首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Journal of plant nutrition》2013,36(10):2205-2228
ABSTRACT

Chlorosis in crops grown on calcareous soil is mainly due to iron (Fe) deficiency and can be alleviated by leaf application of soluble Fe2+ or diluted acids. Whether chlorosis in indigenous plants forced to grow on a calcareous soil is also caused by Fe deficiency has, however, not been demonstrated. Veronica officinalis, a widespread calcifuge plant in Central and Northern Europe, was cultivated in two experiments on acid and calcareous soils. As phosphorus (P) deficiency is one of the major causes of the inability of many calcifuges to grow on calcareous soil we added phosphate to half of the soils. Leaves in pots with the unfertilized and the P-fertilized soil, respectively, were either sprayed with FeSO4 solution or left unsprayed. Total Fe, P, and manganese (Mn) in leaves and roots and N remaining in the soil after the experiment were determined. In a second experiment, no P was added. Leaves were either sprayed with FeSO4 or with H2SO4 of the same pH as the FeSO4 solution. Degree of chlorosis and Fe content in leaves were determined. Calcareous soil grown plants suffered from chlorosis, which was even more pronounced in the soils supplied with P. Newly produced leaves were green with Fe spray but leaves that were chlorotic before the onset of spraying did not totally recover. H2SO4 spray even increased chlorosis. This demonstrated that chlorosis was due to Fe deficiency. As total leaf Fe was similar on acid and calcareous soil, it was a physiological Fe deficiency, caused by leaf tissue immobilization in a form that was not metabolically “active”. Iron in the leaves was also extracted by 1,10-phenanthroline, an Fe chelator. In both experiments, significant differences between leaves from acid and calcareous soil were found in 1,10-phenanthroline extractable Fe but not in total leaf Fe, when calculated on a dry weight basis. Differences in 1,10-phenanthroline extractable Fe were more pronounced when calculated per unit dry weight than calculated per leaf area, whereas the opposite condition was valid for total leaf Fe.  相似文献   

2.
Pomegranate (Punica granatum L.) symbiosis with arbuscular mycorrhizae fungi (AMF) is a strategy in saline soils. In this study, two AMF (+AMF and –AMF), two phosphorus (P) fertilizer (+ P and –P), and three irrigation salinity (1, 4, and 8 dS m?1) treatments were studied. The highest salinity level decreased the root colonization by hyphae. Plant growth parameters including shoot dry weight, leaf surface area, and plant height were negatively affected by salinity. However, the growth parameters improved in AMF treatments. Salinity decreased the shoot P concentration and increased the shoot chlorine (Cl). The root and shoot sodium (Na) concentrations were the greatest in unfertilized and P-fertilized treatments, respectively. AMF treatment improved the root and shoot P concentration and reduced the negative effect of salinity on shoot Cl concentrations. In conclusion, the effects of AMF symbiosis on growth and tissue elements concentration depend on irrigation water salinity and P fertilization.  相似文献   

3.
Abstract

In this study, the effect of glycine amino acid was evaluated on growth characteristics and nutrient uptake of coriander plants under greenhouse conditions. The treatments were soil application of glycine in two concentrations of 300 and 600?mg kg?1 soil, foliar application of glycine (in 0.05% concentration), soil application of mix NPK fertilizer and no fertilizer control. The growth parameters of plant height, leaf SPAD value, shoot and root fresh weights were significantly improved by soil application of glycine, particularly in higher concentration. Soil application of glycine also reduced the number of flowered plants, while it increased soluble solids (TSS) and vitamin C of plant leaf extracts than control plants. Leaf nutrient concentrations of nitrogen (N), calcium (Ca), potassium (K), phosphorus (P), iron (Fe), and zinc (Zn), but not magnesium (Mg) and manganese (Mn), were significantly increased by soil application of glycine, whereas soil applied NPK significantly increased P and Ca of leaves than unfertilized control plants.  相似文献   

