首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The critical leaf and the threshold values of leaf color chart (LCC) and chlorophyll meter (SPAD‐502) for cassava have been evaluated. The nitrogen (N) rates and cultivars had a significant effect on LCC score, SPAD values, and leaf N concentration of leaf 1 in most cases. Among the three leaf positions studied, the youngest fully expanded leaf (YFEL) blade (leaf 1) had significant, positive correlation of tuber yield with LCC score, SPAD value, and leaf N concentration. The regression between LCC score and leaf N concentration of leaf 1 was LCC = 0.358 (Leaf N) + 0.78 (r2 = 0.81) and that between LCC score and SPAD value was SPAD = 10.981 (LCC) – 3.51 (r2 = 0.82). A threshold LCC score of 2.65 and threshold SPAD value of 25 were suitable to determine the optimal timing of N top‐dressing for cassava.  相似文献   

2.
叶绿素仪在氮肥推荐中的应用研究进展   总被引:26,自引:1,他引:26  
叶绿素仪(Chlorophyll.meter)是近年来欧美一些国家在推荐施氮中开始使用的一种新型便携式仪器。这种仪器以叶绿素对红光和近红外光的不同吸收特性为原理来测定植物叶片的相对叶绿素含量,通过叶绿素与叶片全氮的关系来反映作物的氮营养状况,进而确定作物是否缺氮。这种新型仪器的使用为简便、快速、准确地进行氮肥推荐提供了一种新的思路。因此,通过研究不同作物,不同种植条件下叶绿素仪测定值与作物叶片全氮、作物产量之间的相关性,确定叶绿素仪测定值的临界水平,以及不同作物的测定部位、样品采集数量及影响测定准确性的因素,使这种技术尽快地应用于田间生产,有助于推动我国推荐施氮技术的进步。  相似文献   

3.
Leaf SPAD values are thought to be an indicator of potato nitrogen (N) status; however, when making plant N diagnosis, no single threshold leaf SPAD value can be used for all potato cultivars because of cultivar variation. We conducted field experiments over 3?years to test whether the difference in SPAD values between the upper and lower leaves was consistent among potato cultivars, and whether this value responded to N application levels. The results showed cultivar affects the SPAD values of the fourth and eighth leaves (SPADL4 and SPADL8), but not SPADL4-8, the difference between SPADL4 and SPADL8. Moreover, the SPADL4-8 values responded well to N application levels. Therefore the SPADL4-8 could be applied as a general index of N status across different potato cultivars, and establishing a threshold SPADL4-8 value might be more useful in guiding N fertilization recommendations for different potato cultivars.  相似文献   

4.
在设施栽培条件下,研究甜瓜关键生育期不同叶位SPAD值的变异特征及与叶片、植株氮素含量的相关性,探索提出基于SPAD仪诊断氮素营养最佳的测定叶位。结果表明,在各施氮水平下,不同叶位间叶片SPAD值存在一定差异,各叶位叶片SPAD值随施氮量的增加而增加。在适宜施氮(N 210 kg/hm~2)水平下,各生育期顶3叶和顶4叶SPAD值变异系数显著低于顶1叶和顶2叶,不同叶位叶片SPAD值与叶片、植株含氮量有较好的相关性,其中顶3叶与叶片、植株含氮量相关性最高。因此,用叶绿素SPAD仪诊断甜瓜氮素营养,顶3叶为较理想的指示叶或参照叶。  相似文献   

