首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of source reduction on yield and yield components of three maize hybrids at three plant densities was studied under agro-climatic conditions in southern Iran. Field experiments were conducted at the research farm of the College of Agriculture, Shiraz University, Shiraz, Iran, located at Bajgah (52° 35′ N and 39° 4′ E, 1810 masl) during the 2008 and 2009 growing seasons. The treatments included three hybrids, three plant densities and defoliation, arranged in the main, subplots and sub-subplots, respectively. Defoliation treatments, which consisted of removing all the leaves from one side of the maize plants, were imposed when plants were at the silking stage. Silking was taken as the time when 50% of the plants in a row presented visible silks. Partial defoliations included control, and 50% defoliation at 25 and 35 days after silking (defoliation treatments were applied to all plants in each plot). The experiments were conducted in a randomized complete block (RCB) design with three replications. Dry matter accumulation was assessed by sampling ears at 7-day intervals from the mid-silking stage to black layer formation. Defoliation treatments decreased grain yields significantly in both years. The highest grain yield in 2008 (19 t ha?1) was obtained from hybrid Maxima ‘524’ and in 2009 (14 t ha?1) from hybrid 704 at 95,000 plants ha?1 density. Defoliation treatments decreased grain yields due to a reduction in the number of kernels per ear, as well as mean kernel weight. Some other measured parameters including stalk, shank, husk and cob dry weights, and cob and ear lengths were also decreased under defoliation treatments. If 50% of the photosynthetic area after silking was removed, the quantity of retransferred assimilates from stalk to kernel was increased. Finally, partial defoliation, 25 days after silking, reduced all the yield components more than any other treatments.  相似文献   

2.
Nitrogen (N) is often applied to first year maize (Zea mays L.) after alfalfa (Medicago sativa L.) at rates greater than needed to attain maximum yields. This study explored other potential benefits of excess N fertilizer applications to maize after alfalfa. Effects of N fertilizer (no N fertilizer, 73, or 135 kg N ha?1) to maize after alfalfa on stalk dry weight, stalk mineral concentrations [N, phosphorus (P), and potassium (K)], grain yield, and kernel components (protein, oil, starch, P, and K) were investigated. Fertilizer N increased stalk N concentration but not stalk dry weight. Grain yields and yields of protein, oil, starch, P, and K kernel components, expressed on a kg ha?1 basis, were also unaffected by N fertilizer treatments. Thus, there appears to be no advantage, in terms of yield or kernel components, in applying N fertilizer to maize after alfalfa under the environments experienced during this two year field experiment.  相似文献   

3.
The production of locally adapted maize hybrids requires parental material with adequate genetic variation in the relevant traits. The objective of the present study was to evaluate 20 European maize hybrids under temperate region for their potential use in direct cultivation or as parent material in local breeding programs. Results showed that European hybrids except BC 566 had higher kernel yield (11.4–14.3 t ha?1) than local cultivars (KSC705 and KSC704). Korimbos, Krebs, BC 566, and BC 532 had lower kernel moisture (14–15%) compared to KSC705 (21.7%) and KSC704 (22.7%). Cluster analysis categorized these hybrids in three groups. Cluster 2 comprised of Korimbos, BC 612, DKC 6589, and 89May70. These hybrids had high plant height, thousand kernel weight, and kernel yield. Due to high kernel moisture, the hybrid 89May70 could not be proposed for direct cultivation but it can be involved in transferring high grain yield to local hybrids. Genotype × environment analysis showed that Korimbos and Krebs had low S2i and low genotypic coefficient of variation, high and stable performance and low kernel moisture. Therefore, Korimbos and Krebs can possibly be used for direct cultivation in temperate regions of the Fars Province.  相似文献   

4.
The effect of source and sink manipulation on accumulation of micronutrients (Fe, Zn, Mn, Cu) and protein in wheat grains was studied in a field experiment and ear culture. The source and sink manipulation was obtained by reducing assimilate source (through defoliation and spike shading) or sink (through 50% spikelets removal) after anthesis in the field and by changing sucrose or NH4NO3 levels of the culture media in ear culture. In the field experiment, reducing source and sink generally increased Fe, Zn, Mn, Cu, and protein concentrations except defoliation which decreased Mn concentration. Grain yield as well as micronutrient and protein contents in grains were all reduced by reducing source and sink sizes, suggesting that the accumulation of micronutrients and protein in grains was restricted by source supply and sink capacity. In ear culture, the supply of 20 to 80 g L–1 sucrose increased grain weight and yield, but decreased grain Fe, Zn, Mn, Cu, and protein concentrations. The supply of 0.57 to 2.28 g L–1 NH4NO3 increased grain yield and the concentrations and contents of micronutrients and protein. All these results show that micronutrient and protein accumulation in grains can be affected by the source–sink relationship of carbohydrate and nitrogen. Adequate N supply can simultaneously increase grain yield and the accumulation of Fe, Zn, Mn, Cu, and protein.  相似文献   