4.
Maize (Zea mays L.) and sorghum (Sorghum bicolor L.) Moench (local variety called Masakwat) plants were grown in a sterilized low-P soil in the greenhouse for 12 weeks. Each plant species was either mycorrhizal with vesicular-arbuscular mycorrhizal (VAM) fungi, non-mycorrhizal but minimally fertilized with soluble P, or non-mycorrhizal but highly fertilized with soluble P. Drought stress was imposed after 4 weeks at weekly intervals. Under unstressed conditions, leaf area, shoot dry weights, xylem pressure, and soil water potentials were similar for VAM and the two non-mycorrhizal P-fertilized treatments but each of the VAM-infected species had a greater total root length. Total P uptake was similar for the maize treatments but higher for VAM than non-mycorrhizal P-fertilized sorghum treatments. Under drought-stressed conditions, the growth parameters and soil water potential were similar for all maize treatments but they were reduced by mycorrhizal inoculation in sorghum. Greater water extraction occurred in drought-stressed mycorrhizal sorghum. In both plant species, total P uptake and P uptake per unit root length (including unstressed species) were significantly enhanced in non-mycorrhizal P-fertilized treatments compared with the mycorrhizal treatment. Except for the root dry weight of sorghum plants, there were no differences in the growth parameters and P uptake between minimally and highly P-fertilized non-mycorrhizal treatments for either maize or sorghum. The increased total root length in drought-stressed mycorrhizal sorghum plants and the similar infected root lengths in unstressed and drought-stressed sorghum plants may have caused high C partitioning to drought-stressed mycorrhizal roots and therefore caused the reduced growth parameters in mycorrhizal plants compared to the non-mycorrhizal P-fertilized counterparts. The results indicate that P fertilization in addition to mycorrhizal inoculation may improve the drought tolerance of maize and sorghum plants.  相似文献   

5.
ABSTRACT

High bicarbonate (HCO3 ?) of irrigation water can be detrimental to plant growth in sustainable horticultural production systems. The ability of arbuscular mycorrhizal fungi (AMF), ZAC-19, (composed of Glomus albidum, Glomus claroideum, and Glomus diaphanum) to enhance tolerance to HCO3 ? was tested on Rosa multiflora cv. Burr. Arbuscular mycorrhizal colonized and non-inoculated (non-AMF) plants were treated with 0, 2.5, 5, and 10 mM HCO3 ?. Increasing HCO3 ? concentration and associated high pH and electrical conductivity (EC)—reduced plant growth, nutrient uptake, and acid phosphatase activity, while increasing alkaline phosphatase activity (ALP). Inoculation with AMF enhanced plant tolerance to HCO3 ?, as indicated by greater growth (leaf, stem, and total plant dry weight, leaf area and leaf area ratio), leaf elemental concentration [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe), zinc (Zn), aluminum (Al), boron (B)], leaf chlorophyll concentration, higher mycorrhizal inoculation effect, lower root Fe reductase activity, and generally lower soluble ALP activity. While AMF colonization was reduced by increasing HCO3 ? concentration, colonization still occurred at high HCO3 ? concentration. At 2.5 mM HCO3 ?, AMF plant growth was comparable to plants at 0 mM HCO3 ?, further indicating the beneficial effect of AMF for alleviation of HCO3 ? plant stress.  相似文献   

6.
《Journal of plant nutrition》2013,36(10):1575-1588
The objective of this study was to examine the effect of different mode of titanium (Ti) fertilization on growth and nutrition by M.26 EMLA apple rootstock (Malus spp.) grown in three soils with diverse physical and chemical properties. Soils were taken from Warszawa, Grojec and Brzezna regions (fruit growing regions) of Poland. The experiment was carried out during 120 days in a greenhouse. The following treatments were applied: soil Ti fertilization at a rate of 2 and 4 mg Ti per plant and four- and eight-times Ti sprays at a rate of 0.5 mg Ti per plant in each spray. Titanium was applied as TiCl4. Plants unfertilized with Ti served as control. Titanium sprays increased levels of this element in leaf and stem tissues. Soil Ti applications had no effect on Ti concentrations in plant tissues except plants grown in Warszawa soil where root tissue had higher Ti status compared to those of control plants. Foliar Ti applications enhanced plant dry matter and levels of phosphorus (P), iron (Fe), manganese (Mn), and zinc (Zn) in leaf tissues only in Brzezna soil. Leaves of plants sprayed with Ti grown in Brzezna soil were greener and had higher concentrations of Fe2+ and chlorophyll than those of control plants. These results suggest that the primary reason for higher biomass in plants sprayed with Ti was higher leaf Fe2+ level, which enhanced chlorophyll synthesis and uptake of P, Fe, Mn, and Zn.  相似文献   

