首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sour orange (Citrus aurantium L.) seedlings were grown for 3 months in diethylenetriamine pentaacetate (DTPA)‐buffered nutrient solutions to study the effect of Zn stress on the plants’ sensitivity to high boron concentration in the root environment. There were three zinc treatments: 21 μM Zn (LOW Zn‐DTPA), 69 μM Zn (NORMAL Zn‐DTPA) in the nutrient solution, or 12 weekly foliar sprays with ZnSO4 (FOLIAR‐Zn). In the FOLIAR‐Zn treatment, the nutrient solution contained 21 μM Zn. Zn activities calculated with a chemical equilibrium model, Geochem PC, and expressed as pZn=‐log(Zn+2), were 10.2 and 9.7 in the LOW Zn‐DTPA and NORMAL Zn‐DTPA nutrient solutions, respectively. One half of the plants in each Zn treatment were grown in 51 μM B (NORMAL‐B) and the other half in 200 μM B (HIGH‐B) nutrient solution. Seedlings grown in LOW Zn‐DTPA/NORMAL‐B nutrient solution developed Zn deficiency symptoms such as: reduced shoot growth, small and chlorotic leaves, and white roots with visibly shorter and thicker laterals than in Zn sufficient plants. The HIGH‐B treatment decreased shoot growth, leaf and stem dry weight, leaf area, and induced severe leaf B toxicity on seedlings grown in the LOW Zn‐DTPA nutrient solution but the effect was either absent or less pronounced in the NORMAL Zn‐DTPA or FOLIAR‐Zn treatments. Seedlings in the LOW Zn‐DTPA FOLIAR‐Zn treatments but they had lower B concentration on a whole plant basis indicating less B uptake per unit of dry weight. The FOLIAR‐Zn and NORMAL Zn‐DTPA treatments were equally effective in alleviating leaf B toxicity symptoms. The FOLIAR‐Zn treatment, however, was less effective than the NORMAL Zn‐DTPA treatment in alleviating the deleterious effect of high B on leaf dry weight even though the B concentrations in leaves, stems, and roots of the foliar‐sprayed seedlings were similar to the NORMAL Zn‐DTPA seedlings. Leaf concentrations of phosphorus, potassium, magnesium, iron, mangenese, and copper were within the optimal range for citrus with the exception of Ca which was low. Although B and particularly Zn treatments modified the concentration of some of these elements in leaves and roots, these changes were too small to explain the observed growth responses. The observation that B toxicity symptoms in Zn‐deficient citrus could be mitigated with Zn applications is of potential practical importance as B toxicity and Zn deficiency are simultaneously encountered in some soils of semiarid zones.  相似文献   

2.
Abstract

A hydroponic experiment was conducted in a phytotron at pH 5.5 to study the effects of nickel (Ni) on the growth and composition of metal micronutrients, such as copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), of barley (Hordeum vulgare L. cv. Minorimugi). Four Ni treatments were conducted (0, 1.0, 10, and 100 μM) for 14 d. Plants grown in 100 μM Ni showed typical visual symptoms of Ni toxicity such as chlorosis, necrosis of leaves, and browning of the root system, while other plants were free from any symptoms. Dry weights were the highest in plants grown in 1.0 μM Ni, with a corresponding increase in the chlorophyll index of the plants, suggesting that 1.0~10 μM Ni needs to be added to the nutrient solution for optimum growth of barley plants. The increase of Ni in the nutrient solutions increased the concentrations of Cu and Fe in roots, while a decrease was observed in shoots. The concentrations of Mn and Zn in shoots and roots of plants decreased with increasing Ni supply in the nutrient solution. Shoot concentrations of Cu, Fe, Mn, and Zn in plants grown at 100 μ M Ni were below the critical levels for deficiency. Plants grown at 1.0 μ M Ni accumulated higher amounts of Cu, Fe, Mn and Zn, indicating that nutrient accumulation in plants was more influenced by dry weights than by nutrient concentrations. The translocation of Cu and Fe from roots to shoots was repressed, while that of Mn and Zn was not repressed with increasing Ni concentration in the nutrient solution.  相似文献   