5.
应用叶绿素计诊断烤烟氮素营养状况   总被引:13,自引:1,他引:13  
为探讨叶绿素计在估测烤烟叶绿素和氮浓度上的应用价值,进行了3个田间试验。即:郑州点2003年设施N.51.0.kg/hm2与4个品种NC89、RG17、85048、541;2004年设5个氮肥用量:N.30.04、0.5、51.0、61.5、75.0.kg/hm2与2个品种中烟101、云烟85;玉溪点于2005年设5个氮肥用量:N.02、7.0、54.5、81.8、109.0.kg/hm2与K326品种的试验。测定了不同试验条件下烤烟叶片的叶绿素计(SPAD-502和CCM-200)值和实际叶绿素浓度、全氮浓度,并进行了三者关系分析。结果表明,应用叶绿素计监测烤烟叶片最佳测定部位为完全展开叶的中部。叶绿素计测定值因年份、地点、氮肥水平、叶位、同一叶片不同的部位而异。叶绿素计值与叶绿素浓度、叶片全氮浓度之间有稳定的极显著相关性。叶绿素计SPAD-502的SPAD值和CCM-200的CCI值与叶绿素浓度之间的决定系数分别为0.8755(P0.001)和0.9499(P0.001)。SPAD计值(SPAD)与全氮浓度(N)之间回归方程为N=0.0265SPAD+0.9601(R2=0.7649,P0.001),经检验该模型具有较好的精确性和普适性,利用叶绿素计进行烤烟氮素营养监测是可行的。  相似文献   

6.
Based on Soil Plant Analysis Development (SPAD) values, nitrogen (N) deficiency, nutrient need, and the effect of fertilizer treatments on crop conditions can be quickly estimated, but the method of SPAD measurement significantly affects the accuracy of estimation. In field experiments near Debrecen, Hungary, we measured the reliability and accuracy of SPAD measurements in maize and potato populations using a Minolta SPAD-502 meter (Minolta, Tokyo, Japan). The aim of our study was to determine which SPAD measurement methods are capable of detecting small differences in the SPAD values. During the examination of maize ear leaves, we determined the distribution of SPAD values along the leaf blade and then identified single- and multipoint measurement methods. By comparing the results of the measurement methods we established that the single-point-based measurements are less suitable for the determination of the average SPAD value of the leaf blade than the multipoint-based measurements. Also, we showed that the increase in the number of measurement points does not influence the accuracy of the measurement in the case of systematic measurement methods based on the distribution of SPAD values. Thus we recommend five-point measurements to obtain the average SPAD values of the ear leaves: the tip of the leaf blade and at one quarter and one half of the leaf blade from the base on both the right and left sides. From the measurements conducted in potato, we showed that the SPAD values change at every foliar level and that the measurements carried out on the middle foliar level provide the closest correlation with the average SPAD values of the leaf canopy. Based on these results, we recommend making measurements at different foliar levels or on the middle foliar level to determine the average SPAD value of the potato leaf canopy.  相似文献   

7.
基于叶绿素计测定的SPAD值与植物叶片叶绿素和氮浓度的关系,详细综述了用叶绿素计在玉米、小麦、水稻以及其他作物上进行氮素营养诊断的研究进展.第一,"相对SPAD值"、"氮饱和指数"或"归一化SPAD"等指标能够消除或减小品种、生育期及区域年际间的误差;第二,不同生育期应选择理想指示叶作为诊断目标;第三,不同叶位间的SP...  相似文献   

8.
Predicting the need for fertilizer‐nitrogen (N) topdressing based on plant N status is an important N management strategy for increasing both grain yield and N‐use efficiency of irrigated rice. Plant N analysis by conventional‐oven drying and micro‐Kjeldahl procedure generally requires several days. Accurate estimation of leaf N content per unit dry weight (Ndw) at different growth stages by the chlorophyll meter requires that meter‐reading values (SPAD values) be adjusted for specific leaf weight (SLW). This study demonstrated that a microwave oven can be used for drying rice leaves for quick estimation of leaf dry weight without significantly influencing the estimation of Ndw by micro‐Kjeldahl procedure. Microwave oven drying of 0.5 g (dry weight) leaf samples required only two minutes. Extended exposure duration up to six minutes did not alter the measured Kjeldahl N concentration. Specific leaf weight determined with microwave‐oven drying improved the prediction of Ndw by SPAD. The chlorophyll meter with SLW adjustment can provide another tool to make rapid, in‐season diagnosis of crop N status.  相似文献   