7.
Abstract

Tobacco (Nicotiana tabacum L., cv. ‘Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3 or 1.0 mM NH4 + as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3 or NH4 + uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4 + was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3 ‐fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4 + ‐fed plants was increased to pH 4.0, however, specific rate of NH4 + uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4 + ‐fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4 + ‐fed plants to increased root‐zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.  相似文献   

8.
A greenhouse experiment was conducted to examine whether foliarly applied potassium + phosphorus (K + P) in the form of monopotassium phosphate (KH2PO4) could mitigate the adverse effects of salt stress on sunflower plants. There were two levels of root-applied salt [0 and 150 mM of sodium chloride (NaCl)], and varying levels of KH2PO4 [(NS (no spray), WS (spray of water), 5 + 4, 10 + 8, 15 + 12, and 20 + 16 mg g?1 K + P, pH 6.5] applied foliarly to 18-day old non-stressed and salt stressed sunflower plants. Salt stress adversely affected the growth, yield, photosynthetic capacity, and accumulation of mineral nutrients in the sunflower plants. However, varying levels of foliar applied KH2PO4 proved to be effective in improving growth and yield of sunflower under salt stress. The KH2PO4 induced growth in sunflower was found to be associated with enhanced photosynthetic capacity, water use efficiency and relative water contents.  相似文献   

9.
Abstract

In this research the effect of foliar application of selenium (Se) at four levels (Na2OSe4; 0, 5, 10 and 20?mg L?1) was evaluated on some phytochemical characteristics of Sultana grapevine under different salinity levels (NaCl; 0 or 75?mM). The vines were fed twice a week with Hoagland nutrient solution and Se was foliar applied twice with 24 intervals. During growing period, plant height, leaf number and leaf area were recorded. Moreover, at the end of experiment, mature leaves from middle nods of canes were used for measurement of some phytochemical indices. According to results, Se application had a positive effect on plant height, leaf numbers, leaf area and photosynthetic pigments content especially at 5?mg L?1 and to some extent 10?mg L?1 Se levels. Under salinity stress, foliar application of Se at 5?mg L?1 considerably decreased vines leaves electrolyte leakage and lipid peroxidation values compared to non se-treated plants under salinity stress condition. Selenium had an additive effect on salinity stress (75?mM NaCl) induced accumulation of total phenol, total flavonoid, soluble sugars and proline content in leave of vines. Moreover, the interaction of salinity and Se at 5 and 10?mg L?1 improved leaves antioxidant enzymes activities in Sultana grapevine. Likewise, foliar application of Se improved leaf mineral content in 75?mM NaCl -treated vines. Totally, foliar application of selenium (Se at 5 or 10?mg L?1) increased salt tolerance through improvement in nutritional balance and by enzymatic and non-enzymatic antioxidant capacity in grapevine leaves.  相似文献   

10.
A 28-day pot (sand culture) experiment was carried to evaluate the effects of phosphorus (P) application in alleviating Cd phytotoxicity in wheat plants. Different levels of P (0, 10, and 20 kg ha?1) were applied without and with 100 µM Cd. The results showed that 100 µM Cd concentration decreased plant biomass, chlorophyll contents, gas exchange attributes, and mineral nutrients in wheat plants. Cadmium stress increased tissue Cd and H2O2 concentrations. The activities of superoxide dismutases (SOD), peroxidase (POD) enzymes, increased while the activities of catalase (CAT), ascorbic acid (AsA), α-tocopherol, and phenolics decreased under Cd stress. Phosphorus supply increased shoot biomass, leaf area, photosynthetic pigments, and mineral nutrients and decreased Cd and H2O2 concentrations in shoots. Phosphorus application improved antioxidant enzyme activities and gas exchange attributes which emerged as an important mechanism of Cd tolerance in wheat. We conclude that P application contributes to decreased Cd concentrations in wheat shoots and increased gas exchange attributes and antioxidant enzymes and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat for sustained production of this important grain crop.  相似文献   