3.
Associations between vesicular‐arbuscular mycorrhizal (VAM) fungi and manganese (Mn) nutrition/toxicity are not clear. This study was conducted to determine the effects of excess levels of Mn on mineral nutrient uptake in shoots and roots of mycorrhizal (+VAM) and non‐mycorrhizal (‐VAM) sorghum [Sorghum bicolor (L) Moench, cv. NB9040]. Plants colonized with and without two VAM isolates [Glomus intraradices UT143–2 (UT1 43) and Gl. etunicatum UT316A‐2 (UT316)] were grown in sand irrigated with nutrient solution at pH 4.8 containing 0, 270, 540, and 1080 μM of added Mn (as manganese chloride) above the basal solution (18 μM). Shoot and root dry matter followed the sequence of UT316 > UT143 > ‐VAM, and shoots had greater differences than roots. Shoot and root concentrations and contents of Mn, phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and copper (Cu were determined. The +VAM plants generally had higher mineral nutrient concentrations and contents than ‐VAM plants, although ‐VAM plants had higher concentrations and contents of some minerals than +VAM plants at some Mn levels. Plants colonized with UT143 had higher concentrations of shoot P, Ca, Zn, and Cu and higher root Mg, Zn, and Cu than UT316 colonized plants, while UT316 colonized plants had higher shoot and root K concentrations than UT143 colonized plants. These results showed that VAM isolates differ in enhancement of mineral nutrient uptake by sorghum.  相似文献   

4.
Seedlings of sugar beet (Beta vulgaris) were grown in nutrient solutions containing a range of Cu and Zn concentrations. Based on measurements of shoot and root length and dry weight, copper was found to be already toxic at 10 μM, while Zn became toxic at 100 μM. At Cu and Zn levels found to induce a similar level of growth inhibiton, the influence of increasing the supply of K, Ca and Mg was investigated. Increasing the concentration of both Ca and Mg in the nutrient solution attenuated the degree of inhibition of root growth by Zn, but not Cu. Potassium did not affect the toxicity of either Cu or Zn. An increase in Ca decreased the level of both Cu and Zn in roots. Magnesium ameliorated the toxicity effects of Zn without effecting the Zn concentration in the roots. Treatment with Zn significantly decreased the concentration of Mg in the roots. An increased supply of Mg lowered the percentage decrease in root Mg concentration due to Zn toxicity. The maintenance of an adequate Mg level in the roots may be critical to prevent Zn induced inhibition of root growth.  相似文献   

5.
The objective of this study was to determine relations between Al effects and mineral concentrations in citrus seedlings. Six‐month‐old seedlings of five citrus rootstocks were grown for 60 days in supernatant nutrient solutions of Al, P, and other nutrients. The solutions contained seven levels of Al ranging from 4 to 1655 μM. Al and similar P concentrations of 28 μM P. Aluminum concentrations in roots and shoots increased with increasing Al concentration in the nutrient solution. Aluminum concentrations in roots of Al‐tolerant rootstocks were higher than those of Al‐sensitive rootstocks. When Al concentrations in nutrient solution increased from 4 to 178 μM, the K, Mg, and P concentrations in roots and the K and P levels in shoots increased. Conversely, Ca, Zn, Cu, Mn, and Fe in the roots and Ca, Mg, Cu, and Fe in the shoots decreased. The more tolerant rootstocks contained higher Fe concentrations in their roots than did the less tolerant ones when Al concentrations in solution were lower than 308 μM. Concentrations of other elements (Ca, K, P, Mg, Zn, and Mn) in roots or shoots exhibited no apparent relationship to the Al tolerance for root or shoot growth of the rootstocks. Calcium, K, Zn, Mn, and Fe concentrations in roots and Mg and K concentrations in shoots of all five rootstocks seedlings had significant negative correlations with Al concentrations in corresponding roots or shoots.  相似文献   

6.
The growth responses of buffalograss [Buchloe dactyloides (Nutt.) Engelm.] to elevated micronutrient levels in the fertilizer solution were investigated. Seedling plants established in peat‐lite mix in 11‐cm (0.6 L) pots in the greenhouse were irrigated with solutions containing 0.5, 1, 2, 4, 6, 8, or 12 mM of boron (B), chlorine (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), or zinc (Zn). The control solution contained (in μM): 20 B, 0.5 Cu, 40 Fe, 10 Mn, 0.5 Mo, and 4 Zn. A standard macronutrient concentration was used for all treatment solutions. Boron and Mo induced visual toxicity symptoms more readily than other micronutrients. Boron toxicity was characterized by chlorosis often accompanied by bleached leaf tips, while Mo toxicity resulted in leaf necrosis. The lowest levels that induced visual foliar toxicity were 0.5 mM B, 2 mM Cu, 4 mM Fe, 6 mM Mn, 1 mM Mo, and 4 mM Zn. Chloride did not induce foliar abnormalities in the concentration range tested. Biomass yield was reduced when the nutrient solution contained 2 mM B, 6 mM Cu, or 2 mM Mo. Elevated levels of Cl, Fe, Mn, and Zn did not alter dry matter yield. The relationship between the nutrient and tissue concentrations was determined for each microelement.  相似文献   

