首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to investigate the effect of nitrogen (N) and sulfur (S) fertilizers on yield and seed quality of three canola cultivars, a factorial based on randomized complete block experiment was conducted during 2005–2006 in Iran. Treatments included four nitrogen rates (0, 75, 150, and 225 kg N ha?1 source of urea), four sulfur rates (0, 100, 200, and 300 kg S ha?1), and three cultivars (‘Pf’, ‘Option-500’, and ‘Hyola-401’). Results indicated cultivar had a significant effect on all studied traits. ‘Option-500’ and ‘Hyola-401’ cultivars had the highest seed yield, protein content, and N:S ratio in seed. The levels of 150 and 220 kg N ha?1 resulted in the maximum protein content. Increasing N levels resulted in N content and decreased the oil content. The interaction effect between S and N levels showed the highest N content in seed was obtained with 300 kg S ha?1 and 225 kg N ha?1.  相似文献   

2.
This research was carried out to determine the effects of rate and time of nitrogen (N) application on safflower in a calcareous soil. The nitrogen rates were 50, 75, 100, 125, and 150 kg ha?1 and three split application methods were used. Experimental treatments were conducted as a factorial in a randomized complete block design (RCBD) with three replications. Duncan's Multiple Range Test (DMRT) indicated that the three split application of 100 kg ha?1 of nitrogen in stages of sowing date, early stem elongation, and early flowering had higher grain yield (2627 kg ha?1) than other treatments. This result was forecasted by results of increases in number of heads per square meter (heads m?2), number of grains per head (grains/head), and thousand grain weight (TGW). The highest oil yield was 755 kg ha?1 with the 100 kg ha?1 nitrogen application and was 727 kg ha?1 in treatment of three split application.  相似文献   

3.
A field experiment was conducted to evaluate the effect of organic amendments on grain yield, leaf chlorophyll content, and some morphological characteristics of three soybean cultivars in Mazandaran province located at north of Iran in 2006. Chemical fertilizer (75 kg ha?1 potassium sulfate and triple superphosphate), two levels of municipal solid waste, vermicompost and sewage sludge biosolid (20 and 40 Mg ha?1) enriched with%50 chemical fertilizers needed by soil were applied to soybean cultivars (‘032’ and ‘033’ promising lines and ‘JK’ cultivar). The experiment was carried out in split plot based on randomized complete block design with three replications. Some important plant characters such as grain yield, leaf chlorophyll content, number of branches, number of nodes on the main stem, length of internodes, stem diameter, first pod height and plant height were determined. Results showed that application of 40 Mg ha?1 sewage sludge enriched with chemical fertilizers increased plant grain yield and stem diameter and application of 40 Mg ha?1 vermicompost enriched with half chemical fertilizer increased the number of nodes on the main stem, significantly. The maximum length of internodes, first pod height and plant height were obtained when the 40 Mg ha?1 sewage sludge and vermicompost enriched with half chemical fertilizer in ‘032’ line was used. Biomass, number of branches, stem diameter, number of nodes on the main stem of soybean cultivars had a positive and significant correlation with grain yield.  相似文献   

4.
From 2002 to date, a long-term field experiment has been conducted at Lake Carl Blackwell, Oklahoma, with different rates and times of nitrogen (N) fertilizer application to determine their effect on grain yield, protein and N uptake of winter wheat. Trend analysis for N rates (0, 50, 100, 150 and 200 kg N ha?1) and orthogonal contrasts for different application times (pre-plant, top-dressed in February and March) were performed. With increasing fertilizer N, wheat grain yield and protein content increased from 2110 kg ha?1 to 6783 kg ha?1 and from 8.96 to 17.19%, respectively. For grain yield, protein, and N use efficiency, split applications of N fertilizer were much more efficient than applying all N pre-plant. Large differences in grain yields were noted for different years at the same N rate (range exceeded 5.0 Mg ha?1) and that illustrated the need for making within-year-specific N rate recommendations.  相似文献   

