首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The impact of phosphorus (P) deficiency on response of symbiotic N2 fixation and carbohydrate accumulation in soybean (Glycine max [L.] Merr.) to atmospheric CO2 enrichment was examined. Plants inoculated with Bradyrhizobium japonicum MN 110 were grown in growth chambers with controlled atmospheres of 400 and 800 μL CO2 L‐1 and supplied either 1.0 mM‐P (P‐sufficient) or 0.05 mM‐P (P‐deficient) nitrogen (N)‐free nutrient solution. When plants were supplied with sufficient P, CO2 enrichment significantly increased whole plant dry mass (83%), nodule mass (67%), total nitrogenase activity (58%), and N (35%) and P (47%) accumulation at 35 days after transplanting (DAT). Under sufficient P supply, CO2 enrichment significantly increased starch concentrations in nodules compared to the normal atmospheric CO2 treatment. Under normal CO2 levels (400 μL L‐1) nonstructural carbohydrate concentration (starch plus soluble sugar) was significantly higher in leaves of P‐deficient plants than in leaves of P‐sufficient plants in which nonstructural carbohydrate concentration exhibited a strong diurnal pattern. Under deficient P supply whole plant dry mass, symbiotic N2‐fixation parameters, and N and P accumulation were not enhanced by atmospheric CO2 enrichment. Phosphorus deficiency decreased nonstructural carbohydrate accumulation in nodules at the end of a 10‐day period in which functional activity was developing by 86% relative to P‐sufficient controls. While P deficiency elicited significant increases in the nonstructural carbohydrate concentration in leaves, it caused significant decreases in the nonstructural carbohydrate concentration in nodules over the diurnal cycle from 30 to 31 DAT. Collectively, these results indicate that the lack of a symbiotic N2‐fixation response to atmospheric CO2 enrichment by P‐deficient plants may be related to the decreased carbohydrate status of nodules.  相似文献   

2.
Symbiotic N2 fixation by lucerne (Medicago sativa) has capacity to provide significant inputs of N to agro-ecosystems, and the species has also been shown to scavenge soil mineral N and thus act as a sink for excess reactive N. The balance between these two N cycle processes was investigated in an extensive irrigated lucerne growing region where nitrate contamination of groundwater has been reported. We sampled 18 permanent pure lucerne stands under irrigation for standing dry matter, total shoot N, and N2 fixation using 15N natural abundance along with activity of the inducible enzyme nitrate reductase as indicators of use of soil NO3 by lucerne. On average 65% of lucerne N was obtained from symbiotic N2 fixation. Converting standing dry matter estimates to annual N2 fixation amounts we calculated average N2 fixation of 311 kg N/ha, including N in roots and nodules. Uptake of N from soil by lucerne was calculated to be 181 kg N/ha/year. We were not able to identify the source of this soil mineral N, although nitrate reductase activity of lucerne was higher than that of non-N2 fixing species examined.  相似文献   

3.
施磷量对小麦物质生产及吸磷特性的影响   总被引:14,自引:7,他引:14  
在低磷土壤条件下,以中筋小麦扬麦12号和弱筋小麦扬麦9号为材料,研究了施磷量对小麦物质生产和吸磷特性的影响。结果表明,在施磷量(P2O5)0~180.kg/hm2范围内,植株对磷的吸收量、吸收速率和磷的积累量随施磷量增加而上升;以施磷量108.kg/h2处理的叶面积指数(LAI)、植株茎蘖数、茎蘖成穗率、干物质积累量、花后干物质积累量和子粒产量最高。当施磷量超过108.kg/hm2时,相关物质生产指标则呈下降趋势,说明即使在缺磷土壤上,施磷量有其适宜值。小麦一生对磷的吸收存在两个高峰,出苗至越冬始期为第一个吸收高峰,拔节至孕穗期为第二个吸收高峰。植株磷素积累量的70%~75%是在拔节后吸收,表明拔节期施磷对满足小麦第二个吸磷高峰和磷的最大积累期需磷有重要意义。  相似文献   