7.
Primary determinants of crop production in arid/semiarid regions are lack of moisture and infertility, especially phosphorus (P) deficiency or unavailability. The effects of P and water stress (WS) levels on shoot and root dry matter (DM), leaf area, root volume, total root length, and shoot and root P concentrations and contents were determined in two bean [Phaseolus acutifolius Gray, cv ‘Tepary #21’ ("drought‐resistant") and P. vulgaris L., cv “Emerson’ ("drought‐sensitive")] and two sorghum [Sorghum bicolor (L.) Moench, cv SA7078 ("drought‐resistant") and ‘Redlan’ ("drought‐sensitive")] cultivars grown in nutrient solution. Plants were grown with different levels of P (20 and 100 μM for bean and 20, 80, and 160 μM for sorghum) when seedlings were transferred to nutrient solution, and WS levels of 0, 13.8, and 1 6.4% polyethylene glycol (PEG‐8000) introduced after plants had grown in solution 23 days (bean) and 31 days (sorghum). All growth traits were lower when bean and sorghum plants were grown with WS and low P. Growth traits were higher in cultivars grown with high compared to low P regardless of WS. Root P concentration and content and shoot content, but not shoot P concentration, were lower when bean plants were grown with WS compared to without WS. Tepary #21 bean had higher shoot DM, leaf area, total root length, and shoot P concentration than Emerson when plants were grown with WS at each level of P. Sorghum shoot and root P concentrations were higher as P level increased regardless of WS, and WS had little effect on shoot P concentration, but root P concentration was higher. Contents of P were similar for SA7078 and Redlan regardless of P or WS treatment, but SA7078 had greater P contents than Redlan over all P and WS treatments. “Drought‐resistant”; cultivars generally had better growth traits, especially total and specific root lengths, than “drought‐sensitive”; cultivars.  相似文献   

8.
Application of most waste or by‐product material increases the zinc (Zn) concentration in soils markedly. This investigation was conducted to determine if enhanced sulfur (S) supplied as sulfate (SO4) would modify the toxic effects of excess Zn. Soybean (Glycine max [L.] Merf. cv. Rarisorri) was grown for two weeks in nutrient solutions containing ranges in Zn (0.8 to 80 μM) and S (0.02 to 20 mM). Root and shoot conditions were observed, dry weights measured, and Zri concentration determined. Zinc‐toxicity symptoms started about one week after transplanting young plants to nutrient solutions. Symptoms including chlorosis, especially in the trifoliate leaves, and change in orientation of unifoliate leaves were mild in 20 μM‐, intermediate in 40 μM‐, and severe in 80 μM Zn‐containing solutions. Dry weight was reduced in plants exposed to 20, 40, and 80 μM Zn. Plants grown in 40 μM Zn and 20 mM S survived longer than those grown in lower S concentrations and showed alleviation of the chlorosis in trifoliate leaves. The change in the orientation of the unifoliate leaves due to Zn toxicity, however, was not affected by S. Zinc contents in shoots grown at toxic Zn levels were higher in 20 mM‐ than in lower S‐containing nutrient solutions. High S supply (20 mM) increased Zn translocation from roots to shoots. Besides increasing the Zn translocation from roots to shoots, it seems that S nutrition may also be a factor helping the plants to cope with high levels of Zn in their tissues.  相似文献   

9.
Aluminum (Al) toxicity was studied in two tomato cultivars (Lycopersicon esculentum Mill. ‘Mountain Pride’ and Floramerica') grown in diluted nutrient solution (pH 4.0) at 0, 10, 25, and 50 μM Al levels. In the presence of 25 and 50 μM Al, significant reduction was found in leaf area, dry weight, stem length, and longest root length of both cultivars. Growth of ‘Floramerica’ was less sensitive to Al toxicity than growth of ‘Mountain Pride’. Elemental composition of the nutrient solutions were compared immediately after the first Al addition and four days later. The uptake of micronutrients copper (Cu), manganese (Mn), molybdenum (Mo), zinc (Zn), boron (B), and iron (Fe) from the nutrient solution was reduced in both cultivars with increasing Al levels. Nutrient solution Al gradually decreased in time for every treatment; less in cultures of ‘Floramerica’ than in ‘Mountain Pride’. Aluminum treatments decreased the calcium (Ca), potassium (K), magnesium (Mg), Mn, Fe, and Zn content in the roots, stems, and leaves. Aluminum treatment promoted the accumulation of P, Mo, and Cu in the roots, and inhibited the transport of these nutrients into stems and leaves. At 25 and 50 μM levels of Al, lower Al content was found in the roots of cv. “Floramerica’ than in the roots of cv. ‘Mountain Pride’.  相似文献   