9.
玉米叶片SPAD值、全氮及硝态氮含量的品种间变异   总被引:11,自引:2,他引:9  
研究比较两种土壤肥力条件下,4个春玉米品种在喇叭口期至成熟期间叶片SPAD值、全氮及硝态氮含量的变异程度、及其与氮素积累和产量形成的关系,以期为不同品种植株的氮素营养测试指标的优化提供依据。结果表明,叶片SPAD值与产量、吸氮量及生物量呈显著相关,该值主要受氮肥水平影响,并因土壤肥力而变异。从喇叭口期至灌浆期间平均变异幅度为17.7%,但品种间变异很小,平均仅为4.3%。说明利用SPAD值诊断玉米氮素营养时,其诊断指标不需要因品种而调整,但需要因不同肥力而调整。在新立城低肥力条件下,喇叭口期(V12)和抽雄期(VT)的SPAD临界值指标分别为46.1和57.8;在德惠高肥力条件下,两个时期的SPAD值临界值较为接近,分别为59.9和60.3。植株叶片硝态氮含量在土壤肥力间及品种间变异均较大,变异幅度分别为43.1%和29.3%,且与产量、吸氮量及生物量的相关性均较差,不适于在大面积范围内单独作为玉米氮素营养状况的评价指标。  相似文献   

10.
In a three-year field experiment in Toulouse (in Southwest France), two indicators of plant nitrogen (N) status were compared on five durum wheat cultivars: the normalized SPAD index and the nitrogen nutrition index (NNI). SPAD value is a non-destructive measurement of chlorophyll content from the last expanded leaf. The normalized SPAD index is expressed relative to SPAD reading on a fully fertilized crop. The NNI is calculated from the crop biomass and total plant N content using a universal N-dilution curve for wheat. The normalized SPAD index and NNI were closely related irrespective of year, cultivar, and growth stage. When N was a limiting factor, the SPAD index measured at anthesis predicted grain yield and protein content accurately. Unlike NNI, SPAD index cannot be used to predict these variables when wheat is over-fertilized.  相似文献   

11.
Leaf chlorophyll content is closely related to leaf nitrogen (N) content, so it is reasonable to assume that ammonium‐N (NH4‐N): nitrate‐N (NO3‐N) ratio in the nutrient solution used to grow tomatoes (Lycopersicon esculentum Mill.) hydroponically may affect leaf greenness, and consequently chlorophyll meter (SPAD) readings. It has also been shown that increasing nutrient solution strength (NSS) increases tomato productivity, but there are no reports regarding how NSS affects SPAD readings under greenhouse conditions. Genotype may also influence SPAD readings, and standardization for cultivar and sampling time may be needed. The objective of this study was to characterize SPAD readings for five tomato cultivars and SPAD reading response to a combination of two NSS (1X and 4X Steiner solution strength daily applied 18 days after transplanting at 7 p.m.) and two concentrations of NH4‐N in solution (0 and 25%) in order to evaluate the potential of SPAD readings as a tomato yield predictor in greenhouse production systems. The SPAD readings were not uniform across tomato varieties tested, being consistently higher for ‘Max’ and lower for the other varieties. Initially, SPAD readings for tomato varieties used in this study were low at the vegetative stage, and increased up to 40 DAT, but subsequently decreased at 49 DAT, or the fruit set of the first and second clusters. After this time, SPAD readings showed no variation. Chlorophyll meter readings for ‘Max’ were higher in the top plant layers, but decreased in the top plant layer of the other tomato varieties. The SPAD readings were higher for plants supplied with 25% NH4‐N than those without NH4‐N in solution, but the use of a nighttime nutrient solution did not affect SPAD readings. None of the possible interactions among tomato variety, NH4‐N: NO3‐N ratio, and NSS were consistently significant.  相似文献   