4.
Abstract

Two greenhouse studies were conducted to evaluate the effect of B, Mn and Zn on nodulation and N2‐fixation of southernpea (Vigna unguiculata (L.) Halp.) cultivars ‘Freezegreen’, ‘Mississippi Silver’ and ‘Pinkeye Purple Hull’. The cultivars were grown in plastic pots with a Norfolk sandy loam (fine, loamy siliceous thermic, Typic Paleudult) soil treated with B, Mn and Zn at rates of 0, 5, 10 and 20 kg/ha each at pH levels 5.5, 6.0 and 6.5. At pH 6.5 all micronutrient treatments significantly increased nodulation and N2‐fixation over the control (no micronutrient applied). The effects of B, Mn and Zn on nodulation and N2‐fixation depended on the cultivar and soil pH. For plants given the 5 kg/ha B and Mn treatments, ‘Mississippi Silver’ produced the highest number of nodules and ‘Pinkeye Purple Hull’ the least. At 20 kg/ha Zn, nodulation of ‘Freezegreen’ was highest and ‘Pinkeye Purple Hull’ the lowest. As a whole, maximum nodulation was at 5 kg/ha B and Mn and 20 kg/ha for Zn. Nitrogen fixation rates responded similarly except that the optimum rate for Zn was 10 kg/ha. Seed yield of plants peaked at 5 kg/ha for B and 10 kg/ha for Zn, indicating a possible relation of N2‐fixation to seed yield.  相似文献   

5.
Nodulating and non‐nodulating soybeans were grown on a Alfic Udipsamment and a Typic Hapludoll amended with 10 or 100 kg N/ha. Tissue and grain samples were analyzed to determine N2‐fixation, dry matter, and N, P, and K accumulation. Highest grain yields were associated with the highest levels of N2‐fixation and N and K accumulation in grain. The largest dry matter production was by nodulating plants grown on a high soil N regime. Nodulating plants accumulated more grain and tissue N, P, and K than non‐nodulating plants. Nitrogen stress increased P concentrations in both grain and tissue and decreased harvest indices.  相似文献   

6.
Responses of proton release to phosphorus (P) availability by nodulated roots of common bean (Phaseolus vulgaris L.) were investigated for lines BAT 477 and CocoT, inoculated with Rhizobium tropici CIAT 899 in hydroaeroponic culture under glasshouse conditions. Phosphorus was supplied as KH2PO4 at 15 and 60 μmol plant–1 week–1 (15P and 60P). Proton release was higher for BAT 477 than for CocoT under both P supplies. However, it was higher for 60P than 15P, whatever the line. The ratio of proton release per unit biomass of nodulated root was higher for BAT 477 than for CocoT, independent of P deficiency. Proton release was correlated with the nodulated‐root respiration for both genotypes and with the nodule respiration linked with nitrogen fixation for CocoT. Thus, the nodulation was more limited by 15P than root and shoot growth and more in CocoT than in BAT 477. It is concluded that independent of symbiotic N2 fixation, proton release was higher in BAT 477 than in CocoT and that the nodulated legume releases a substantial amount of protons into its rhizosphere that is correlated with its nitrogen fixation that eventually depends upon the nodule permeability to O2 diffusion.  相似文献   

7.
In cowpea, efficient N2‐fixing genotypes are being selected to promote sustainable cropping systems in southern Cameroon (SC). However, N2 fixation and growth of these genotypes are largely hampered by low levels of soil plant‐available P. To evaluate the genotypic variation in N2 fixation and P uptake among cowpea (Vigna unguiculata L.) genotypes, field experiments were conducted over two years on two acid soils low in available P. The experiments were laid out in a split‐block design with four replications on typic (TK) and rhodic (RK) Kandiudult soils with seven cowpea genotypes. Phosphorus (P) fertilizers were applied on the main plots with 0 kg P, 30 kg P ha–1 as triple superphosphate (TSP) and 90 kg P ha–1 as Togo phosphate rock (PR). Nodule dry matter (DM), shoot DM, grain yield, and P uptake of cowpea significantly varied with site, P application, and genotype (p < 0.05). The N2 fixation of the cowpea genotypes ranged from 29 to 51 kg N ha–1 on both TK and RK soils and was significantly increased with P application. Significant genotypic variations in N2 fixation were observed with superior ability of the genotypes IT89KD‐391 and IT90K‐59 to fix N2. The harvest index (HI) did not significantly differ between soils and P application levels (p > 0.05). Four genotypes were selected to investigate root mechanisms responsible for efficient P acquisition in pot experiments. The results suggest that a better root infection by arbuscular mycorrhizal fungi (AMF) in genotype IT90K‐59 and root morphological and physiological characteristics in IT89KD‐391 were the most important factors for increasing P uptake.  相似文献   