5.
Drought severely affects yield and its quality in different plants. In a field experiment, maize was exposed to drought stress at vegetative, silking, and kernel-filling growth stages to determine the drought-induced changes in kernel yield and quality traits. The experiment was laid-out in a randomized complete block design with four replications. Withholding water at the vegetative stage was very effective in increasing protein, total amino acids, total soluble sugars, glucose, and sucrose contents in maize kernels. In contrast, drought applied at the kernel-filling stage increased the total free amino acids, total phenolics, and activities of catalase (CAT) and ascorbate peroxidase (APX) in maize kernels. Drought at the vegetative stage improved the kernel quality while at the silking stage severely affected kernel yield in maize. Taken together, the results suggested that incidence of drought should be avoided at the silking stage to minimize kernel yield losses and decrease in kernel quality in maize.  相似文献   

6.
Abstract

Yield and kernel quality of rainfed maize as affected by N fertilizer has been generally evaluated through the application of granular N sources at high rates. The purpose of this work was to estimate the response of maize yield and quality (kernel hardness—floating index, weight and test weight -, P uptake and protein) to foliar N application and preceding granular N. Data for this report were collected in 2014 and 2015 in a long-term experiment established in 2002 under permanent beds in a split plot arrangement. Main plot treatments were three foliar N rates (0, 4.5 and 9?kg ha?1) laid out on the top of four preceding granular N rates (0, 20, 40 and 60?kg ha?1) applied from 2002 to 2013 as subplots. Weather conditions were relatively wetter in 2014 than 2015. In 2014, test weight and floating index improved over that in 2015. Foliar application of 9?kg N ha?1 enhanced yield and protein. In 2014, yield response to preceding N rates showed an increasing trend whereas in 2015 response was null. Kernel P uptake response to preceding N rates showed a differential reaction among foliar N rates; 9?kg ha?1 showed the greatest uptake. Kernel floating index was associated to kernel P uptake. Apparently, this relationship has not been previously reported. Results suggests that the application of 9?kg N ha?1 to foliage of rainfed maize grown in permanent beds has the potential to substitute the traditional fertilization practice of granular N sources.  相似文献   

7.
Low nitrogen (N) supply may change assimilate partitioning between plant organs. We measured the effect of N supply on partitioning of recently assimilated 13C and recently absorbed 15N between generative and vegetative plant organs of two maize genotypes (Zea mays L.) 14 d after silking, i.e., during the lag phase of kernel growth. Furthermore, net partitioning of dry matter and N were assessed during grain filling. Plants were grown in a greenhouse in large containers. Our hypothesis was that N deficiency reduces grain set due to low partitioning of carbon (C) and N to the grains during the lag phase and reduces grain yield also because of excessive remobilization of N from the leaves during grain filling. During the lag phase, low N supply increased partitioning of recently assimilated photosynthates towards stem and roots at the expense of partitioning towards reproductive organs. However, despite of diminished sink strength of the reproductive organs for photosynthates, sugar concentrations in the grains of N‐deficient plants were increased, indicating that kernel set and potential kernel weight were not limited by low C supply at the end of the lag phase. In contrast to C, partitioning of recently absorbed N towards the reproductive organs was increased at low N supply at the expense of partitioning towards the roots. This indicates different mechanisms for the regulation of C and N distribution within the plant. During grain filling, biomass partitioning between plant organs was more affected by genotype than by rate of N supply. Nitrogen accumulation in the grains substantially exceeded total N uptake in the plant after flowering. Excess N accumulation in the grains was covered mainly by depletion of stem N at high N supply and by depletion of leaf N at low N supply. However, high concentrations of nonstructural carbohydrates in the stem at maturity indicated that grain yield of N‐deficient plants was not limited by low source strength of N‐depleted leaves.  相似文献   

