Al will be complexed on a nearly one to one molar basis by NTA, EGTA. oxalate (OX) and citrate (CIT). Growth chamber experiments were initiated using solutions containing Al (0, 2, or 10 μM), Ca (400 μ.M). and a chelate (0 or 10 μM) growing sorghum [Sorghum bicolor (L.) Moench cv. AT×399 × RT×430] for four days following germination to test the equilibrium models. The pH and concentration of Al in the solutions were measured before and after each experiment. Plant root length and weight, and shoot weights were used as a bioassay for the uncomplexed, toxic Al. Root length showed the greatest response to aluminum and chelate treatments, although root weight and shoot weight gave the same general results. Chelate effectiveness in reducing Al toxicity was NTA > OX = CIT > EGTA. The pH values were altered very little by NTA or EGTA and averaged 5.2 to 5.3; however, the pH was raised 0.2 to 0.9 units by OX and CIT. Thus, some detoxifying effect from the latter two could be a pH effect. No chelate effect was evident at pH values near 6 for CIT, but the chelate was effective in reducing Al toxicity at pH 5.6, indicating the importance of pH in Al toxicity. NTA alone did not affect root length, but the other chelates all decreased root length to a small degree at 0 μM Al indicating that the chelate itself was detrimental to growth. It was concluded that NTA was an effective chelate to detoxify Al and EGTA was not. Also it was found that OX and CIT behave quite differently from NTA and EGTA in that they affect pH and lower solution Al concentration. The method did not confirm the equilibrium models for EGTA, OX, or CIT because of complicating factors such as pH variation and damage to the roots by the chelates. The equilibrium model for NTA, though, was confirmed.  相似文献   

15.
Alum sludge derived from a municipal wastewater plant was used as a soil amendment in a greenhouse study with barley (Hordeum vulgare) as the test crop. Treatment variables included the soil pH (4.5, 5.1 and 6.5), the amount of Al in the sludge (control = 30 mg AlT/g; alum sludges = 38 and 52 mg AlT/g), and the sludge application rate (100 and 270 kg NT/ha). Soil amendment with the two alum sludges reduced soil pH, increased Al3+ activity in the soil solution, and reduced barley growth over the 6-week experiment. Barley growth decreased as the Al3+ activity in the sludged soil solution increased, but for a given Al3+ the phytotoxicity of Al was markedly pH dependent. For example, at a pH of 5.0 ± 0.1 an Al3+ activity of 0.5 μM was sufficient to inhibit plant growth by about 50% this IC50 value increased five-fold to about 2.5 μM when the soil pH was 4.5 ± 0.1. This decrease in the toxicity of Al50 with acidification was explained in terms of a competitive interaction between the H+-ion and Al3+ at the root surface. Stepwise multiple regression allowed the prediction of aerial leaf biomass from soil pH and sludge application rate.  相似文献   

16.
A stratified subsurface layer of acidic soil can develop in minimally disturbed soil such as no‐till receiving injection of N fertilizer (e.g., anhydrous ammonia). The objective of this study was to evaluate the effectiveness of subsurface band treatments in alleviating soluble Al3+ and Mn2+ toxicities on sorghum growth. Soil columns 40 cm in length were packed with soil (Valentine fine sand mixed mesic Typic Ustipsamment and Thurman loamy sand mixed Mesic Udorhentic Haplustoll) with treatments applied at the 10–18 cm depth to mimic soil pH stratification. The treatments at this depth were: (1) entire layer at soil pH of 3.7; (2) band of soil 6 cm wide at pH of 5.8 with the rest of the soil at pH 3.7; (3) band of soil 6 cm wide at pH of 6.3 with the rest of the soil at pH 3.7; and (4) entire layer at soil pH of 5.8. The soil above and below the 10–18 cm depth was at pH 5.8. Sorghum (Sorghum bicolor L. Moench) was grown in the soil columns under a controlled environment for 6 weeks. High concentration of Al in soil solution was found in soil at soil pH 3.7 which was overcome by either banding to pH 5.8, 6.3, or having the soil layer at pH 5.8. Treatment with pH of 5.8 throughout the soil 10–18 cm depth produced significantly greater top growth, although all other pH or liming strategies performed better than the soil pH 3.7 treatment. The banded treatments at pH 5.8 and 6.3 allowed roots to grow below the 10–18 cm layer of soil, but root growth was still significantly less than in the soil where the entire soil treatment layer was at pH 5.8. The increase in biomass yield with soil pH of 5.8 in the entire treatment layer was higher compared to band treatment at pH 5.8; however, the lime requirement would be 3.4 times more with liming the entire layer compared to banding a portion of the soil to pH 5.8 and would thus be translated into a higher liming cost.  相似文献   