8.
Legume plants are an essential component of sustainable farming systems. Phosphorus (P) deficiency is a significant constraint for legume production, especially in nutrient-poor soils of arid and semi-arid regions. In the present study, we conducted a pot experiment to evaluate the effects of a phosphorus-mobilizing plant-growth promoting rhizobacterial strain Bacillus cereus GS6, either alone or combined with phosphate-enriched compost (PEC) on the symbiotic (nodulation-N2 fixation) performance of soybean (Glycine max (L.) Merr.) on an Aridisol. The PEC was produced by composting food waste with addition of single super phosphate. The bacterial strain B. cereus GS6 showed considerable potential for P solubilization and mobilization by releasing carboxylates in insoluble P (rock phosphate)-enriched medium. Inoculation of B. cereus GS6 in combination with PEC application significantly improved nodulation and nodule N2 fixation efficiency. Compared to the control (without B. cereus GS6 and PEC), the combined application of B. cereus GS6 with PEC resulted in significantly higher accumulation of nitrogen (N), P, and potassium (K) in grain, shoot, and nodule. The N:P and P:K ratios in nodules were significantly altered by the application of PEC and B. cereus GS6, which reflected the important roles of P and K in symbiotic performance of soybean. The combined application of PEC and B. cereus GS6 also significantly increased the soil dehydrogenase and phosphomonoesterase activities, as well as the soil available N, P, and K contents. Significant positive relationships were found between soil organic carbon (C) content, dehydrogenase and phosphomonoesterase activities, and available N, P, and K contents. This study suggests that inoculation of P-mobilizing rhizobacteria, such as B. cereus GS6, in combination with PEC application might enhance legume productivity by improving nodulation and nodule N2 fixation efficiency.  相似文献   

9.
The effects of phosphorus supply (0, 30, and 90 mg P kg‐1) on growth, N2 fixation, and soil N uptake by soybean (Glycine max (L.) Merr.) were studied in a pot experiment using the 15N isotope technique. Phosphorus supply increased the top dry matter production at flowering and the dry matter production of seeds, straw, pod shells, and roots at late pod filling of inoculated soybeans. Phosphorus supply reduced the N concentration of plant tops at flowering, but increased the amount of N accumulated at both flowering and late pod filling. In inoculated soybeans total N accumulation paralleled the dry matter production. The P concentration in above‐ground plant parts of nodulated soybeans was not affected by P application. At flowering only 18 to 34% of total N was derived from N2 fixation, whereas as much as 74% was derived from N2 fixation at late pod filling. Only the addition of 90 mg P kg‐1 soil significantly increased the amount of N2 fixed at the late pod filling stage. Phosphorus supply did not influence the uptake of fertilizer or soil N in soybeans, even if the root mass was increased up to 60% by the P supply.  相似文献   

10.
Abstract

Current nitrogen (N) fertilizer recommendations for Kentucky bluegrass (Poa pratensis L.) seed production in northern Idaho are based on potential yield and annual precipitation. Soil test correlation information collected for other northern Idaho crops provide the basis for P, S and B recommendations. The objective of this paper is to assess the current recommendations with a series of forty field trials conducted on ten sites during four seed production seasons. All field trials were conducted on Alfisols and Mollisols initially containing less than 60 kg N/ha, 3.5 μg/g NaOAc extractable P, 40 kg extractable SO4‐S/ha and 0.5 μg/g extractable B. Fertilization rates evaluated included: 0, 50, 75, 100, 125, 150 and 200 kg N/ha; 0, 30 and 60 kg P2O5/ha; 0, 25, and 50 kg SO4‐S/ha, and 0 and 1.5 kg B/ha. Five field sites contained the cultivar ‘Argyle’ Kentucky bluegrass seed, while the other five sites contained the cultivar ‘South Dakota’.