8.
灌浆期风灾倒伏对玉米籽粒灌浆特性及品质的影响   总被引:10,自引:2,他引:10  
为了评估风灾倒伏造成的玉米产量损失,采用田间试验的方法对灌浆期风灾倒伏后捆扶处理、未倒伏以及倒伏上层和倒伏下层玉米籽粒建成和品质形成规律进行研究。结果表明,倒伏后第6 d玉米倒伏覆盖下层植株籽粒灌浆速率和籽粒含水率分别是对照处理(未倒伏)的26.9%和136.0%,倒伏使籽粒灌浆速率显著降低,后期籽粒脱水速度减慢。在产量上,倒伏后捆扶、倒伏上层、倒伏下层单株产量分别比对照减产11.75%、10.51%和29.88%,倒伏对下层被覆盖玉米植株影响较大,倒伏减产原因主要是由于穗粒数的减少,其次灌浆速率降低造成百粒重下降。田间45个定位点,倒伏最高减产29.68%,平均减产14.75%,进一步验证了灌浆期风灾倒伏对玉米产量的影响较大。相关分析表明,籽粒建成过程中籽粒干重与淀粉、脂肪含量呈极显著正相关,相关系数分别为0.618~0.861和0.580~0.797(P<0.01),与蛋白含量呈极显著负相关,风灾倒伏对粗蛋白和粗脂肪含量影响较大,而对淀粉含量影响较小。在倒伏后及时进行捆扶处理对降低玉米产量与品质损失有一定的积极作用。  相似文献   

9.
It is unknown if nitrogen (N) fertilizer application will ameliorate the yield loss associated with severe defoliation of soybean [Glycine max (L.) Merr.] at the R5 stage of growth. The objective of this field study was to investigate the interaction of N fertilization rate and extent of defoliation on soybean yield, seed weight, seed N concentration, and nodule activity. Field experiments were conducted in 1988 and 1989 on a Drummer silty clay loam (Typic Haplaquolls). Treatment variables were three cultivars: BSR 101, Chamberlain, and Elgin 87; three N fertilizer rates applied one day after defoliation: 0, 84, and 168 kg N ha‐1 as urea; and three levels of defoliation: 0, 50, and 75%. Grain yield was not significantly affected by N rate but did decrease with defoliation. Fertilizer N did not ameliorate the yield reduction associated with defoliation. Seed weight decreased linearly with increasing defoliation. Plants exposed to the most severe defoliation produced seed which weighed 1 g 100‐1 seed less than seed from nondefoliated plants. In 1989 seed weight of only the nondefoliated plants increased slightly with N rate, seed weight was not affected by N rate for any other year by defoliation treatment combination. Seed N concentration was not affected by N rate. Seed N concentration increased with defoliation in 1988 but not in 1989. Seed N concentration was not affected by defoliation in 1989. N fertilizer application and defoliation decreased nodule activity. Defoliated plants utilized nitrates in preference to dinitrogen fixation. Fertilizer N increased the concentration of nitrates in the plant, but the increase did not ameliorate the yield loss. Developing pods and seed are the predominate sink. The additional energy presumably required for dinitrogen fixation did not exacerbate the yield loss.  相似文献   

10.
Abstract

The objectives of this investigation were to study the effects of marginal site conditions and hybrid on plant development, agronomic performance and nutritive characteristics of forage maize (Zea mays L.) at high latitudes. Field experiments were conducted in 2008 and 2009 at three experimental sites, Kristianstad, Skara and Västerås, at increasing latitudes from 55°–60° N. Experimental design used two replicated randomized complete blocks at each site with three maize hybrids, Avenir (FAO 180), Isberi (FAO 190) and Burli (FAO 210), which were continuously assessed for plant development and harvested at various levels of maturity. The chemical composition and nutritional characteristics of harvested plant materials were analysed and hybrid responses to advancing maturity in terms of yield and nutritional qualities were evaluated. Results showed that maize hybrids required different numbers of accumulated thermal units at sites on varying latitudes to achieve developmental stages. Lowest thermal unit requirements among hybrids were observed for hybrid Avenir, and for sites it was highest for plants grown in the most northern site, Västerås. The most southern site, Kristianstad, was the only site at which all hybrids reached the dent stage (c. 450 g kg?1 kernel DM), a recommended maturity for ensiling. The DM yields of early maturing hybrid Avenir were consistently lower than those for Isberi and Burli at all the sites. Results also revealed nutritional differences among maize hybrids at a given maturity (DM, g kg?1), indicating that the effects of maturation should be factored into design of hybrid performance trials. This study highlights the effects of marginal site conditions and hybrids on plant development, agronomic performance and nutritional characteristics of maize hybrids at high latitudes. Further studies on marginal sites are recommended to enlighten the understanding of interaction between environmental and genetic factors on the performance of forage maize.  相似文献   

