首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the effect of biochar and organic soil amendments on soil physicochemical and microbial load, carbon sequestration potential, nutrient uptake and yield of groundnut in acidic red soil under rainfed condition. Biochar was prepared from red gram, cotton, maize stalk and mesquite wood using pilot scale slow pyrolysis biochar unit. The above sources of biochar at the rate of 2.5 and 5 t ha?1 and enriched farmyard manure 0.75 t ha?1, composted coir pith 10 t ha?1 and arbuscular mycorrhizae 100 kg ha?1 were applied as basal with required nitrogen, phosphorous and potassium fertilizer. Biochar amendment at the rate of 5 t ha?1 reduced the bulk density from 1.41 to 1.36 g cm?3 and increased the soil moisture 2.5%. With respect to soil chemical changes, it raised soil pH from 5.7 to 6.3; increased the cation exchange capacity 1.4 cmolkg?1 and enhanced the carbon buildup 4.4 t ha?1. The significant differences in bacteria, fungi and actinomycetes population were observed between biochar and control. The nitrogen, phosphorous and potassium were better utilized under biochar and composted coir pith, which was 21, 5 and 20 kg ha?1 higher than control. The experimental results suggested that application of biochar to acidic red soil favoured good soil physical, chemical and biological environment, and these positive changes influenced growth and yield attributes and enhanced pod yield 29% over control.  相似文献   

2.
Reducing ammonia (NH3) volatilization is a practical way to increase nitrogen (N) fertilizer use efficiency (NUE). In this field study, soil was amended once with either cotton (Gossypium hirsutum L.) straw (6 t ha?1) or its biochar (3.7 t ha?1) unfertilized (0 kg N ha?1) or fertilized (450 kg N ha?1), and then soil inorganic N concentration and distribution, NH3 volatilization, cotton yield and NUE were measured during the next two growing seasons. In unfertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 38–40% and 42–46%, respectively, less than that in control (i.e., unamended soil) during the two growing seasons. In the fertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 30–39% and 43–54%, respectively, less than that in the control. Straw amendment increased inorganic N concentrations, cotton yield, cotton N uptake and NUE during the first cropping season after application, but not during the second. In contrast, biochar increased cotton N uptake and NUE during both the first and the second cropping seasons after application. Furthermore, the effects of biochar on cotton N uptake and NUE were greater in the second year than in the first year. These results indicate that cotton straw and cotton straw biochar can both reduce NH3 volatilization and also increase cotton yield, N uptake and NUE. In addition, the positive effects of one application of cotton straw biochar were more long-lasting than those of cotton straw.  相似文献   

3.
Biochar application has been considered as a rich source of carbon which helps to improve the physico-chemical properties and fertility of the soil. In Pakistan, excessive use of nitrogen fertilizer is considered a serious problem, so it is of vital importance to examine the effect of biochar on soil with varying doses of nitrogen fertilizer. We hypothesized that addition of biochar to an alkaline calcareous soil could improve not only soil quality and crop yield but also nitrogen use efficiency (NUE), reducing the loss of nitrogen (N) in the form of denitrification, ammonia volatilization, and nitrate leaching. A pot experiment was conducted under 2-factorial completely randomized design having three replications to evaluate the NUE in biochar amended calcareous soil. Biochar was applied at the rate of 0%, 1% and 2% (w/w) in pots filled with 17 kg of soil using various levels of N (0%, 50% and 100% of recommended dose) on maize (Zea mays L.). Several soil quality indicators, uptake, and yield of maize were monitored. Biochar application significantly decreased soil pH, increased water-holding capacity, total organic carbon, maize yield, stomatal conductance, and nitrogen uptake in plant. The results of the study indicated that addition of biochar could not only decrease the use of inorganic fertilizers by improving its quality and yield as in our case biochar at the rate of 1% and N at the rate of 50% provided optimum output minimizing the economic cost eventually.  相似文献   

