首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Physiological responses of plants to ammonium (NH4) versus nitrate (NO3) nutrition can vary considerably. A greenhouse study was conducted to examine the effect of ammonium‐nitrogen/nitrate‐nitrogen (NH4‐N/NO3‐N) ratio on dry matter partitioning and radiation use efficiency in corn (Zea mays L.). The hybrid Funks G 4673A was supplied with nutrient solutions that contained 8:1, 1:1, or 1:8 ratios of NH4‐N/NO3‐N. At each of four harvests, plants were separated into leaf blades, stem + leaf sheaths, and roots. Radiation use efficiency was calculated from these dry matter harvests and measured photosynthetically active radiation. Generally, more dry matter was partitioned to the stem than to leaf tissue when supplied with the 1:8 NH4‐N/NO3‐N ratio than when supplied with the other N treatments. Corn supplied with 8:1 and 1:1 ratios of NH4‐N/NO3‐N resulted in radiation use efficiency values for total dry matter that were significantly higher by 39 and 25%, respectively, than that of corn supplied with the 1:8 ratio indicating that Funks G 4673A was more efficient in converting radiation into dry matter when supplied with high proportions of NH4 than when supplied primarily with NO3.  相似文献   

2.
To evaluate chicory (Cichorium intybus L.) and rocket salad [Eruca vesicaria (L.) Cav.subsp. sativa (Mill.)] capability to use ammonium‐nitrogen (NH4‐N) even in the absence of nitrate‐nitrogen (NO3‐N) in the nutrient solution, and the chances they offer to reduce leaf NO3 content, cultivated rocket and two cultivars of chicory ('Frastagliata’, whose edible parts are leaves and stems, and ‘Clio’, a leaf hybrid) were hydroponically grown in a growth chamber. Three nutrient solutions with the same nitrogen (N) level (4 mM) but a different NH4‐N:NO3‐N (NH4:NO3) ratio (100:0, 50:50, and 0:100) were used. Rocket growth was inhibited by NH4 nutrition, while it reached the highest values with the NH4:NO3 ratio 50:50. Water and N‐use efficiencies increased in rocket with the increase of NO3‐N percentage in the nutrient solution. In the best conditions of N nutrition, however, rocket accumulated NO3 in leaves in a very high concentration (about 6,300 mg kg‐1 fresh mass). For all the morphological and yield features analyzed, chicory resulted to be quite unresponsive to N chemical forms, despite it took more NO3‐N than NH4‐N when N was administered in mixed form. By increasing NO3‐N percentage in the nutrient solution, NO3 leaf content increased (5,466 mg kg‐1 fresh mass with the ratio NH4:NO3 0:100). On average, both chicory cultivars accumulated 213 mg NO3 kg‐1 fresh mass with the ratio NH4:NO3 100:0 and, differently from rocket, they showed that by using NH4 produce can be obtained very low in NO3 content.  相似文献   

3.
Abstract

This study was designed to explore nitrogen (N) nutrition in bearberry plants (Arctostaphylos uva‐ursi L.) using a hydroponic culture system. Two experiments were performed in which the total N concentration (34, 52, and 73 mg L?1) and N‐NO3 ?:N‐NH4 + ratio (50/50, 60/40, and 70/30 in %) in the nutrient solution were varied and effects on nutrient uptake [N, phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] and foliar composition determined. Highest‐quality plants were yielded using a N level of 73 mg L?1 and a N‐NO3 ?:N‐NH4 + ratio of 50/50. Standard nutrient values for foliar tissue were obtained for bearberry plants growing in these hydroponic cultures for their use as preliminary norms in the diagnosis and recommendation integrated system (DRIS). In a subsequent complementary experiment, these norms were used in the DRIS procedure and applied to plants growing in solutions of varying K concentrations. It was found that the DRIS norms established in the hydroponic experiments were able to account for changes in nutrient limiting factors produced in response to the varying K concentrations in the nutrient solution. The results obtained will be useful for the nutritional diagnosis of bearberry plants.  相似文献   