11.
施氮对夏玉米碳氮代谢及穗粒形成的影响   总被引:11,自引:1,他引:11  
以夏玉米杂交种郑单958为材料,对不同施氮水平下玉米产量、产量构成、粒数形成关键期植株体的碳氮代谢及碳氮代谢的关键酶进行了研究。结果表明,氮肥对玉米产量的影响主要体现在对穗粒数、穗粒重的影响上。施氮量为180.kg/hm2时,显著促进玉米穗粒数、穗粒重的增加;施氮量增加至240.kg/hm2时,促进作用下降。施氮明显促进大喇叭口期至灌浆期植株体的碳氮代谢,使碳氮代谢的关键酶硝酸还原酶(NR)、谷氨酰胺合成酶(GS)和蔗糖磷酸合成酶(SPS)活性提高,增强光合产物的积累和运输,从而满足生殖生长的需求,促进穗粒数的形成,提高产量。在抽丝前供氮充足的前提下,抽丝期施氮对增产意义不大。  相似文献   

12.
Priming offers an effective means for counteracting different stresses induced oxidative injury and raising seed performance in many crop species. The present study was carried out to investigate the ability of potassium nitrate (KNO3) and urea to promote the tolerance of different maize hybrids to drought and salt stresses to identify some biochemical parameters associated with KNO3 and urea induced resistance in maize seedlings. An experiment was conducted in a controlled environment of the laboratory at the college of agriculture, Shiraz University, Shiraz Iran, during 2010. The first factor was stress type and intensity at five levels; moderate drought, severe drought, moderate salt, severe salt, and control (without stress). Seed priming was the second factor; water as control, KNO3, and urea, and maize hybrids, including Maxima, SC704, Zola, and 304 were the third factor. Results indicated that the highest chlorophyll a (Ch a), chlorophyll b (Ch b), total chlorophyll (Ch T) contents, and carotenoids (Car) were found in no stress treatments and the most proline, protein contents, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities in severe drought treatment. Also, results revealed that generally, drought and salinity stresses decreased the amount of Ch a and the lowest Ch a was recorded for severe salinity stress (4.29 mg g?1). Stresses caused decrease in Ch b, but the effect of sever salinity level was higher than the others. Priming of KNO3 had significantly higher proline content than water and urea priming. The SC704 and 304 hybrids showed higher proline content than the other ones. Finally, the maize seed KNO3 and urea priming lead to high activities of antioxidant defensive enzymes and increase the tolerance level to abiotic stresses such as salt and drought.  相似文献   

13.
Abstract

Field experiments were conducted in summer 1992 on the Central Experimental Farm, Ottawa (45°22'N, 75°43'W) to determine whether a stem infusion technique developed for maize under controlled conditions was applicable to field‐grown maize and to evaluate whether providing sucrose in solution at silking via stem infusion altered plant source‐sink relationships sufficiently to increase kernel set. The higher and more variable evaporative demand and more difficult installation under field conditions dictated modifications to the stem infusion apparatus to prevent leakage and to facilitate assembly prior to field set‐up. A range of several field parameters were tested to identify conditions that would maximize infusion of sucrose solution: raising the syringe barrel height increased the volume of solution uptake; the largest amount of sucrose was taken up using a concentration of 150 g sucrose L‐1, and consecutive multiple infusions of the same plant increased solution uptake. Solution uptake was found to be greatest in the first 24 h of infusion. Leaf soluble carbohydrate and starch concentrations and ear leaf photosynthesis were not changed by sucrose infusion. Sucrose solution infused at silking appeared to increase kernel set in one of the experimental hybrids.  相似文献   