10.
Solution cultures were conducted to investigate the effects of cadmium (Cd) toxicity on the growth of mung bean (Phaseolus aures Roxb. cv VC‐3762), autoxidation rate of tissue and accumulation of proline. Results showed that leaf proline concentrations increased significantly in response to increasing Cd concentrations from 0 to 20 umol L‐1 Cd in the solution. Compared to the control, Cd treatments increased lipid peroxidation (malondialdehyde concentration) and autoxidation rate of leaves and roots. In all treatments, leaves of mung bean had greater proline concentration and had lower the autoxidation rate of tissue than the roots. There was a close positive relationship between accumulation of free proline and the rate of tissue autoxidation.  相似文献   

11.
The effect of copper (Cu) excess (1.5, 4.7, 31, 78, 156 μM) and exogenously supplied succinate on plant growth, chlorophyll content, chlorophyll fluorescence, and isoenzym profiles of some antioxidant enzymes in maize plants was studied. Excessive Cu supply led to a reduction in the relative growth rate (RGR), tolerance index (TI), chlorophyll a and chlorophyll b contents, and the quantum yield of PSII electron transport in the light‐adapted state (ΦPSII). Copper treatment induced several changes in the anionic and cationic peroxidases (PODs), as well as superoxide dismutase (SOD) isoenzyme profiles. After 8 d of 78 μM–Cu treatment, two new anionic and two new cationic peroxidase isoenzymes in the roots were registered. Copper applied at concentrations above 31 μM resulted in higher levels of manganese superoxide dismutase (Mn‐SOD) in the roots and Cu,Zn‐superoxide dismutase (Cu,Zn‐SOD) in the leaves. However, the addition of Na‐succinate (200 μM) to the root medium prior to Cu treatment increased the capacity of the plants to partially overcome Cu toxicity.  相似文献   

12.
Polyamines play a variety of physiological roles in plant growth and development. To investigate whether exogenous putrescine (Put) has roles in protecting plants against salt stress, Put (100 μ M) was added to nutrient solution three days before cucumber (Cucumis sativusL. cv. “Jinyan No.4') seedlings were exposed to 100 mM sodium chloride (NaCl) treatment. Putrescine treatment significantly ameliorated the detrimental effects of NaCl on root growth and this was associated with a decrease of Na uptake and an increase in potassium accumulation in roots. Manganese (Mn) content in roots was decreased by salinity stress but increased by Put pretreatment. Furthermore, osmotic stress associated with NaCl treatment decreased leaf water potential and water content, while these effects were alleviated by Put pretreatment. The decreases in net photosynthetic rate (Pn) and stomatal conductance (Gs) by NaCl were also diminished by Put treatment. The results indicate that Put may play an important role in protecting cucumber plants against salt stress.  相似文献   

13.
A standard and a high manganese (Mn) level (10 and 160 μM) were combined with a standard and a high zinc (Zn) level (4 and 64 μM) in the nutrient solution supplied to cucumber in closed‐cycle hydroponic units to compensate for nutrient uptake. The concentrations of all nutrients except Mn and Zn were identical in all treatments. The objectives of the experiment were to establish critical Zn and Mn levels in both nutrient solutions and leaves of cucumber grown hydroponically, to assess the impact of gradual Zn and/or Mn accumulation in the external solution on nutrient uptake and gas exchange, and to find whether Mn and Zn have additive effects when the levels of both ions are excessively high in the root zone. The first symptoms of Mn and Zn toxicity appeared when the concentrations of Mn and Zn in the leaves of cucumber reached 900 and 450 mg kg–1 in the dry weight, respectively. Excessively high Mn or/and Zn concentrations in the leaves reduced the fruit biomass production due to decreases in the number of fruits per plant, as well as the net assimilation rate, stomatal conductance, and transpiration rate, but increased the intercellular CO2 levels. Initially, the Mn or Zn concentrations in the recirculating nutrient solution increased rapidly but gradually stabilized to maximal levels, while the corresponding concentrations in the leaves constantly increased until the end of the experiment. The uptake of Mg, Ca, Fe, and Cu was negatively affected, while that of K and P remained unaffected by the external Mn and Zn levels. The combination of high Mn and Zn seems to have no additive effects on the parameters investigated.  相似文献   