11.
水分胁迫是潮土区玉米苗期生长的主要限制性因素,本研究采用水磷二因素完全随机设计的盆栽试验,设水分胁迫(W_1,田间持水量的70%~75%)和充分供水(W_2,田间持水量的85%~90%)2个水分处理;磷素处理设对照不施磷(P1)、施磷0.05 g·kg~(-1)土(P2)、0.10 g·kg~(-1)土(P3)、0.15 g·kg~(-1)土(P_4)和0.20 g·kg~(-1)(P5)5个处理,研究水分胁迫下施磷对玉米苗期叶片光合特性、酶活性及养分吸收的影响,为潮土区农田水分和磷素合理施用提供科学依据。研究结果表明:水分胁迫(W1)降低了玉米苗期净光合速率(Pn),W_1较W_2叶片Pn平均降低了27.96%;显著提高了玉米苗期丙二醛(MDA)含量,平均提高41.93%,水分胁迫还降低了过氧化物酶(POD)和过氧化氢酶(CAT)活性。在W1条件下施磷达到P_2水平叶片Pn即显著提高27.56%,而在W_2条件下施磷量只有达到P_4、P_5高水平时Pn才显著提高,在W_1条件下施磷对MDA的抑制效果明显弱于W_2。W_1条件下施磷量在P3水平POD和CAT活性最高,而在W_2条件下POD和CAT活性在P4达到最大值。W_1条件下适宜的施磷量(P_2至P_4)可以增加苗期玉米植株氮磷含量,但对钾含量影响较小;在W_2条件下增施磷有利于植株氮磷含量的增加,但钾素含量出现降低。综上,适宜的施磷量对潮土玉米苗期水分胁迫有一定的补偿作用,在本试验条件下,P_3处理在水分胁迫下更利于光合产物积累和玉米苗期抗逆性提高。  相似文献   

12.
ABSTRACT

Treated wastewater was compared with tap water for irrigation of croton (Codiaeum variegatum Blume cv. ‘Petra’) in substrates consisting of 1 peat moss: 1 perlite (PP) or 1 soil: 1 sand (SS), alone or supplemented with zeolitic tuff at a ratio of 3:1 (PPZ and SSZ). Substrates were allowed to reach 80% of available water before the plants were irrigated with wastewater or tap water. Results indicated that neither water quality nor substrate affected plant width, leaf area, shoot fresh weight, or root length or weight. Wastewater increased stem diameter; node and leaf number; tissue nitrogen (N); sodium (Na); and chloride (Cl); substrate electrical conductivity (EC); phosphorus (P); Na, Cl, and leachate EC; and concentrations of Na, Cl, NO3 ?, and NH4 +. Root count, tissue Na, substrate potassium (K) and Na, and leachate pH were higher for zeolite-containing substrates. Shoot dry weight and tissue contents of N and P were the highest for wastewater-irrigated PP and PPZ. Wastewater-irrigated plants in PP and tap water-irrigated plants in PPZ exhibited the highest K content. The highest level of tissue Cl was recorded for SS. Tap water-irrigated PPZ had the highest pH and K concentration. Wastewater-irrigated PP, PPZ, and SS exhibited the highest contents of N, Na, and Cl, respectively. Based on the results, amendment of the substrate with zeolitic tuff is recommended to offset the adverse effect of salinity associated with wastewater.  相似文献   

13.
ABSTRACT

A pot experiment was conducted to study the influence of four nitrogen (N) fertilizer forms [Urea; calcium nitrate, Ca(NO3)2; ammonium sulfate, (NH4)2SO4; and organic N] on growth, photosynthesis, and yield of rice under two cadmium (Cd) levels (0 and 100 mg Cd kg?1 soil). Cadmium addition significantly reduced photosynthetic rate, and the reduction varied with N fertilizer form, with ammonium (NH4 +)-N and urea treated plants having more reduction. Nitrogen form had a distinct effect on SPAD value, and the effect was also dependent on Cd level and growth stage. Cadmium-stress significantly reduced flag leaf area, but for the second leaf, only the plants supplied with organic N showed the reduction. There was a significant difference in plant height among four N forms, with NH4 +- and nitrate (NO3 ?)-treated plants having the highest and lowest height, respectively. Cadmium stress caused significant reduction in grains per panicle and total plant weight, and the reduction varied with N form, with organic N treatment showing more reduction. There were significant differences among N forms in N and Cd concentrations of the plants subjected to Cd stress, with NH4 +-N treated plants having highest N and lowest Cd concentrations and NO3 ?-treated plants having lowest N and highest Cd uptake. The results showed that the inhibition of Cd stress on growth and yield formation of rice is closely related to N fertilizer form.  相似文献   