5.
ABSTRACT

Grain protein content is one of the most important quality constraints for bread wheat (Triticum aestivum L.) production in eastern Canada. A field experiment was conducted for two years (1999 and 2000) on the Central Experimental Farm, Ottawa, Canada, to study whether split application of nitrogen (N) fertilizer improved grain protein content and nitrogen-use efficiency (NUE). Two cultivars (‘Celtic,’ as N-responsive and ‘Grandin’, as N-non-responsive) were grown using three different N doses and application methods: (1) 100 kg N ha?1 as NH4NO3, soil-applied at seeding with 15N2-labeled NH4NO3 to microplots, (2) 60 kg N ha?1 soil-applied at seeding plus 40 kg N ha?1 foliar-applied at the boot stage with 15N2-labeled urea to microplots, and (3) 90 kg N ha?1 as soil-applied at seeding plus 10 kg N ha?1 foliar-applied at the boot stage with 15N2-labeled urea to microplots. Plants were sampled at heading and maturity. While dry-matter production and grain yields were not affected by the treatments in either year, N application methods influenced tissue N concentration and NUE. In 1999, extended drought stress led to significant yield reduction; in 2000, foliar application of 10 kg N ha?1 at the boot stage significantly increased grain N concentration when grain protein was under the limit for bread quality, suggesting that later-applied N can contribute to grain protein content. At maturity, the average NUE was 22.3% in 1999 and 34.5% in 2000, but was always greater when all N was applied at seeding (42.5%) than when N was foliar-applied at the boot stage (18.5% to 24.5%). We conclude that application of a small amount of fertilizer N at the boot stage can improve the bread-making quality of spring wheat by increasing grain protein concentration.  相似文献   

6.
ABSTRACT

Field experiments were conducted in the major rice growing area of Chile to evaluate the effects of nitrogen (N) fertilization and site on grain yield and some yield components, dry matter production, N uptake, and N use efficiency in rice cultivar ‘Diamante’. Two sites (indicated as sites 1 and 2) and six N rates (0, 50, 100, 150, 200, and 300 kg N ha?1) were compared. Nitrogen fertilization increased yield, panicle density, spikelet sterility, dry matter production, and N uptake at maturity. 90% of maximum yield was obtained with 200 kg N ha?1 in site 1 (12,810 kg ha?1) and with 100 kg N ha?1 in site 2 (8,000 kg ha?1). These differences were explained by lower panicle density, and the resulting lower dry matter production and N uptake in site 2. Nitrogen use efficiency for biomass and grain production, and grain yield per unit of grain N decreased with N fertilization. While, agronomic N use efficiency and N harvest index were not affected. All N use efficiency indices were significantly higher in site 1, except grain yield per unit of grain N. The observed variation in N use efficiency indices between sites would reflect site-specific differences in temperature and solar radiation, which in turn, determined yield potentials of each site. On the basis of these results, cultivar ‘Diamante’ would correspond to a high-N use efficiency genotype for grain yield.  相似文献   

7.
A three-site-year field experiment was conducted to determine nitrogen (N), phosphorus (P), and potassium (K) fertilizer effects on grain filling dynamics and yield formation of high-yielding summer corn (Zea mays L.) in a wheat (Triticum aestivum L.)-corn double crop cropping system. Application of combined NPK fertilizers resulted in the greatest grain yield, largest grain number and grain weight when compared with the treatments receiving N, NP, or NK. Grain filling rate and duration, grain volume, and grain yield increased with NPK rates; however, doubling the rate of 180 kg N ha?1, 40 kg P ha?1, and 75 kg K ha?1 fertilizer only led to minimal increases in grain filling rate (0.8%), grain filling duration (1.6%), grain volume (1.3%) and grain yield (0.4%). Our results suggested that for the high-yielding summer corn, a combined NPK fertilization is required to enhance grain filling and yield, and that under well-fertilized circumstances, limited increases in both grain filling and sink capacity might be the main factor restricting further yield improvement.  相似文献   