4.
The influence of N form on xylem exudate and the guttation fluid concentration in cucumber plants was studied under greenhouse conditions. Plants were hydroponically grown with three NO3:NH4 ratios (100:0, 80:20, and 60:40) at a constant pH of 6.0 in the nutrient solutions. Plants supplied with 60:40 NO3:NH4 ratio displayed a significant decrease of NO3‐N, total‐N, organic‐P, and Mn concentrations in the xylem sap and an increase of H2PO4‐P, SO4‐S, Cl, B, and Zn concentrations. Potassium and Ca uptake in these plants was slightly reduced, indicating that pH control was an important factor for cationic nutrition in cucumber plants fed with NH4. The major ions present in the nutrient solutions are concentrated in the xylem sap, particularly for NO3, K, Ca, and Na. The NO3:NH4 ratio had a small effect on the ionic levels of the guttation fluid. The concentrations of all nutrients in the guttation fluid were substantially reduced, except for Cl, showing that the leaf tissues of cucumber plants remove the excess of Cl ion. Finally, in this study, secondary effects of N source on ion uptake and release were minimized by controlling nutrient solution pH.  相似文献   

5.
Higher greenhouse tomato (Lycopersicon esculentum Mill.) yield is obtained by using 25% of NH4‐N in solution compared to using NO3‐N as the sole nitrogen (N) source. However, blossom‐end rot (BER) may occur in tomato fruit when NH4‐N was present in nutrient solutions. High nutrient solution strengths improve tomato fruit quality, but can also increase BER. Two NH4‐N concentrations in solution (0 and 25%), and two nighttime solution strengths (NSS) (1X and 4X Steiner solution strength applied at 7 p.m.) were used to grow five indeterminate type greenhouse tomato cultivars: Caruso, Jumbo, Match, Max, and Trust. A significant interaction occurred between NH4‐N concentration and NSS factors: 0% NH4‐N and high NSS increased marketable yield and fruit:whole plant ratio, and reduced BER. In contrast, a concentration of 25% NH4‐N and high NSS reduced marketable yield and the fruit:whole plant ratio, and increased BER incidence. Max, Match, and Trust tomato cultivars produced high marketable yield and high dry weight of stem and leaves, but were susceptible to BER. Use of NH4‐N in solution reduced vegetative growth, and high NSS increased stem and leaf dry weight of the tomato plants. Fruit firmness was greater for the Max cultivar, and was unaffected by NH4‐N and NSS at the mature green, breaker, and red ripe fruit development stages. However, at the fully ripe stage, fruit firmness was higher with high NSS and with 25% NH4‐N.  相似文献   

6.
Nitrogen (N) by form of nutrition, ammonium (NH4+) or nitrate (NO3?), affects metabolic and physiological processes of plants. In general, a high proportion of N in NH4+ form results in poor growth. Nonetheless, a number of species exhibit optimum growth when high levels of NH4+ are provided. In the present study, lisianthus [Eustoma grandiflorum (Raf.) Shinn] was grown in rockwool cultures and irrigated with nutrient solutions containing 15 mM N with varying proportions of NH4+ and NO3?. The results showed that an increase in NH4+-N form increased plant height, number of flowers and leaves, leaf area, and shoot, stem, and leaf dry weight. The proportion of NH4+ also affected leaf concentration of phosphorus, potassium (K), calcium (Ca), and magnesium (Mg), although leaf N concentration was unaffected. Potassium leaf concentration was higher when a low proportion of NH4+ was supplemented in the nutrient solution; however, plants exhibited a decrease in leaf K concentration and a decrease in leaf Ca as the proportion of NH4+-N increased. Shoot dry weight was higher with low leaf K whereas high leaf Ca was associated with high shoot dry weight. Net photosynthesis rate was higher in plants irrigated with solutions containing 75% of total N in NH4+ form than in those irrigated with solutions of 0 or 25%. The results suggest that lisianthus can tolerate high levels of NH4+, probably associated with a higher assimilation of Ca.  相似文献   