14.
ABSTRACT

Nitrogen (N) status of corn plants influences yield performance through adjustment of yield components. Physiological function of corn pollen produced under N-stressed conditions has not drawn enough attention in genotype selection and breeding programs. The object of this study was to assess effects of N nutrition of the pollen donor on kernel set and yield components of the pollen recipient in a field trial by using a restricted pollination procedure. Pollen from plants receiving 0 and 240 kg N ha?1 was manually applied to plants receiving 0, 80, 160, and 240 kg N ha? 1 during silk emergence. The high rate of N fertilizer applied to the pollen donor significantly increased kernel number, kernel weight, harvest index, and aboveground biomass in the pollen recipient. The effect of N nutrition of the pollen donor was similar at all N levels that were applied to the pollen recipient so the interaction was not significant for any of the variables.  相似文献   

15.
The present study aims at identifying potentially high-yielding testcross maize hybrids using different selection indices that consider agronomic traits other than grain yield alone. Forty-one (41) testcross hybrids developed from 20 elite drought-tolerant maize inbred lines and two inbred testers plus three hybrid checks were evaluated in the rainy seasons of 2013 and 2014 in Ogbomoso in the derived savanna agroecological zone of Nigeria. Hybrids were planted in each year in 11 × 4 lattices with two replications. Testcross hybrids and checks exhibited significant differences for all measured traits except ear height, husk cover and number of ears per plant. Grain yield of hybrids and checks averaged over the 2 years varied from 3117 to 8393 kg ha?1 with a mean of 5935 kg ha?1. Top 11 hybrids produced vigorous plants, each yielding >7000 kg ha?1. Base index and multivariate index methods identified EXL11 × 9071 whereas base index and Smith–Hazel selection index methods identified EXL18 × 9071 as superior hybrids at 5% selection intensity. These hybrids will be considered for advanced breeding program and release to farmers as high-yielding drought-tolerant hybrid maize varieties in the increasingly drought-prone derived savanna agroecology of Nigeria.  相似文献   

16.
The effects of defoliation on soybean [Glycine max (L.) Merr.] growth and yield have been well studied, but relatively little is known about its nitrogen (N) accumulation after defoliation. An experiment was conducted to examine soybean recovery and N accumulation following defoliation. The indeterminate cultivar (‘Tousan 69’) was planted in a greenhouse, and two defoliation treatments (no defoliation and 67% defoliation) were imposed at the R2 stage when plants had at least one flower in the two uppermost nodes. At 0, 15, 30 and 45 days after defoliation (DAD), plants were destructively sampled to measure dry mass production, nitrogen accumulation and nitrogen fixation. Seed yield and N concentration also were measured at maturity. Neither the seed yield nor its N concentration was affected by defoliation. Although defoliation temporarily reduced soybean dry weight and N accumulation during 15 DAD, defoliated plants completely recovered their dry weight and N accumulation 30 DAD. There was little difference in N concentration between defoliated and non defoliated plants, indicating that N acquisition was restored during the recovery process. Recovery of N accumulation in defoliated plant was due to complete recovery of N2-fixing ability and maybe related to improvement in N absorption after defoliation.  相似文献   

17.
Sunflower is an important oilseed crop, which shows susceptibility to heat stress. In this study, 63 single cross hybrids were evaluated under heat stress condition for 2 years and compared with the two commercial hybrids. Genotype and genotype × environment (GGE) was used to differentiate single cross hybrids on the basis of multiple traits. GGE biplot showed that several single cross hybrids had higher seed yield potential than standard check. Moreover, seed yield per plant (SYP) was related to pollen viability percentage, showing that achene yield was the product of high gametophytic fertility under heat stress. Hybrids having high seed yield potential under heat stress had lower cell membrane injury. GGE biplot for SYP and its components showed that single cross hybrids were characterized into two major groups. Group I was further characterized into two sub group. Group Ia included hybrids with high 100-SW, while group Ib had the hybrids with high number of seeds per head and head diameter. Group II had the hybrids with high kernel weight and kernel to seed ratio. The hybrids could be recommended according to their potential utilization in the seed industry.  相似文献   

18.

Background

In arid and semiarid countries, grain yield of maize is increasingly impaired by soil salinity. Beside soil amelioration, the development of salt-resistant cultivars is a possibility to enhance crop yield on salt-affected soils.

Aims

This study aimed at testing yield performance in the field of salt-resistant maize hybrids on a salt-affected soil. In addition, planting density was optimized under the saline conditions.

Methods

Four salt-resistant maize hybrids (Zea mays L. SR-05, SR-12, SR-15, and SR-16) were grown under control (EC = 2.0–2.5 dS m−1) and saline (EC = 10.0–12.0 dS m−1) field conditions and compared to the salt-sensitive maize cv. Pioneer-3906. Planting density (5, 8, or 11 plants m−2) was optimized for saline soil conditions for SR-12 and the local hybrid EV-78.