Excellent relationships between percent maximum Kentucky bluegrass seed production and the sum of inorganic soil N + fertilizer N applied were observed for the ‘Argyle’ (R2=0.65) and ‘South Dakota’ (R2=0.72) cultivars. Phosphorus applications of 30 kg P2O5/ha improved seed yields from 10.0 to 51.6% when initial soil test values were less than 3.0 6 μg/g NaOAc extractable P. When initial SO4‐S soil values were less than 32 kg/ha fertilizer additions increased seed yields from 12.6 to 107.3%. Boron applications did not improve seed yields. Analysis of these trials indicates that adequate information is available to make satisfactory P, S and B fertilizer recommendations; however, additional soil test correlation information is needed for N recommendations.  相似文献   

11.
磷、钾营养对套作大豆钾素积累及利用效率的影响   总被引:4,自引:0,他引:4  
以贡选1号为材料,研究了磷、钾营养对套作大豆钾素积累及利用效率的影响。结果表明,套作大豆全生育期钾素积累动态符合"S"型增长曲线。完熟期钾素积累总量以及根、茎、叶片、荚果各器官钾素含量均随施钾量增加而增加,随施磷量增加呈先增加后减少的趋势;各处理均以P2K3(P2O517.0 kg/hm2,K2O 112.5 kg/hm2)最高,较不施磷、钾(P0K0)高18.79%5~8.33%。全生育期钾积累速率呈单峰曲线变化,随施钾量增加而增加,随施磷量增加先升高后降低,出苗后90 d左右达到最大值。钾素生产效率、吸收利用率、农学利用率随施磷、施钾量增加与钾积累速率表现一致,但收获指数随施磷量增加先降低后升高。合理施用磷、钾肥能提高套作大豆钾素利用效率,以P2K1(P2O517.0 kg/hm2,K2O 37.5 kg/hm2)处理最好。  相似文献   

12.
The objective of this study was to elucidate the effects of phosphorus (P) starvation on the internal P status expressed as P fractions (acid soluble P, sugarP, inorganic P, nucleotide P, and insolubleP) in different plant organs (leaves, roots and nodules), at different plant growth rates and dinitrogen(N2) fixation rate of soybean plants. The symptoms of P starvation differed during early 10 days and late 28 days of starvation. There were close relationships between nodulation and N2 fixation rate, and parameters of growth rate and internal P status. Although growth rate and N2 fixation of P starved plants were reduced their nodules showed ability to accumulate more soluble P in comparison with the leaves. The decreased sugar-P and inorganic P accounted for accumulation of more soluble sugars and starch in the stressed leaves. In contrast, stressed nodules accumulated higher quantities of sugar P, inorganic P, and nucleotide P and had reduced quantities of starch and sucrose. The increased accumulation of phosphorylated sugars in the nodules was regarded as a manifestation of the mechanism of stress tolerance of soybean nodules to P limited nutrition.  相似文献   

13.
不同氮素用量对杭白菊养分累积、转运及产量的影响   总被引:3,自引:2,他引:1  
通过田间小区试验,研究不同施氮量对杭白菊养分积累、转运及产量的影响,以确定杭白菊最佳氮肥用量。试验设5个处理,氮素用量分别为0、90 kg/hm2、120 kg/hm2、150 kg/hm2、180 kg/hm2,以N0、N1、N2、N3、N4表示,5次重复。结果表明,不同氮素用量影响杭白菊不同时期干物质和养分的阶段积累量,但不影响其积累趋势,整个生育期内杭白菊氮、磷、钾积累量为钾氮磷。不同施氮量影响茎叶氮、磷、钾的转移效率和在不同器官中的分配比率,以不施肥处理最高,N3(150 kg/hm2)次之。在氮、磷、钾三种元素中,转运效率磷氮钾。收获期氮、磷、钾在不同器官的分配比率不同,氮素、钾素分配比率为茎花叶根,磷素分配比率为茎花根叶。各处理杭白菊花的产量在1746.232~211.3 kg/hm2之间,以N3(150 kg/hm2)处理产量最高。在本实验条件下,杭白菊的推荐施氮量为150 kg/hm2。  相似文献   