14.
The response to phosphorus (P) concentration in the nutrient solution (0–0.5 mol P m‐3) was studied in Lupinus mutabilis Sweet cv. Potosi in two different seasons (winter and spring). Phosphorus deficiency was more severe on growth than on photosynthesis and the season of growth dramatically influenced the optimal concentration of P for plant growth; root biomass was proportionally less affected than shoot biomass. During winter, growth and photosynthesis of plants supplied with 0.02–0.5 mol P m‐3 were not significantly different, whereas in spring, rates of growth and photosynthesis were faster at the 0.5 mol P m‐3 level. Stomatal conductance decreased with deficient P independently of leaf water relations. Severe P deficiency limited carbon (C) assimilation rates due to reduction in stomatal conductance and mesophyll photosynthetic capacity. Decreased sucrose/starch in P‐deficient leaves was a consequence of the observed source/sink imbalance which was more marked in winter. Hydraulic conductance was not a limiting factor for leaf expansion under low P. In conclusion, growth and metabolic changes observed in lupins grown at low P supply can be ascribed to an adjustment at the whole plant level, preventing a large drop in leaf P, reducing shoot growth and facilitating P uptake through higher root biomass.  相似文献   

15.
This study aims to highlight the beneficial effect of the phosphorus on enhancing of growth plant, the efficiency of use rhizobial symbiosis and ionic partition in chickpea grown under salt stress. Exposure of plants to salt stress (0, 150 mM of NaCl) caused ionic imbalance, which resulted in increased Na+ and P and reduced K+ contents in the leaves and root. Indeed, stressed plants showed decrease of plant growth and phosphorus use efficiency. The efficiency use of rhizobial symbiosis was also affected by salinity. However, addition of two different level of phosphorus (37 and 55 mM) to saline soil increased significantly availability of P in plant organs. Specially, the (150 mM NaCl?×?37 mM P) mixture increased (33%) phosphorus use efficiency, induced better nodulation and increased plant biomass which results in the high efficiency in use of the rhizobial symbiosis. Our findings suggest that the combination of low level of P to saline soil presumably improved the tolerance of chickpea plant to salinity.

Abbreviations: phosphorus (P); phosphorus use efficiency (PUE); biological nitrogen fixation (BNF); plant dry weight (PDW); yeast extract mannitol (YEM); efficiency in use of the rhizobial symbiosis (EURS); shoot dry weight (SDW); symbiotic nitrogen fixation (SNF).  相似文献   

16.
Abstract

The rates of applied phosphorus required for 90% maximum yield of Desmodiim intortum cv. Greenleaf were calculated from pot experiments using 24 fertilized and unfertilized soils from the Atherton Tableland, Queensland, Australia.

Phosphorus required was highly correlated (r2 = 0.94) with the phosphorus sorbed (P sorbed) by the soils at a supernatant solution P concentration of 0.08 ppm. P sorbed was found to be a function of phosphorus buffer capacity at 0.08 ppm ("PBC") and phosphorus extractable by acid (0.005 M H2S04) or bicarbonate (0.5 M NaHCO3). PBC was highly correlated (r2 = O.84) with a phosphorus sorption index ("PSI") derived from one addition of 500 μg P g‐1 soil.

Combining PSI with acid or bicarbonate extractable P in a multiple regression equation allowed the estimation of phosphorus required with multiple correlation coefficients of R2 = 0.80 and R2 = 0.83 respectively.  相似文献   

17.
A two‐year field study was undertaken with clusterbean (Cyamopsis tetragonoloba L. Taub. cv. RGC‐936) under rainfed conditions. The experiments were set up in a split‐split‐plot design with three levels of phosphorus (0, 20, and 40 kg ha–1) and two levels of nitrogen (0 and 20 kg ha–1) with and without thiourea application (seed treatment with 500 mg kg–1 followed by two foliar sprays of 1000 mg kg–1 each at 25 and 40 d after sowing). The years varied in their pattern of precipitation and, consequently, in the available soil moisture at different growth stages. Phosphorous (P) and nitrogen (N) application either alone or in combination with thiourea resulted in significantly higher net photosynthetic rates and concentrations of chlorophyll, starch, soluble protein, and total free amino acids as well as nitrate reductase activity compared to control plants at both vegetative and flowering stages. However, the magnitude of favorable changes varied with soil moisture due to varying rainfall, and the effects of N, P, and thiourea were generally more pronounced in the vegetative stage. Seed yield, dry‐matter production, harvest index, and water‐use efficiency were significantly enhanced by the above mentioned treatments. The favorable effects of the treatments were realized through significant improvements of metabolic efficiency and maintenance of higher photosynthesis and nitrate reductase activity for more efficient N utilization. It is concluded that the improvement of P and N status of arid‐zone soils coupled with thiourea application can significantly improve the yield of clusterbean under rainfed conditions, though the potential gains may vary with soil‐moisture availability.  相似文献   