12.
Abstract

The chlorophyll meter (SPAD‐502) can be used to diagnose the nitrogen (N) status of rice (Oryza sativa L) plants to determine the need for fertilizer‐N topdressing. However, accurate estimation of leaf N concentration on a dry weight basis (Ndw) by SPAD requires the adjustment of SPAD values for specific leaf weight (SLW). The objective of this study was to determine if SPAD estimates of leaf N concentration on a leaf area basis (Na) without correcting for SLW. SPAD values were measured from different genotypes at various growth stages with the chlorophyll meter. Leaf N concentration was determined by micro‐Kjeldahl procedure and expressed based on dry weight and leaf area. Specific leaf weight was calculated as the ratio of leaf dry weight to leaf area. At each growth stage, SPAD estimated Na better than Ndw, especially at the middle and later growth stages. When data for all stages were pooled, SPAD values also correlated with Na better than with Ndw (r value of 0.81 versus 0.43). This finding was also true across 80 genotypes. For estimation of Na by SPAD, therefore, no adjustment of SPAD values for SLW is needed.  相似文献   

13.
An experiment was conducted with iron chlorosis affected low-chill peach cultivars such as ‘Shaharanpur Prabhat’, ‘Shan-e-Punjab’, and ‘Pratap’ to examine the recovery upon foliar application of three iron sources namely iron (Fe)-sulfate, Fe-citrate and Fe ethylenediaminetetraacetic acid (EDTA). All the iron sources significantly increased the SPAD meter value, physiologically active (Fe2+) iron and total iron content of the leaves over control. However, highest values were noted with foliar spray of 1.0% Fe-sulfate. The low-chill peach cultivar ‘Saharanpur Prabhat’ responded best with iron resupply treatment. Significant correlations (at P ≤ 0.01) were obtained between SPAD meter readings with both physiologically active iron (Fe2+) and total iron content of leaves in all peach cultivars. Among the sources, the correlations between SPAD meter readings, physiologically active iron (Fe2+) and total iron contents were significant at P ≤ 0.01 for only Fe-sulfate and Fe-citrate. The regression analysis showed that the SPAD meter reading accounted 78.2 to 88.0% variation in physiologically active iron (Fe2+) and 65.0 to 73.7% variation in the total iron content in the low-chill peach cultivars. The SPAD readings could be used for management of iron chlorosis in peach orchard.  相似文献   

14.
相对SPAD值用于不同品种夏玉米氮肥管理的研究   总被引:10,自引:2,他引:10  
采用田间试验研究了不同氮肥处理、不同玉米品种及关键生育期间的SPAD值差异和基于相对SPAD阈值的氮肥管理对氮肥用量、子粒产量、氮肥利用率和土壤氮素变化的影响。结果表明,两品种玉米各关键生育期的SPAD值开始随施氮量的增加而显著增加,施氮量超过N 210 kg /hm2后不再显著增加;郑单958和冀农一号大喇叭口期的相对SPAD值与产量的关系符合线性加平台模型,其平台相对SPAD值分别为0.976和0.981;两玉米品种和不同生育期间的绝对SPAD值差异显著,利用相对SPAD值可消除品种和生育期间的SPAD值差异。玉米关键生育期追肥量和总施氮量均随预设相对SPAD阈值的增加而增加,基于相对SPAD阈值的氮肥管理能在保持高产的同时较农民习惯施肥显著降低氮肥用量、田间氮素表观损失和收获后土壤无机氮残留、提高氮肥利用率;本试验条件下,保持玉米高产高效的适宜相对SPAD阈值为0.95~0.98,此阈值管理下,郑单958和冀农一号的产量较农民习惯施肥没有降低,而氮肥用量降低了42%,氮肥回收利用率和农学效率分别增加了18.6、20.0个百分点和6.0、6.5 kg/kg。  相似文献   