8.
Application of nitrogen (N) is a common practice used to achieve profitable yields in horticultural crops and N application can be used as a tool to manipulate the enhancement of phytochemicals in vegetable crops to address consumer-oriented quality production. Our previous findings recommended 90?kg?ha?1 for certain types of cauliflower varieties without compromising yields. Thus, this study was aimed to investigate the effect of N application on glucosinolates and phenolic acids, at harvest, in varieties ‘Largardo’, ‘Eskimo’ and ‘CF-744’ grown in the field. N was applied as ammonium nitrate (NH4NO3) at concentrations from 0, 60, 90, 120, 150 to 180?kg?ha?1. Variety ‘CF-744’ was more sensitive to N supply and at 180?kg?ha?1 N it showed the highest accumulation of glucosinolates (sinigrin, glucoiberin, progoitrin, 4-methoxyglucobrassicin) at harvest. However, 90?kg?ha?1 N supply demonstrated the highest accumulation of majority of the glucosinolates in varieties ‘Largardo’ and ‘Eskimo’. Different varieties responded differently to N supply and glucosinolate levels in cauliflowers. Also, different varieties responded differently to N supply and antioxidant property. In all three varieties, the N supply at 120?kg?ha?1 showed the highest accumulation of protocatechoic acid, 4-hydroxy benzoic acid, ρ-coumaric acid and caffeic acid.  相似文献   

9.
To efficiently use nitrogen (N) while protecting water quality, one must know how a second-year crop, without further N fertilization, responds in years following a manure application. In an Idaho field study of winter wheat (Triticum aestivum L.) following organically fertilized sugarbeet (Beta vulgaris L.), we determined the residual (second-year) effects of fall-applied solid dairy manure, either stockpiled or composted, on wheat yield, biomass N, protein, and grain N removal. Along with a no-N control and urea (202 kg N ha?1), first-year treatments included compost (218 and 435 kg estimated available N ha?1) and manure (140 and 280 kg available N ha?1). All materials were incorporated into a Greenleaf silt loam (Xeric Calciargid) at Parma in fall 2002 and 2003 prior to planting first-year sugarbeet. Second-year wheat grain yield was similar among urea and organic N sources that applied optimal amounts of plant-available N to the preceding year’s sugarbeet, thus revealing no measurable second-year advantage for organic over conventional N sources. Both organic amendments applied at high rates to the preceding year’s sugarbeet produced greater wheat yields (compost in 2004 and manure in 2005) than urea applied at optimal N rates. On average, second-year wheat biomass took up 49% of the inorganic N remaining in organically fertilized soil after sugarbeet harvest. Applying compost or manure at greater than optimum rates for sugarbeet may increase second-year wheat yield but increase N losses as well.

Abbreviations CNS, carbon–nitrogen–sulfur  相似文献   

10.
Best nitrogen (N) management practices are most important for increasing maize (Zea mays L.) productivity and profitability in Northwest Pakistan. Field experiments were performed at the New Developmental Research Farm of NWFP Agricultural University, Peshawar during summer 2002 and 2003. Factorial experimental treatments were two plant densities (D1 = 60,000 and D2 = 100,000 plants ha?1) and three N rates (N1 = 60, N2 = 120 and N3 = 180 kg N ha?1) as main plots, and six split N applications in different proportions at different growth stages of maize (cv. ‘Azam’) in two equal, three equal, three unequal, four equal, five equal and five unequal splits at sowing and with first, second, third, and fourth irrigation at two week intervals as subplots. Application of the higher N rate (180 kg ha?1) with 4 to 5 splits significantly increased leaf, stem, ear, and total plant dry weight at silking and physiological maturity as well as grain yield plant?1 at both low and high plant densities. Variation in dry matter partitioning and grain yield in maize due to fluctuation in the rainfall data of the two years suggests zonal specific effective N management practices for sustainable maize production in different agro-ecological zones of Northwest Pakistan.  相似文献   