18.
Abstract

Soils under no‐tillage gradually increase in organic matter and phosphorus (P) content from the top layer. Because of lack of knowledge about the organic phosphorus fraction contribution to plant nutrition, this research was conducted to estimate the availability of phosphorus fractions to plants. Soil samples of a very clayey Rhodic Hapludox that received 0, 156 and 312 kg P ha?1 were submitted to 15 successive crops in pots without replacing P extracted by plants. 31P nuclear magnetic resonance analysis was performed to detect P fractions before cultivation and after the sixth, ninth and fifteenth crops. Inorganic phosphorus was the unique P fraction acting as P source to plants in soils with previous P addition. Contribution of organic P was observed only when inorganic P content was extremely low, with plants showing severe P stress. Contribution of organic P was not enough to supply the required P for normal plant growth.  相似文献   

19.
Abstract

Poor productivity of rice in rainfed lowlands is due to complete submergence as it is a major abiotic stress of these regions. For enhancing the rice productivity of these areas, better nutrient management options are required and results may even better when combined with stress tolerant cultivars, even when tested under natural conditions of farmers’ field. For supporting the above statement, the effect of nitrogen and phosphorus in graded doses was evaluated for submergence tolerance in controlled conditions and the results obtained were tested and validated at farmers’ field in Cuttack, Odisha, India. Shoot elongation, leaf senescence and lodging were lowest with the application of higher phosphorus (60?kg ha?1). Highest dose i.e. 100-60-40 NPK kg ha?1 resulted in higher plant survival of all the varieties by 90–170% over no nutrient application, it was also reflected in the higher growth after recovery, leaf greenness, leaf and stem growth, chlorophyll and carbohydrate concentrations and ultimately higher grain yield. At farmers’ field, application of basal P, K and post-flood N management practice resulted in overall better performance of Swarna and Swarna-Sub1 showing higher yield attributes leading to 65.7 and 37.9% higher grain yield, over conventional practices followed by farmers. Apart from that results were more positive if post-flood nitrogen was applied as urea foliar spray might be due to quick absorption of N by plant leaves and also spraying helps in removing the silt of flood water sticking to the leaf surface and facilitated the plants to photosynthesize and survive after desubmergence. These cost-effective management options may enhance the productivity and profitability of rice in the flood-prone areas where farmers hesitate to apply nutrients.  相似文献   

20.
A field experiment was conducted over two years to evaluate the gas exchange, water relations, and water use efficiency (WUE) of wheat under different water stress and nitrogen management practices at Crop Physiology Research Area, University of Agriculture, Faisalabad, Pakistan. Four irrigation regimes and four nitrogen levels, i.e., 0, 50, 100, and 150 kg N ha?1 were applied in this study. The photosynthetic gas exchange parameters [net carbon dioxide (CO2) assimilation rate, transpiration rate and stomatal conductance] are remarkably improved by water application and nitrogen (N) nutrition. Plants grown under four irrigation treatments as compared with those grown under one irrigation treatment average stomatal conductance increased from 0.15 to 0.46 μ mol m?2s?1mol during 2002–2003 and 0.18 to 0.33 μ mol m?2s?1mol during the year 2003–2004 and photosynthetic rate from 9.33 to 13.03 μmol CO2 m?2 s?1 and 3.99 to 7.75 μmol CO2 m?2 s?1 during the year 2002–2003 and 2003–2004, respectively. The exposure of plants to water and nitrogen stress lead to noticeable decrease in leaf water potential, osmotic potential and relative water content. Relative water content (RWC) of stressed plants dropped from 98 to 75% with the decrease in number of irrigation and nitrogen nutrition. The higher leaf water potential, and relative water contents were associated with higher photosynthetic rate. Water use efficiency (WUE) reduced with increasing number of irrigations and increased with increasing applied nitrogen at all irrigation levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号