14.
Bush bean plants (Phaseolus vulgaris L. cv Contender) were grown for twenty days in nutrient solution (pH=5), containing 0.13, 0.3, 0.5 or 0.75 mg 1‐1 Zn as ZnSO4‐7H2O. The plant yield decreased linearly with the increase of the Zn concentration supplied. The phytotoxic threshold content (for 10% growth reduction) was about 486, 242, 95 and 134 μg Zn g‐1 for roots, steins, mature primary and trifoliate leaves, and developing leaves, respectively. High inverse correlation coefficients with the Zh concentration supplied were found for the Mn content of all organs, for the P content of roots, and for the Cu and Ca contents of developing leaves. Significant positive relations were found for the Fe, Zn and Cu contents in roots and for the Zn con‐ tents in stems and fully expanded leaves. The ratios of the mineral contents between organs suggest inhibition of uptake of Mn and P, and inhibition of translocation of Fe, Cu and Ca. The relation between dry weight decrease and Zn‐induced nutrient content disorders were discussed.  相似文献   

15.
本研究以龙葵为试验材料,采用水培方法分析了补充Fe对龙葵幼苗Zn毒害耐受性的影响。结果表明,补充200μmol.L 1Fe-EDTA提高了龙葵幼苗对Zn毒害的耐受性。400μmol.L 1ZnCl2处理导致龙葵幼苗株高、根长和叶绿素含量显著减少,并引起H2O2的积累。补充Fe后,植株生长状况得到明显改善,SOD、CAT和APX基因的表达和酶的活性显著提高。同时RT-PCR结果显示,补充Fe后,FeSOD2和CAT1基因的表达明显升高。这些结果表明,Zn毒害对龙葵幼苗生长发育的影响很大程度上可能是由于Zn毒害引起的缺Fe导致的;Zn毒害条件下补充Fe可以通过提高FeSOD2和CAT1基因的表达,提高抗氧化酶的活性,降低ROS的水平,降低植株的氧化伤害。本研究为进一步研究植物响应Zn毒害的生理分子机理,以及植物修复技术的实际应用提供了理论基础。  相似文献   

16.
For better understanding of mechanisms responsible for differences in uptake and distribution of cadmium (Cd) and nickel (Ni) in different plant species, nutrient solution experiments were conducted with four plant species [bean (Phaseolus vulgaris L.), rice (Oryza saliva L.), curly kale (Brassica oleracea L.) and maize (Zea mays L.)]. The plants were grown in a complete nutrient solution with additional 0.125 and 0.50 μM Cd or 0.50 and 1.00 μM Ni. Large differences in Cd and Ni concentrations in shoot dry matter were found between plant species. Maize had the highest Cd concentration in the shoots, and bean the lowest. Contrary to Cd, the Ni concentrations were highest in the shoots of bean and the lowest in maize. A gradient of Cd concentrations occurred in bean and rice plants with the order roots > > stalk base >> shoots (stems/sheaths > leaves). A similar gradient of Ni concentrations was also found in maize and rice plants. In the xylem sap, the Cd and Ni concentrations were positively correlated with Cd and Ni concentrations in the shoot dry matter. In the roots of maize, about 60% of Cd could be extracted with Tris‐HCl buffer (pH 8.0), while in roots of other plant species this proportion was much lower. This higher extractability of Cd in the roots of maize is in accordance with the higher mobility as indicated by the higher translocation of Cd from roots to shoots and also the higher Cd concentrations in the xylem sap in maize than in the other plant species. Similarly, a higher proportion of Ni in the soluble fraction was found in the roots of bean compared with maize which is in agreement with the higher Ni accumulation in the shoots of bean. The results of gel‐filtration of the soluble extracts of the roots indicated that phytochelatins (PCs) were induced in the roots upon Cd but not Ni exposure. The higher Cd concentrations and proportions of Cd bound to PC complexes in the roots of maize compared with the other plant species suggest that PCs may be involved in the Cd trans‐location from roots to shoots.  相似文献   