7.
Abstract

Pansy (Viola xwittrockiana Gams.) producers often observe nutrient disorders among plants grown during warm periods (>18°C) of the growing season. These disorders typically are not seen when production temperatures are optimal (≥18°C) even though fertility regimes may remain the same. Our objectives were to assess the effects of temperature and nitrogen (N) fertility on growth and nutrition of pansy. Pansies cultivar ‘Crown White’ were grown until lateral branches had open flowers. Treatments consisted of two temperatures (12 and 22°C) and three NO3 ?:NH4 + molar % ratios (100:0, 62:38, and 25:75) with a total concentration of 100 mg N L?1. A modified Hoagland's solution was used with NO3 ?‐N supplied as Ca(NO3)2 and KNO3 and with NH4 +‐N as (NH4)2SO4. Cumulative nutrient absorption and foliar nutrient content were determined when plant lateral branches flowered. Root and shoot growth were limited when NH4 + was present in solutions at high ambient air temperature (22°C), but not at low temperature (12°C). Individual absorption and accumulation of plant nutrients varied with N regimes and temperatures. Overall, pansies absorbed more total N, NH4 +, NO3 ?, calcium (Ca), potassium (K), magnesium (Mg), phosphorus (P), zinc (Zn), and less iron (Fe) and manganese (Mn) at 12°C than at 22°C. In addition, absorption of NO3 ? by pansy was negligible if any NH4 + was present in solutions at 22°C. Results suggest that pansy growers should adjust fertility programs according to production temperatures to avoid possible nutritional disorders and maximize plant growth. If maximum growth is to be obtained in warm temperatures, the use of NH4 +‐containing fertilizers should be reduced or eliminated. However, the choice of NO3 ?:NH4 + ratio for nutrition may be less important under cool growing conditions.  相似文献   

8.
Two Ca‐efficient and 3 Ca‐inefficient tomato lines selected on the basis of dry matter production, Ca concentrations in tissues, and severity of Ca deficiency symptoms were grown in nutrient solutions containing 6 levels of total Ca ranging from 15 to 365 mg in 70 mg increments. All lines responded to increased Ca supply by increasing in dry weight and by accumulating Ca. The critical Ca concentrations in the shoots were 0.25% and 0.40% on a dry weight basis for the efficient and inefficient lines, respectively. Concentrations of Ca, K, Mg, P, and NO3 were lower in shoots and except for Mg were lower in roots of efficient plants than in the inefficient plants. For all lines as more Ca was available in the media and as Ca increased in the shoots and roots, the concentrations of the nutrients other than Ca declined. The declines in concentrations of K and Mg were not due to dilution by higher dry matter production in the efficient lines relative to the inefficient ones, although the total accumulation of Ca, P, and NO3 did not vary with Ca supplied. Antagonism among cations may account for differences in efficiency among lines of tomato.  相似文献   

9.
Abstract

Tomato plants were grown in sand culture with NH+ 4, and NO? 3, forms of N and three levels of light. Plants supplied with NH+ 4, nutrition under high light intensity had symptoms of stunting, leaf roll, wilting, interveinal chlorosis of the older leaves, and one third the dry weight of N03‐fed plants. In contrast, growth of plants receiving NH+ 4, nutrition under shade appeared normal although dry weight was reduced. NH4‐N nutrition suppressed K, Ca and Mg accumulation in tissues and increased P contents as compared to NO3‐N nutrition.  相似文献   