11.
The effects of carbonized chicken manure (CCM) on the growth, nodulation, yield, nitrogen (N) and phosphorus (P) contents of four grain legumes (soybean, cowpea, common bean and adzuki bean) were evaluated in a greenhouse experiment. Carbonized chicken manure produced from chicken manure dried in a furnace at 450°C was used in this experiment. The manure was incorporated into the sandy loam soil of each grain legume at two rates (0 kg N ha?1 and 100 kg N ha?1) three weeks before sowing. Growth, nodulation and total biomass N and P were evaluated at peak flowering stage of growth. The CCM showed positive effects on nodule number and weight of soybean and cowpea while it depressed nodule number in adzuki bean. Biomass total N content of soybean and cowpea increased with CCM supply while it decreased in adzuki bean. Biomass and seed total P content of soybean, cowpea and adzuki bean all increased in response to CCM application. Soybean and cowpea seed yields increased by 27% and 43% respectively in response to CCM supply. There was a strong positive correlation between seed P content and seed yield of soybean which indicates the importance of elemental P to soybean seed yield. No such phenomenon was observed in adzuki bean. A strong positive correlation was also observed between seed total N content and seed yield of the grain legumes. The results indicate that although common bean had the highest biomass total P content at peak flowering stage both vegetative and reproductive growth were poor due to the unsuitably high day/night temperatures in the greenhouse. Application of CCM slightly depressed yield of adzuki bean due to the reduction in the number of pods per pot and the 100 seed weight. This study shows that CCM is a good source of N and P for the growth, nodulation and yield of some grain legumes particularly soybean and cowpea.  相似文献   

12.
The addition of zeolite (Z) to soils is increasingly being recognised as a way to enhance agricultural production and decrease fertilisation requirements and, hence, environmental costs. Meanwhile, the alternate wetting and drying irrigation (AWD) has become widely applied to reduce the water requirements of rice cultivation. However, limited information is available on their impacts on rice’s physicochemical properties. This study investigated an integrated irrigation, nitrogen (N) and Z rice production system and assessed its effects on the milling, appearance, nutrition, taste and cooking qualities of the rice grain produced. Compared with conventional flooding irrigation (CF), AWD-grown rice had slightly decreased milling and appearance qualities. Addition of Z increased rice protein content and slightly decreased eating quality without affecting milling, appearance and cooking qualities. The highest yields achieved under AWD (9.8 t ha?1) and CF (8.9 t ha?1) were achieved using 105 kg N and 10 t Z ha?1, and 105 kg N and 5 t Z ha?1, respectively. Compared with the flooding untreated control (using 157.5 kg N ha?1 and no Z), these two treatment regimens required 27.8% and 8.1% less water, 33.3% less N fertiliser and increased yields by 10.6% and 0.6%, respectively, without measurably affecting rice grain quality.  相似文献   

13.
In 2012, a greenhouse experiment was conducted to investigate the effects of field soil (C0), residual composted municipal waste (CMW), and residual composted sheep manure (SM) on the growth of triticale in pots previously growing oilseed rape in 2011. To each soil group, one of three levels of urea nitrogen (N) fertilizer was added. Results demonstrated that triticale grown in pots previously containing oilseed rape plants containing SM or CMW with 150 kg urea N ha?1 had the highest N content. Plants grown in SM with 150 kg N ha?1 had the greatest seed yield, but yield was not significantly different from plants grown in CMW receiving 150 kg N ha?1. Triticale plants enriched by either SM or CMW had a higher amount of N, copper, zinc, and manganese compared to the field soil control.  相似文献   