15.
Abstract

The SPAD chlorophyll meter appears promising for rapid, on‐farm analysis of crop nitrogen (N) status. Leaf SPAD chlorophyll levels have been correlated with total leaf N concentrations, but it has not been determined how they relate to other widely applied N diagnoses such as petiole or stem nitrate (NO3) analysis. Our objective was to examine the relationship between leaf SPAD readings and stem NO3 levels in peppermint (Mentha piperita L.). Upper canopy SPAD chlorophyll and stem NO3 concentrations were determined weekly during two seasons for peppermint grown with variable N inputs. Leaf SPAD levels exhibited significant linear‐plateau responses with respect to stem NO3, indicating that SPAD readings do not respond to luxury N consumption. The meter is therefore promising for the detection of crop N deficiencies by comparison of production fields to well fertilized plots or strips. Break‐points in the linear‐plateau regressions describe saturation concentrations of stem NO3 with respect to leaf SPAD levels peaking at 12,000 mg NO3‐N/kg in mid to late July and declining later in the season. The SPAD meter may be applied directly to N management by use of reference plots or it may be used as a tool to aid in determination of criteria for other diagnoses such as tissue NO3.  相似文献   

16.
Management of nitrogen (N) use is necessary to promote maximum development and production of tubers. For this reason, chlorophyll meters have been used to make N-fertilizer recommendations in potato. An assay was carried out with increasing doses of N. To define the thresholds IV for potato crops, correlations among IV, ISN, RR, and N content had been established. IV is the green index of the leaf measured by the chlorophyll meter. This index estimates the chlorophyll content in the leaf and through this the N concentration in vegetal tissue, based on the assumption that N and chlorophyll content have a strong correlation. ISN is the sufficiency nitrogen index. It was determined as the relation between the green index reading of each experimental unit and the highest average green index reading of the assay. RR is the relative yield. It was calculated as the ratio between the yield of each treatment and the highest average yield of the assay. The results had shown that varieties did not present N deficiencies during the vegetative growth phase, with IV and ISN values respectively equal to 41 SPAD units and 93 percent. During the tuber bulking phase, the necessary IV and ISN thresholds to reach maximum yields, for N content equal to 3 percent, were, respectively, between 38.5 and 40.5 SPAD units and between 84 and 94.8 at 70 and 89 days after planting. We concluded that the chlorophyll meter is an appropriate tool to determine the nutritional status in potato crops.  相似文献   

17.
主动遥感光谱仪Greenseeker与SPAD对玉米氮素营养诊断的研究   总被引:11,自引:0,他引:11  
以手持式主动遥感光谱仪Greenseeker和叶绿素仪SPAD对玉米不同氮素水平下各个生育期的NDVI值及叶片SPAD值进行测试,研究不同氮素对玉米群体和个体营养状况的变化以及田间条件下简便、快速、非接触性的作物氮素营养状况诊断方法。结果表明,在一定的范围内随着氮肥用量的增加NDVI值也增加,氮肥施用量为N 300kg/hm2时NDVI值达到最高,NDVI 与氮肥施用量符合线性加平台的关系;玉米不同生育期间NDVI 值变化明显,苗期NDVI值比较低,大喇叭口期NDVI 值达到最高,以后逐渐下降并在抽雄期后趋于稳定。SPAD值与NDVI 值的变化趋势相一致,SPAD值与叶绿素含量成正相关关系,大喇叭口期完全展叶的SPAD 与产量存在正相关关系。手持式主动遥感光谱仪Greenseeker和叶绿素仪SPAD结合能够对玉米的氮素营养状况作营养诊断。  相似文献   

18.
实时实地氮素管理对水稻产量和氮素吸收利用的影响   总被引:5,自引:2,他引:3  
以扬两优6号和培两优3076水稻为材料,通过田间试验比较研究了基于SPAD值的氮素管理对水稻氮素吸收、产量和氮肥利用率的影响。结果表明,随着SPAD预设阈值的增加,氮肥用量增加,籽粒产量和氮素吸收也随之增加。实时氮素管理条件下,水稻扬两优6号和培两优3076均以SPAD值为41处理获得较高的籽粒产量和氮素利用率,该处理在籽粒产量不降低的同时节约了氮肥用量12. 8% ~33.3%;而实地氮素管理条件下,水稻扬两优6号和培两优3076均以SPAD值为39~41处理获得较高的籽粒产量和氮素利用率,该处理在籽粒产量不降低的同时节约了23.1%的氮肥用量。鉴于实地氮素管理在田间易于操作,因此建议采用39~41作为水稻关键生育期指导氮肥施用的SPAD阈值。  相似文献   