10.
To develop optimum nitrogen (N) fertilization practices with the least impact on environmental quality and with the greatest economic return, it is imperative that a greater understanding of crop and soil N dynamics be sought. This paper reports on research conducted with these objectives: (i) to determine the relationship between plant N and dry matter accumulation and soil N status as affected by N‐source fertilization as a function of accumulated growing degree days (GDD), and (ii) to determine if western Oregon soil conditions favor ammonium (NH4) over nitrate (NO3) nutrition during the period of grass seed crop growth. In a companion paper, plant growth and seed yield component data were discussed in relation to N‐source treatments and climatic year effects. Western Oregon field plots of Italian ryegrass (Lolium multiflorum Lam.) were fertilized with calcium nitrate, ammonium nitrate, ammonium sulfate, ammonium chloride, and urea‐dicyandiamide (DCD) to manipulate soil NH4 and NO3 ratios. Italian ryegrass accumulated the greatest portion of plant N and dry mass between tiller elongation and mid‐heading. Reduced growth and seed yield in 1991, compared to 1992, were associated with lodging and low soil pH. Higher soil NH4 levels in 1991 was most likely responsible for a greater reduction in soil pH for that year. Declines in soil pH due to elevated NH4 levels during climate years normal to western Oregon, wet and cool, may have an additive effect to other factors limiting seed yield. When cool wet soil conditions exist NH4 was the predominate mineral N‐form. Information reported here and in the companion paper is valuable to farm managers and consultants in the context of N fertilization of ryegrass grown for seed in western Oregon. It begins to establish criteria for the future development of site specific nutrient management plans and adds knowledge that will aid in improving N‐use efficiency through improving N fertilizer timing and N source use.  相似文献   

11.
Abstract

To evaluate the chance to reduce leaf NO3 content and to increase capability to use NH4‐N even in the absence of NO3‐N in the nutrient solution, plants of two Apiaceae species, fennel (Foeniculum vulgare Miller var. azoricum Mill. Thell.) and celery (Apium graveolens L. var. dulce Mill. Pers.), and of one species of Chenopodiaceae, Swiss chard (Beta vulgaris L. var. vulgaris), were hydroponically grown in a growth chamber with three different NH4‐N: NO3‐N (NH4: NO3) ratios (100: 0,50: 50, and 0: 100), but with the same total N level (4 mM) for 14 days. Swiss chard growth was inhibited by NH4 nutrition and reached the highest values with the NH4: NO3 ratio 0: 100. For all the morphological and yield features analyzed, fennel and celery resulted to be quite unresponsive to nitrogen (N) chemical form. Water use efficiency increased in Swiss chard and decreased in fennel and celery with the increase of NO3‐N percentage in the nutrient solution. The dependency of N uptake rate on shoot increment per unit root was more conspicuous for Swiss chard than fennel and celery. All species took more NO3‐N than NH4‐N when N was administered in mixed form. In the best conditions of N nutrition, Swiss chard accumulated NO3 in leaves in high concentration (3,809 mg kg"1 fresh mass). On average, fennel and celery accumulated 564 mg NO3 kg?1 fresh mass with the ratio NH4: NO3100: 0 and showed that by using NH4 produce having very low NO3 content can be obtained. By increasing NO3‐N percentage in the nutrient solution; NO3 leaf content of fennel and celery increased remarkably (7,802 mg kg?1 fresh mass with the ratio N H4: NO3 0: 100).  相似文献   

12.
Although most plants can use ammonium (NH4) or nitrate (NO3) as a source of N, the degree of effectiveness of these two N forms on tomato growth was found to be dependent on the NH4: NO3 ratio. The addition of small amounts of NH4 to NO3 solutions, up to 14 ppm, improved plant growth but did not significantly change the uptake of K, Ca, and Mg as compared to NO3 alone. However, with 28 ppm NH4‐N and above, dry weights and cation accumulations decreased in amounts of about 35 to 50% and in a 12‐day period. The decreased dry weight and cation uptake with 77: 77 ppm NH4: NO3 ratio was comparable to that obtained with a O N treatment for the same interval.  相似文献   