14.
A 2-year field experiment was conducted to evaluate the single- and combined-application effects of cattle manure and urea on corn (Zea mays L.) production. A randomized complete block design was conducted with five nitrogen (N) rates (36, 72, 108, 144, and 180 kg N ha?1) as urea, cattle manure, or both. The stover yield and aboveground biomass increased with urea application up to 144 kg N ha?1 but remained unchanged at greater N rates. At all N rates, combined application of manure and urea resulted in greater grain yields than single applications. Crop response to applied N was greater in the combined N application system than in the single-application treatments. The greatest grain yield was found in plots that had received a combination of 18 ton manure ha?1 plus 160 kg urea ha?1. Manure application along with urea enhanced crop yield response to urea and reduced its application rate.  相似文献   

15.
ABSTRACT

While pulses are staple food-legumes in Ethiopia, their productivity is low due to low soil fertility. Elite rhizobial strains that significantly increased shoot dry weight and nitrogen (N) contents of common beans and soybeans in greenhouse were selected for two-year field trials to evaluate their effect on yields of the pulses in the field. Each pulse had six treatments, namely four rhizobial inoculants, uninoculated control, and synthetic N fertilizer. In the drought-affected year 2015, inoculated pulses tolerated moisture stress better than non-inoculated controls. Inoculation was conducive to higher or equivalent yields compared to synthetic N fertilizer. At Halaba, bean inoculated with strain HAMBI3562 gave the highest grain yield (1500 ± 81 kg ha?1; mean±SE) while the control yielded only 653 ± 22 kg ha?1. At Boricha, HAMBI3570 gave a grain yield (640 ± 35 kg ha?1) comparable to synthetic N. When rainfall was optimal in 2016, inoculation with HAMBI3562 and HAMBI3570 gave grain yields (around 4300 kg ha?1) equivalent to synthetic N. With soybean, strain HAMBI3513 produced consistently higher or comparable biomass and grain yields compared to synthetic N. In conclusion, HAMBI3562 and HAMBI3570 for beans and HAMBI3513 for soybeans can serve as inoculants for areas having similar conditions as the test areas.  相似文献   

16.
Timely and fitting nitrogen (N) application decreases costs and pollution risk in maize cultivation. To explore the accumulation and remobilization of dry matter (DM), N, phosphorus (P), and potassium (K) in waxy maize under various N topdressings (0?kg ha?1, LN; 150?kg ha?1, MN; 300?kg ha?1, HN) at the jointing stage, a field trial involving two waxy maize varieties (Suyunuo 5 and Yunuo 7) was conducted in 2013–2016. The highest grain yield was obtained under MN mainly due to the highest grain numbers and grain weight. The increase in grain yield under MN was mainly due to the high DM accumulation post-silking, as well as high N, P, and K accumulation and remobilization pre-silking. Generally, the plants had high harvest index (HI) of DM (N, P, and K), partial N fertilizer productivity, and moderate N utilization efficiency (NUE) under MN.  相似文献   

17.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

18.
Nitrogen and sulfur play an important role in maize production. The aim of this study was to evaluate the effect of nitrogen (N) and sulfur (S) levels applied in various ratios on maize hybrid Babar yield at Peshawar in 2011 and 2013. Four N levels (120, 160, 200 and 240 kg N ha?1) and four S levels (20, 25, 30 and 35 kg S ha?1) were applied in three splits: a, at sowing; b, V8 stage; c, VT stage in ratios of 10:50:40, 20:50:30 and 30:50:20. Grains ear?1, thousand grain weight, grain yield ha?1 and soil pH were significantly affected by years (Y), N, S and their ratios, while no effect of N, S and their ratios was noted on ears plant?1. Maximum grains ear?1 (390), thousand grain weight (230.1 g) and grain yield (4119 kg ha?1) were recorded in 2013. N increased grains ear?1 (438), thousand grain weight (252 g) and grain yield (5001 kg ha?1) up to 200 kg N ha?1. Each increment of S increased grains ear?1 and other parameters up to 35 kg S ha?1, producing maximum grains ear?1 (430), thousand grain weight (245 g) and grain yield (4752 kg ha?1), while soil pH decreased from 8.06 to 7.95 with the application of 35 kg S ha?1. In the case of N and S ratios, more grains ear?1 (432), heavier thousand grains (246.7 g) and higher grain yield (4806 kg ha?1) were observed at 30:50:20 where 30% of N and S were applied at sowing, 50% at V8 and 20% at VT stage. It is concluded that 200 kg N ha?1 and 35 kg S ha?1 applied in the ratio of 30% at sowing, 50% at V8 and 20% at VT stage is recommended for obtaining a higher yield of maize hybrid Babar.  相似文献   