17.
Soybean plants (Glycine max L. cv Santa Rosa) grown hydroponically in nutrient solutions had reduced nodule mass and numbers in the presence of aluminum (Al). Reduced nodule number was attributed mainly to hydrogen (H) ion toxicity, whereas Al had a stronger effect on nodule growth. Using a vertical split‐root system with Al exclusively in the lower (hydroponic) layer also resulted in a significant reduction of nodulation and nodule growth in the surface compartment (vermiculite). This indirect effect could be attributed mainly to Al rather than H. Subsurface Al had no apparent effect on shoot growth or root growth of the upper compartment, but significantly limited root growth in the lower compartment where it was applied. The indirect effect of Al on nodulation could be a reflection of the abnormal root growth in the lower compartment. Split‐root experiments with a high Al soil, however, produced different effects. High Al in soil used exclusively in the lower compartment did not reduce nodule numbers or mass in the upper compartment despite being more harmful than the Al solutions to nodulation and growth of plants when used in a single compartment. Growth of roots in the subsurface compartment was also much less affected by the high soil Al compared with the Al‐containing nutrient solutions. Nodule activity, as estimated by xylem sap ureide levels, was only reduced after direct exposure of nodules to Al. A pronounced increase in the ratio of asparagine/glutamine occurred in all Al treatments where nodulation was reduced, and in some cases, there was an increase in total amino acid concentration of the xylem sap.  相似文献   

18.
Abstract

Two rice genotypes, aluminum (Al)‐tolerant Co 37 and Al‐susceptible ADT 36, were evaluated for their physiological responses in the presence of Al stress in a hydroculture experiment. Two levels of Al (0 and 222 μmol/L) were supplied in the nutrient solution and the two rice genotypes were subjected to Al for two weeks. Root growth parameters, relative growth reduction in roots (RGRR), effects of calcium (Ca2+) nitrate metabolism, Al content in roots, and pH shift patterns were recorded. The Al treatments had a lesser effect on Co 37 in terms of reduction in root growth and root dry matter production as compared to ADT 36. While Co 37 did not show significant differences in response to various levels of Ca2+ added in the medium under Al stress, ADT 36 registered a dose‐dependent effect in circumventing the injurious effects of Al. Further, reduction in nitrate content and in vivo nitrate reductase (NR) activity in the leaf tissue in Co 37 under Al treatment was less than that in ADT 36. Moreover, Co 37 had a lower content of Al in its root tissue than did ADT 36. Co 37 was also able to shift the pH of the medium more efficiently than ADT 36, thereby minimizing the uptake of Al, and eventually reducing Al toxicity. The higher level of tolerance to Al of Co 37 seems to have emanated from an efficient nitrate metabolism and its capacity to shift the pH of the medium. It is also evident that Al toxicity in ADT 36 can be circumvented by a Ca treatment to a considerable extent. Our results offer a possible physiological basis for Al tolerance in crop plants.  相似文献   

19.
Abstract

This study was conducted to evaluate the effect of vesicular‐arbuscular mycorrhizal (VAM) fungus Glomus etunicatum on growth, absorption, and distribution of calcium (Ca), magnesium (Mg), phosphorus (P), and aluminum (Al) in one Al‐tolerant and one Al‐sensitive barley cultivar. The plants were grown in sand daily irrigated with nutrient solution containing 0 or 600 μM Al at pH 4.8. Significant interaction (P=0.05) among variety, mycorrhiza, and aluminum (VxMxAl) were noted for both shoot and root dry matter (DM); shoot concentration and content of Al, P, Ca, and Mg; root concentration of Al, P, and Mg; and root content of Al, P, Ca, and Mg. With VAM inoculation: i) root colonization degree was about 50% in all treatment, ii) shoot DM yield increased between 30 and 70%, iii) Al concentration and content decrease down to a half both in shoots and roots of sensitive barley, iv) Ca concentration in shoots of sensitive barley showed a high increase at 600 μM Al, and v) P concentration and content in shoots of both varieties increased significantly.  相似文献   

20.
Plants of winter wheat (Triticum aestivum L. cv. Starke II) were grown for seven days in split‐root chambers containing nutrient solutions with various copper chloride (CuCl2) concentrations [0.5/0.5 (controls), 0.5/2, 0.5/5, 0.5/7 and 0.5/10 μM]. At harvest (day 11), shoot dry weights were about the same in the different copper (Cu) treatments. Dry weights of the root parts exposed to 2–10 μM Cu (Cu‐fed) decreased while they increased for the control roots. A Cu exposure of 2–10 μM severely retarded lateral root initiation and average lateral root length. Average seminal root length was also reduced. The control roots compensated for the retarded growth of the Cu‐fed roots by increasing chiefly in lateral root number, but their average length remained similiar. Phosphorus (P) concentration decreased gradually in all determined plant parts (shoots, Cu‐control and Cu‐fed roots) with increased external Cu concentration. The potassium (K) concentration in the shoots was similarly affected, but it did not decrease in the Cu‐fed roots until the external Cu concentration reached 10 μM. The Cu concentration in the Cu‐fed roots increased proportionally to the external Cu concentration, but Cu was not exported to the other plant parts. The reasons for changes in root geometry and nutrient balance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号