14.
Effects of phosphorus (P) deficiency on nodulation were examined in soybean grown in nutrient solution for 7 weeks. Increasing P supply increased shoot growth of nitrogen (N2)-fixing plants from week 5 and that of nitrate-fed plant from week 4 after treatment. Nitrogen (N2)-fixing plants had a greater P requirement for maximum growth at week 5. Increasing P supply from 1 to 16 μ M increased N concentration in N2-fixing plants at week 4 but did not affect it from week 5. By contrast, P deficiency increased N concentration in nitrate-fed plants. Increasing P supply improved nodule formation from week 3. Nodule mass was affected more by P supply than nodule number, which, in turn, was affected more than plant growth. However, P supply did not decrease nodule specific N2 fixation from week 5. The results suggest that P deficiency impaired symbiotic N2 fixation through delaying onset of nodule function and decreasing nodule development.  相似文献   

15.
Acid sulfate soils (ASS) are characterized by low pH, aluminum (Al), and iron (Fe) toxicity and are typically deficient in phosphate (PO4). The application of phosphorus (P) fertilizer could help reduce the level of exchangeable Al and Fe, thereby improving the rice growth and yield. Five levels of P (0, 20, 40, 60 and 80 kg phosphorus pentoxide (P2O5)/ha) were tested with rice varieties MTL560 in the wet season and MTL480 in the dry season. The optimum rate of P was 60 kg P2O5/ha for rice in the dry season and 80 kg P2O5/ha in the wet season. Soil testing showed at the start of the season that there was sufficient P in the soil. At the end of the season there was a reduction in soil Al and Fe in plots that had P rates above 40 kg P2O5/ha. It is therefore likely that P application reduced Al and Fe toxicity through precipitation and formation of Al-P and Fe-P compounds, which boasted yield, rather amending a soil P deficiency.  相似文献   

16.
Salinity and sodicity are prime threats to land resources resulting in huge economic and associated social consequences in several countries. Nutrient deficiencies reduce crop productivity in salt‐affected regions. Soil fertility has not been sustainably managed in salt‐affected arid regions. Few researchers investigated the crop responses to phosphorus and potassium interactions especially in saline–sodic soils. A research study was carried out to explore the effect of diammonium phosphorus (DAP) and potassium sulphate (K2SO4) on sugar beet (Beta vulgaris L.) grown in a saline–sodic field located in Kohat district of Pakistan. The crop was irrigated with ground water with ECiw value of 2.17–3.0 dS/m. Three levels each of K2O (0, 75 and 150 kg/ha) as K2SO4 and P2O5 (0, 60 and 120 kg/ha) as DAP were applied. The application of P significantly affected fresh beet and shoot yield while K fertilizers had significant effect on fresh beet yield and ratio of beet:shoot, while non‐significant effects on the fresh shoot were observed. The application of K1 and K2 promoted sugar beet shoot yield by 49.2 and 49.2% at P1 and 64.4 and 59.7% at P2, respectively over controls. In comparison with controls, fresh beet yield was increased (%) by 15 and 51, 45 and 84, and 50 and 58 for corresponding K1 and K2 at P0, P1 and P2, respectively. Addition of P1 and P2 increased beet yield by 37 and 47% over control. The shoot [P] (mmol/kg) were achieved as 55.2, 73.6 and 84.3 at P0, P1 and P2, respectively. The shoot [Mg] and [SO4] tended to decrease with increasing P levels, while [SO4] was markedly reduced at P2. The effect of P on leaf [Na] was non‐significant, but increasing levels of K decreased [Na] substantially at P0 and P1, but there was no difference in the effect of K level on [Na] at P2. Consequently, K application reduced leaf Na:K ratios. Fresh shoot yield was weakly associated with leaf [P] (R2 = 0.53). The leaf Na:K ratio showed a negative relationship (R2 = 0.90) with leaf [K]. A strongly positive relationship (R2 = 0.75) was observed between leaf [K] and fresh beet yield. The addition of K2SO4 also enhanced [SO4] and SO4:P ratios in leaf tissues. The ratio of Na:K in the shoot decreased with increasing K application. These results demonstrated that interactions of K and P could mitigate the adverse effects of salinity and sodicity in soils. This would contribute to the efficient management of soil fertility system in arid‐climate agriculture.  相似文献   