19.
It is important to develop integrated fertilization strategies for various crops that enhance the competitive ability of the crop, maximize crop production and reduce the risk of nonpoint source pollution from fertilizers. In order to study the effects of mineral nitrogen fertilization and biofertilizer inoculation on yield and some physiological traits of rapeseed (Brassica napus L.) under different levels of sulfur fertilizer, field experiments in factorial scheme based on randomized complete block design were conducted with three replications in 2012 and 2013. Experimental factors were: (1) four levels of chemical nitrogen fertilizer (0, 100, 150 and 200 kg N ha?1), (2) two levels of biofertilizer (with and without inoculation) consisting Azotobacter sp. and Azospirillum sp. and (3) two levels of sulfur application (0 and 50 kg S ha?1). Rapeseed yield, oil content of grains and studied physiological traits had a strong association with the N fertilization, biofertilizer inoculation and sulfur (S) application. Higher rates of N fertilization, biofertilizer inoculation and S application increased the grain yield of rapeseed. In the case of physiological traits, the highest value of relative water content (RWC) was recorded in 100 kg N ha?1 that was statistically in par with 150 kg N ha?1 application, while usage of 150 kg N ha?1 showed the maximum cell membrane stability (CMS). Inoculation with biofertilizer and S fertilization resulted in higher RWC and CMS in rapeseed plants. The chlorophyll content showed its maximum values in the highest level of N fertilization, biofertilizer inoculation and S application. The usage of 200 kg N ha?1 significantly decreased the oil content of rapeseed grains, but the highest grain oil content was obtained from the application of 150 kg N ha?1, Azotobacter sp. and Azospirillum sp. inoculation and S fertilization. It seems that moderate N rate (about 150 kg N ha?1) and S application (about 50 kg S ha?1) can prove to be beneficial in improving growth, development and total yield of inoculated rapeseed plants.  相似文献   

20.
Balanced plant nutrition is essential to achieve high yields of canola (Brassica napus L.) and get the best economic return from applied fertilizers. A field study was conducted at nine site‐years across eastern Canada to investigate the effects of nitrogen (N), sulfur (S) and boron (B) fertilization on canola nutrient uptake, nutrient balance, and their relationship to canola yields. The factorial experiment consisted of four N rates of 0 (N0), 50 (N50), 100 (N100), and 150 (N150) kg ha?1, two S rates of 0 (S0) and 20 (S20) kg ha?1, and three B treatments of 0 (B0), 2 kg ha?1 at preplant (B2.0P), and 0.5 kg B ha?1 foliar‐applied at early flowering stage (B0.5F). Each site‐year used the same experimental design and assigned treatments in a randomized complete block design with four replications. Fertilizer S application greatly improved seed yields at six out of nine site‐years, and the highest N use efficiency was in the N150+S20 treatment. Sulfur application generally increased seed S concentration, seed S removal, and plant total S uptake, while B fertilization mainly elevated straw B concentration and content, with minimal effect on seed yields. At the early flowering stage, plant tissue S ranged from 2.2 to 6.6 mg S g?1, but the N : S ratio was over or close to the critical value of 12 in the N150+S0 combination at five site‐years. On average across nine site‐years, canola reached a plateau yield of 3580 kg ha?1 when plants contained 197 kg N ha?1, 33 kg S ha?1 and 200 g B ha?1, with a seed B content of 60 g B ha?1. The critical N, S, and B values identified in this work and their potential for a posteriori nutrient diagnosis of canola should be useful to validate fertilizer requirements for canola production in eastern Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号