13.
Blueberry plants (Vaccinium ashei Reade cv. Tifblue) and Citrus natsudaidai Hayata were compared in terms of their ability to regulate the uptake of ammonium‐nitrogen (NH4‐N). Plants of both species were grown in N‐free nutrient solutions for three days and then transferred to nutrient solutions that contained various concentrations of NH4‐N. Blueberry plants showed increases in rates of uptake of NH4‐N 8 to 24 h after application of NH4‐N. At concentrations of NH4‐N above 200 (μM, uptake rates decreased to the initial value 24 h after application of NH4‐N and then increased. By contrast, seedlings of Citrus natsudaidai showed constant rates of uptake of NH4‐N during the experiment. These results indicate that blueberry plants are able to repress the uptake of NH4‐N periodically when they are exposed to high concentrations of external NH4‐N, but not seedlings of Citrus natsudaidai.  相似文献   

14.
Previous studies have indicated that under hydroponic conditions, spring wheat (Triticum aestivum) plants produce higher grain yields, more tillers, and increased dry matter when continuously supplied with mixtures of NO3 and NH4 than when supplied with only NO3. The objective of this study was to determine if mixed N needs to be available before or after flowering, or continuously, in order to elicit increases in growth and yield of wheat. During vegetative development, plants of the cultivar ‘Marshal’ were grown in one of two nutrient solutions containing either a 100/0 or 50/50 mixture of NO3 to NH4 and, after flowering, half the plants were switched to the other solution. At physiological maturity, plants were harvested, separated into leaves, stems, roots, and grain and the dry matter and N concentration of each part determined. Yield components and the number of productive tillers were also determined. Availability of mixed N at either growth stage increased grain yield over plants receiving continuous NO3, but the increase was twice as large when the mixture was present during vegetative growth. When the N mixture was available only during vegetative growth the yield increase was similar to that obtained with continuous mixed N. The yield increases obtained with mixed N were the result of enhanced tillering and the production of more total biomass. Although plants receiving a mixed N treatment accumulated more total N than those grown solely with NO3, the greatest increase occurred when mixed N was available during vegetative growth. Because availability of mixed N after flowering increased the N concentration over all NO3 and pre‐flowering mixed N plants, it appears that the additional N accumulation from mixed N needs to be coupled with tiller development in order to enhance grain yields. These results confirm that mixed N nutrition increases yield of wheat and indicate that the most critical growth stage to supply the N mixture to the plant is during vegetative growth.  相似文献   

15.
Abstract

The form of nutrient solution nitrogen (either NH4‐N or NO3‐N or mixtures of the two) provided to plants influences the severity of many crop diseases. This greenhouse study was conducted to determine how growth, grain yield, and yield components of oat (Avena sativa L.) and wheat (Triticum aestivum L.) plants given nutrient solutions containing different ratios of NO3‐N to NH4‐N would react to barley yellow dwarf virus (BYDV) infection. Fifteen‐day‐old seedlings (2nd leaf stage) were either infected with BYDV (PAV strain) or left uninfected. Nutrient solution treatments (started 19 d after germination) provided three ratios of NO3‐N to NH4‐N (100% NO3, 50:50 NH4:NO3, or 100% NH4) for a 30‐d period, after which plant height and tillers plant?1 were measured. Oat and wheat plants given NH4 had fewer tillers than plants given the other nutrient solution treatments. BYDV‐infected oat and wheat plants were shorter than uninfected plants. All pots then received NO3 nutrient solution until plant maturity, after which days to anthesis, primary tiller height, grain yield and yield components were measured. In the NH4 nutrient solution treatments, BYDV infection significantly reduced individual kernel weight in oat and primary tiller height in wheat. These same measures were not significantly affected by BYDV infection in the NO3 or NH4NO3 nutrient solution treatments. There were no other significant nutrient solution by BYDV infection interactions for any other dependent variable measured. Nutrient solution treatments had no significant effect on grain yield, but BYDV infection reduced grain yield by 45% in oat and 46% in wheat. In conclusion, nutrient solution N form interacted with BYDV infection to alter disease tolerance in oat (kernel weight) and wheat (primary tiller height), but these alterations had no effect in ameliorating grain yield loss caused by BYDV disease.  相似文献   