17.
Birch seedlings (Betula pendula) were cultivated in nutrient solution with 0–2 μM cadmium (Cd). The effects of 2–10 days of Cd exposure on root and shoot element composition [potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), sulfur (S), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), molybdenum (Mo), and Cd] and growth (as percentage dry weight increase) were investigated. The element composition of fine roots and remaining root parts were analysed separately to elucidate the significance of the fine roots as a primary target for Cd toxicity. The nutrient composition of the roots was considerably altered by the Cd exposures, whereas the nutrient composition of the shoot was less affected. After eight days, the whole root (fine roots + remaining roots) concentrations of K, Ca, Mg, and Mn were reduced, whereas the opposite was found for Cu and Mo. The element distribution between fine roots and remaining roots was altered by the Cd exposures. Cadmium was accumulated in the roots and in fine roots especially. Fine roots also exhibited a capacity for Cu accumulation and a retainment of Ca and S. Total plant growth was stimulated by 0.05 μM Cd but was reduced by the 0.5–2 μM Cd treatments. Root growth was increased by the Cd exposures and growth reductions were restricted only to the shoot. Accumulation of Cd and Cu and a retainment of Ca and S in the fine roots together with a preference for root growth, imply that the explanation for the Cd effects obtained may include mechanisms for Cd tolerance.  相似文献   

18.
The influence of elevated levels of micronutrients on the growth and flowering of French marigold (Tagetes patula L.) was investigated. Plants were grown with nutrient solution containing 0.25, 0.5, 1, 2, 3, 4, 5, or 6 mM boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), or zinc (Zn) and toxicity development was monitored. The threshold micronutrient concentrations that induced visible foliar toxicity symptoms were 0.5 mM B, 4 mM Cu, 4 mM Fe, 2 mM Mn, 1 mM Mo, and 5 mM Zn. The dry matter yields during the 5 week experimental period were reduced when micronutrient concentrations exceeded 0.5 mM B, 3 mM Cu, 3 mM Fe, 6 mM Mn, 0.5 mM Mo, and 5 mM Zn in the fertilizer solution. Leaf chlorophyll contents decreased when the nutrient solution concentrations of Cu, Fe, and Mn were greater than 0.5 mM, 3 mM, and 2 mM, respectively. Visual toxicity symptoms of the six micronutrients were characterized.  相似文献   

19.
Direct use of poultry manure on agricultural lands may cause environmental concerns, so there is a need to establish the suitability of the application of biochar derived from poultry manure for calcareous soil chemical properties and plant growth. The purpose of this study was to evaluate the effects of processed poultry manure (0, 5, 10 and 20 g/kg) and its biochar (0, 2.5, 5, 10 and 20 g/kg) on soil chemical properties of a calcareous soil and growth of bean (Phaseolus vulgaris) and maize (Zea mays) plants. In the incubation experiment, both processed poultry manure (PPM) and biochar decreased pH and the concentration of plant‐available Fe of soil but increased plant‐available P, Zn, Cu and Mn concentrations. PPM and biochar increased the concentrations of exchangeable cations (K, Ca and Mg) in soil. PPM and biochar applications increased the growth of maize and bean plants. PPM and biochar resulted in increased concentrations of N, P, K, Ca, Fe, Zn, Cu and Mn in bean plants. In maize plants, PPM and biochar applications increased the N, P, K, Zn, Cu and Mn but decreased the Ca and Mg concentrations. Results of this study reveal that poultry manure biochar can be used effectively for agricultural purposes.  相似文献   

20.
The effects of manganese (Mn) on the growth and Mn-induced changes in nutrients uptake and translocation in Mn hyperaccumulator Phytolacca acinosa was investigated in this study. Results showed that high Mn (5000 μ M) in culture solution lead to typical Mn toxicity symptoms in leaves of P. acinosa and decrease of dry matter accumulation in shoots whereas there are no obvious toxicity symptoms and significant decrease of dry weight in roots. Manganese accumulation in roots, stems, and leaves increased with the increment of Mn concentration at the medium level. Calcium (Ca), magnesium (Mg), and iron (Fe) concentration in organs of P. acinosa decreased as the Mn concentration in the nutrient solution increased, but the Ca and Mg concentrations were still at a normal level and the Fe concentration at a sufficient level when compared with the normal plants. The Zn concentration affected by higher Mn level occurred only in roots of P. acinosa and the P concentration affected only in stems, whereas there were no significant influences of excess Mn on the potassium (K) and copper (Cu) concentration in organs of P. acinosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号