17.
A field experiment was conducted to study the N2 fixation efficiency of Sesbania rostrata and S. cannabina as affected by agronomic practices in semi-arid subtropical climate, Sowing seeds resulted in smaller numbers of nodules, lower dry weight, lower total biomass, less N uptake, and less N2 fixation for S. rostrata than S. cannabina, while cut-stem planting improved the symbiotic efficiency. Flooding the soil increased the relative humidity of the crop micro-environment by 4–11% and induced early appearance of stem nodules in S. rostrata. Only 67 kg N ha-1 was fixed by S. rostrata compared to 160 kg N ha-1 by S. cannabina when normal agronomic practices (sowing and non-flooding) were followed. In contrast, planting stem cuttings and flooding resulted in greater biological N2 fixation, 307 and 209 kg N ha-1 by S. rostrata and S. cannabina, respectively. Therefore, S. rostrata can be successfully exploited as a green manure when stem cuttings are planted under flooded conditions.  相似文献   

18.
以江苏省江都市水稻为例,基于地力差减法预测氮肥用量、 养分丰缺指标法预测磷钾肥用量,构建县域测土配方施肥指标体系,研究分析20052011年测土配方施肥田间试验示范。结果表明,当种植水稻预测目标产量为6825~9270 kg/hm2(平均为8145 kg/hm2),氮肥推荐用量为146.42~57.4 kg/hm2(平均为207.5~ kg/hm2)。磷钾肥施用标准: 当有效磷含量高于21 mg/kg,不推荐施用磷肥;当有效磷含量在17~21 mg/kg时,推荐施磷(P2O5)量为40.5 kg/hm2;当有效磷含量在10~17 mg/kg时,推荐施磷(P2O5)量为 48 kg/hm2;当有效磷含量低于10 mg/kg 时,推荐施磷(P2O5)量为64.5 kg/hm2。当速效钾含量高于140 mg/kg,不推荐施用钾肥;当速效钾含量在115~140 mg/kg时,推荐施钾(K2O)量为 22.5 kg/hm2;当速效钾含量在60~115 mg/kg时,推荐施钾(K2O)量为40.5 kg/hm2;当速效钾含量低于60 mg/kg 时,推荐施钾(K2O)量为 82.5 kg/hm2。同时对施肥指标体系建立进行校验分析,结果表明基于试验建立施肥指标体系是可行的,从而为构建县域测土配方施肥指标体系提供了方法,达到因土施肥的目的。  相似文献   

19.
A field experiment was conducted to study the effect of adding different phosphorus (P) fertilizer levels [0, 40, and 80 kg phosphorus pentoxide (P2O5) ha?1 (abbreviated as P0, P1, and P2, respectively)] and rates of sheep manure (M) [0, 20, and 40 ton ha?1 (abbreviated as M0, M1, and M2, respectively)] on growth and nitrogen (N2) fixation of soybean (Glycine max L.). Sorghum bicolor L. was employed as a reference crop to evaluate N2 fixation using the 15N-isotpic dilution technique. Results showed that addition of P fertilizer or sheep manure had positive effects on dry-matter production, N accumulation, and seed yield. Such effects were more pronounced when adding sheep manure and P together than adding separately. Solely P fertilizer had a small impact on N2 fixation. A tangible increase in the amounts of N2 fixed due to manure addition occurred. The efficient use of N fertilizer (%NUE) increased significantly as the result of adding a high level of P fertilizer. However, a drastic decrease in %NUE was observed when sheep manure was added solely or in combination with P fertilizer. From productivity and ecological standpoints, P2M1 and P2M2 surpassed the other treatments in showing greater grain yield and greater N2 fixation. However, considering the high cost of sheep manure, P2M1 was the optimal treatment for improving growth and N2 fixation in soybean plants with minimal manure consumption. In conclusion, the integrated use of manure and P fertilizer could be considered a useful agricultural practice for improving the performance of soybean plants grown in an Aridisol. Their beneficial effects were mainly attributed to the enhancement of N2 fixation through root growth and soil property improvements besides being a source of P and other nutrients that are essential for N2-fixation process.  相似文献   

20.
Exposing 12‐day‐old soybean plants to 0.2 ppm nitrogen dioxide (NO2) for four weeks increased the nitrite concentration and acidity, and decreased the Leghemoglobin (LHb) concentration and the nitrogenase activity of root nodules. The supply of 1 mol.m‐3 nitrate to the roots intensified the nitrite accumulation, decreased the acidity of the nodules, and alleviated the inhibition of nitrogenase activity by NO2 fumigation. These results suggested that the inhibition of nitrogen (N2) fixation by N fertilizer supply might relate to the acid‐alkali balance in nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号