16.
Abstract

Nitrogen‐form effect on nutrient uptake and the subsequent concentration of nutrients in turfgrass plant tissue has not been thoroughly investigated. This study evaluated the effects of clipping regime and N‐form on the tissue concentration of macronutrients and micronutrients and macronutrient uptake in ‘Penncross’ creeping bentgrass (Agrostis palustris Huds.). Turfgrass plugs were grown under greenhouse conditions in a modified Hoagland's solution with a combination of three nutrient solutions (100% NO3 ?, 100% NH4 +, and 50:50 ratio of NH4 +:NO3 ?) and two cutting regimes (cut and uncut). Concentrations of macronutrients and micronutrients were determined for shoot, root and verdure. Nutrient uptake was determined weekly. Uncut NO3 ?‐treated plants accumulated higher concentrations of K, Ca, Mg, B and Cu in the shoot tissue; P, K, Ca, Mg, B, Cu, Mn and Zn in the root tissue; and P, Ca, Mg, B, Fe and Mn in the verdure compared to uncut NN4 +‐treated plants. Nitrate uptake was greater with uncut NO3 ?‐treated plants than was NH4 + absorption with uncut NH4 +‐treated plants. Plants grown with the uncut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with the uncut NO3 ? and 50:50 treatments adsorbed higher amounts of P, K, and Ca compared to the NH4 + treatment. The cut NO3 ?‐treated plants accumulated higher concentrations of K in the shoot tissue; P, Ca, Mg, B, Cu, Fe and Mn in the root tissue; and B in the verdure than did the cut NH4 +‐treated plants. Cut NO3 ?‐treated plants adsorbed less NO3 ? than did cut NH4 +‐treated plants adsorbed NH4 +. The cut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with NO3 ? and 50:50 treatments, under both cutting regimes, resulted in higher concentrations of most macro‐ and micronutrients and greater nutrient uptake compared to the NH4 +‐treated plants.  相似文献   

17.
’Shogoin’ turnip plants (Brassica rapa L.) were grown in sand culture under five nitrate:ammonium (NO3:NH4) ratios (N:N of 1:0, 3:1, 1:1, 1:3, 0:1). The leaves expressed symptoms of NH4 toxicity (reduced growth and curly leaves with dark‐green areas surrounding yellow spots) when NH4 was the dominant nitrogen (N) form. Increasing NO3 in the nutrient solution significantly (p<0.01) increased leaf and root fresh weight and dry weight. Leaf nutrient concentration and composition of all elements analyzed, except N and calcium (Ca), responded quadratically (p<0.01) to NO3:NH4 ratios, and the highest values were observed with the 1:0 [for molybdenum (Mo)], 3:1 ([or magnesium (Mg)], 1:1 [for boron (B), coper (Cu), iron (Fe), manganese (Mn ), and zinc (Zn)] or 1:3 [for phosphorus (P) and potassium (K)] treatments. Nitrogen and Ca leaf concentration responses were linear and highest at 0:1 and at 1:0, respectively. Cultural practices and fertilizer applications should maintain NO3 as the dominant N form in the root zone, and the continuous use of NH4‐ based or NH4‐releasing fertilizers is not recommended for the production of high yields of turnip greens.  相似文献   