19.
探明夏玉米氮素营养生化指标(叶绿素a、叶绿素b、类胡萝卜素、叶片氮含量和叶片氮积累量)与叶片SPAD值垂直分布特征及两者间定量回归关系,确立基于叶绿素仪的夏玉米氮营养无损诊断敏感叶位和叶片部位,以实现氮营养时空变化的快捷和精准监测。利用2018-2019年连续2季不同氮营养水平下夏玉米关键生育期主茎各叶位(顶1叶~顶12叶,TL1~TL12)和叶片部位(每张叶片从叶片基部开始根据叶片长度每20%分为1个测试区间) SPAD值及氮营养指标数据,研究基于偏最小二乘(partial least square, PLS)回归模型的夏玉米不同位点SPAD值与氮营养指标间关系,确定可稳定指示夏玉米氮营养空间异质性变化的敏感叶位及叶片部位。结果表明,不同叶位间夏玉米叶片SPAD值和氮营养指标于植株间分布均呈典型的"钟型"特征,至TL5或TL6时达至峰值。同一叶位不同部位间SPAD值由20%至100%位点时则逐步升高,且80%~100%位点间无显著差异(P>0.05)。PLS分析结果显示,夏玉米不同叶位SPAD值与氮营养指标间模型精度决定系数(coefficient of determination, R2)和相对分析误差(relative percent deviation,RPD)范围分别为0.693~0.821和1.425~2.744。不同测试位点R2和RPD值范围则分别为0.660~0.847和1.607~2.451,满足模型精确诊断需求。此后,基于PLS模型中各叶位和叶片部位无量纲评价指标变量重要性投影值(variable importance for projection,VIP),确定顶4叶(TL4)完展叶60%~80%区间为夏玉米氮营养诊断的敏感区域,VIP值均高于临界值1.40,预测效果较为理想。研究可为实现氮营养的高效、快捷诊断和精准施氮提供参考。  相似文献   

20.
遮荫对水稻冠层叶片SPAD值及光合、 形态特性参数的影响   总被引:6,自引:0,他引:6  
SPAD(soil-plant analysis and development)计是一种快速、 方便、 非破坏性的诊断植物叶片相对叶绿素或氮含量的仪器,与传统的氮营养诊断方法相比,此仪器节省时间、 劳力和资源。本试验通过未遮荫和遮荫的方法观察水稻冠层叶片SPAD值、 叶绿素含量、 叶绿素荧光、 光合参数、 叶片厚度和比叶重(叶片干重除以叶片的面积)等生理形态指标的变化,建立SPAD值与光系统II(PSII)最大量子产量(Fv/Fm)之间的回归关系。结果表明,遮荫条件下,甬优9号(YY9)和丙9363(B9363)冠层叶片变薄、 SPAD值、 叶绿素a/b、 比叶重、 电子传递速率(ETR)降低,但快速光曲线的初始斜率无明显变化; 同时, 遮荫导致了叶片的呼吸速率、 最大净光合(Pmax)、 量子效率、 光补偿点和饱和点降低,表明水稻叶片为适应弱光环境, 降低光合能力、 减少呼吸消耗, 以增加对有限光能的利用。不同光照条件下,水稻冠层叶片SPAD值与PSII的Fv/Fm的回归方程呈指数式关系(YY9 R2=0.896; B9363 R2=0.833), 表明SPAD计可以快速、 无损、 有效地评估水稻冠层叶片的光合作用进程,当SPAD值小于35时,其光合过程可能处于受损状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号