Results

Yield of Pioneer-3906 was significantly reduced under salinity because of inhibited kernel setting, whereas the SR hybrids showed no decrease in grain yield. Based on grain yield, the optimum planting density was 8 plants m−2 with no further increase with 11 plants m−2. In contrast to SR-12, for cv. EV-78 no increase of harvest index with 8 relative to 5 plants m−2 was observed.

Conclusions

Vegetative growth of Pioneer-3906 and the SR hybrids was decreased due to Phase-I effects but neither due to water deficiency nor ion toxicity. The experiment corroborated the salt resistance of the SR hybrids under field conditions. Under saline conditions, optimum planting density of salt-resistant cultivars may be higher than under nonsaline conditions when sufficient water supply by artificial irrigation is guaranteed.  相似文献   

19.
氮肥后移满足绿洲灌区全膜覆盖玉米的氮素需求   总被引:5,自引:0,他引:5  
【目的】 在水热资源有限区,地膜覆盖使得玉米对氮素的需求前移,容易造成后期脱肥。本研究在河西绿洲灌区通过田间试验,探讨氮肥后移对全膜覆盖玉米产量、氮素积累特征和氮肥利用率的影响,以期为优化地膜覆盖栽培玉米的施氮制度提供理论依据。 【方法】 试验为单因素试验,在施氮量450 kg/hm2水平下,基肥和大喇叭口期追肥分别占总施氮量的20%和40%,其余40%的氮追施时期和比例分为3个处理:N1 (拔节肥10% + 花粒肥30%),N2(拔节肥20% + 花粒肥20%),N3 (传统方式,拔节肥30% + 花粒肥10%),此外,还设定了不施氮肥空白对照。调查了玉米氮素积累动态及氮素利用状况。 【结果】 氮肥后移对玉米生育前期植株氮素的积累影响不显著,但能显著提高生育后期的氮素积累量。与N3相比,N1处理玉米植株氮素积累量在成熟期提高10.0%,籽粒吸氮量提高44.6%;氮肥后移对玉米籽粒产量和收获指数均有显著影响,N1处理籽粒产量较N3提高15.8%,收获指数提高12.2%,N2处理的籽粒产量与收获指数与N3处理差异不显著。N1处理的玉米氮素收获指数较N3处理提高31.0%,氮肥利用率 (NUE)、氮肥农学效率 (NAE) 和氮肥生理利用率 (NPE) 分别提高15.1%、79.4%和55.7%,N2处理与N3处理间则无显著差异。 【结论】 在总施氮量为450 kg/hm2的水平下,玉米拔节期追施45 kg/hm2、大喇叭口期追施180 kg/hm2、花后10 d追施135 kg/hm2氮肥,可有效提高地膜覆盖玉米的氮素供需吻合度,增加玉米生育后期氮素积累量,提高产量、氮素收获指数和氮肥利用率,是河西绿洲灌区实现玉米增产和提高氮肥利用率的一项有效措施。   相似文献   

20.
密度和留叶枝对棉株产量的空间分布和熟相的影响   总被引:14,自引:0,他引:14  
在山东临清、夏津和惠民的大田条件下研究了不同密度与整枝处理下棉花产量分布、库源比例和熟相, 探讨种植密度和留叶枝对棉株产量空间分布和熟相的影响。结果表明, 产量在棉株空间分布的总体趋势是, 去叶枝棉株的产量全部来自果枝, 留叶枝棉株的产量主要来自果枝(85%), 叶枝所占份额较低(15%); 无论去叶枝还是留叶枝, 产量主要分布在下中层(72%)和内围(74%), 上层(28%)和外围(26%)产量分布较少。密度和整枝对棉花产量空间分布有显著影响, 但两者的互作效应不显著。密度主要影响产量在棉株上的内外分布, 随密度升高, 产量向内围集中; 而整枝则主要影响产量在棉株上的垂直分布, 留叶枝使产量上下分布更加分散。整枝对棉花熟相影响不大; 但密度显著影响熟相和库源比例, 低密度下库源比例大、轻度早衰, 高密度下库源比例小、轻度晚熟, 中等密度(5.25株·m-2)下库源比例适宜, 熟相较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号