18.
Chickpea plants (Cicer arietinum L cv. ILC 195) were grown for 24 days in water culture under two regimes of nitrogen nutrition (NO3 or NH4‐N) with or without Fe. For plants fed with NO3‐N, Fe stress severely depressed fresh weight accumulation and chlorotic symptoms of Fe‐deficiency developed rapidly. Little difference in growth occurred in the NH4‐fed plants, whether or not Fe was withheld, with no visual evidence of Fe‐deficiency indicating a beneficial effect of NH4 in depressing the symptoms of Fe chlorosis. Typical pH changes were measured in the nutrient solution of the control plants in relation to nitrogen supply, increasing with NO3 and decreasing with NH4‐nutrition. With both forms of nitrogen, plants acidified the nutrient solution in response to Fe‐stress. Under NH4‐nutrition, acidification was enhanced by withholding Fe. In the NO3‐fed plants the uptake of all nutrients was reduced by the stress but proportionally NO3‐ and K+ were most affected. Total anion uptake was depressed more than that of cation uptake. For the NH4‐fed plants withholding Fe resulted in an increased uptake of all ions except NH4 + which was depressed. Regardless of the form of N‐supply, when Fe was withheld from the nutrient solution the net H+ efflux calculated from the (C‐A) uptake values was closely balanced by the OH” added to the nutrient solution to compensate for the pH changes. Evidence of accumulation of organic acids in the Fe‐stressed plants was found, especially in the NO3‐fed plants, indicating a role for these internally produced anion charges in balancing cation charge in relation to the depression of NO3 uptake associated with Fe‐stress.  相似文献   

19.
Zucchini squash (Cucurbita pepo L. cv. Green Magic) plants were grown hydroponically with nitrate (NO3):ammonium (NH4) ratio of 3:1 until the onset of flowering when the plants were assigned to four NO3:NH4 ratio (1:0, 1:1, 1:3, or 3:1) treatments. Changing the original nitrogen (N) form ratio significantly affected plant growth, fruit yield, nutrient element, and water uptake. Growth of plants was better when NO3‐N (1:0) was the sole form of N than when NH4‐N was part of the N treatment. Fruit yields for plants fertilized with 1:0 or 1:3 N‐form ratio were double those of plants grown continuously with 3:1 N ratio. The largest leaf area and plant water use were obtained with 1:0 N ratio treatment Total uptake of calcium (Ca), magnesium (Mg), and potassium (K) decreased with increasing NH4‐N proportion in the nutrient solution which suggest NH4‐N was competing with these cations for uptake. The results also demonstrated that growers may increase fruit yield by using a predominantly NO3‐N source fertilizer through the vegetative growth stage and by shifting the NO3:NH4 ratio during the reproductive phase.  相似文献   

20.
Artichoke plants (Cynara scolymus L.) were grown in a growth chamber in a modified Hoagland solution for seven weeks to determine the influence of ammonium:nitrate (NH4:NO3) ratio (100:0, 70:30, 30:70 and 0:100) on growth, water use, and the uptake of nitrogen (N) and inorganic anions and cations. Typical pH changes were recorded: the nutrient solution became acidified with NH4 or NH4:NO3 nutrition; pH increased when NO3 was the only N source. Ammonium‐fed plants (100:0 ratio) were stunted, with signs of marginal leaf necrosis, progressive wilting of leaves and poor root growth. After 49 days, leaf area was 77, 998, 2,415, and 1,700 cm2 and dry weight was 1.0, 12.9, 38.0, and 26.0 g/plant, with NH4:NO3 100:0, 70:30, 30:70, and 0:100, respectively. Leaf area ratio (LAR) was lower in plants supplied solely with NO3 than in those with mixed NH4‐NO3. Increasing NO3‐N percentage in the nutrient solution increased water use efficiency (WUE): 623, 340, and 243 mL of water were necessary to produce 1 g of dry matter in 100:0, 70:30, 30:70 or 0:100 NH4:NO3 ratio, respectively. Increasing NO3 from 0 to 100% of the total N supplied in the nutrient solution, the shoot content of inorganic cations increased on an equivalent basis by 30% and organic anions (estimated by the difference between inorganic anions and inorganic cations) increased by 2.3 times. These results suggest that leaves are the most important site of NO3 assimilation in artichoke. By increasing NH4 percentage in the nutrient solution, the tissue content of inorganic anions was generally increased, except for NO3, and the same figure was observed for the percentage of reduced N. Results from this study suggest that NO3 is the N‐form preferred by artichoke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号