4.
Biochar combined with fertilizer as a soil amendment benefits to improving soil fertility, especially soil organic carbon and crop yield. However, the effect of biochar on the improvement of soil properties and crop yield was varied from soil properties and limited for medium–low-yield farmland in the North China. During the completely randomized field experiment, SIX treatments (biochar applied as 0, 15 and 30 t·ha-1, under 240 and 300 kg N ha-1 nitrogen fertilizer) were applied in wheat season and examined to reveal changes in the SOC and other properties of 0- to 10-cm and 10- to 20-cm soil layers. The results showed that two years after the application of biochar, a significant increase in the SOC was observed, ranging from 19.52% to 97.50% (p < 0.05) in the 0- to 20-cm soil layer. Wheat yield and SOC content increased with increasing amount of biochar applied under the same amount of nitrogen fertilizer. The content of soil available potassium increased significantly under 30 t·ha-1 biochar application (p < 0.05). Both biochar and nitrogen fertilizer application could increase wheat yield, and the effect of biochar application for increasing wheat yield was better than that of nitrogen fertilizer. Wheat yield and SOC content increased with increasing nitrogen fertilizer at the same amount of biochar application. The principal component analysis results showed that biochar input, SOC, available potassium and total nitrogen were the key factors affecting wheat yield. Biochar application is a fast and effective measure to improve SOC and wheat yield in medium- and low-yield farmlands.  相似文献   

5.
The growth and yield performance of green maize (Zea mays), followed by a late-season vegetable cowpea (Vigna unguiculata), was assessed with two rates of three different types of organic-based fertilizers (OBFs) fortified with an inorganic nutrient source. There was also an inorganic fertilizer treatment of NPK 20–10–10 applied at 300 kg ha?1 and a no-fertilizer control treatment. Maize growth was affected by fertilizer type and rate. Organic fertilizer, applied at 5 t ha?1, 3 weeks before maize released enough nutrients to have comparable growth as inorganic fertilizer. Applying the OBF at 2.5 t ha?1 was inadequate to give comparable growth. Application of fortified OBF with total nitrogen content higher than 2.4% N at 5.0 t ha?1 gave maize grain yields comparable with NPK fertilizer. Cowpea yields following early-season maize were highest with DPW + NPK. They were significantly lower with 2.5 t ha?1 of the OBFs. Application of the IAR&T-OBF (OBF made by Institute of Agricultural Research and Training) and decomposed poultry waste (DPW) + NPK at 5.0 t ha?1 gave comparable seed yields significantly higher than OYO-OBF (OBF made by Oyo State Government of Nigeria). NPK fertilizer application supported early-season maize cultivation, but it was not adequate to support the following cowpea. OBF should have nitrogen content up to 2.4% and applied at 5.0 t ha?1 to support an early-season maize cultivation with a late-season cowpea.  相似文献   

6.
Maize (Zea mays L.) is an important food crop in the Guinea savannas of Nigeria. Despite its high production potential, drought, Striga hermonthica parasitsim, and poor soil fertility particularly nitrogen deficiency limit maize production in the savannas. Breeders at IITA have developed drought- and Striga-tolerant cultivars for testing, dissemination, and deployment in the region. Information on the response of these cultivars to N fertilization is, however, not available. This study evaluated grain yield, total N uptake (TNU), N uptake (NUPE), N utilization (NUTE), and N use efficiency (NUE) of selected maize cultivars along with a widely grown improved maize cultivar at two locations in the Guinea savannas of northern Nigeria. Maize grain yield increased with N application. The average grain yield of the maize cultivars was 76% higher at 30, 156% higher at 60, and 203% higher at 120 kg N ha?1 than at 0 kg N ha?1. This suggests that N is a limiting nutrient in the Nigerian savannas. Five drought-tolerant cultivars produced consistently higher yields when N was added at all levels. These cultivars had either high NUPE or NUTE confirming earlier reports that high N uptake or NUTE improves maize grain yield. The study also confirms earlier reports that maize cultivars that are selected for tolerance to drought are also efficient in uptake and use of N fertilizer. This means that these cultivars can be grown with application of less N fertilizer thereby reducing investment on fertilizers and reduction in environmental pollution.  相似文献   

7.
This study evaluated the effect of biochar and phosphorus fertilizer application on selected soil physical and chemical properties in two contrasting soil types: Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Field experiments were conducted in summer and winter. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design with three replicates. Chickpea was the test crop. Soil bulk density, aggregate stability, porosity, total C, total N, C:N ratio, K and Mg were determined. Biochar (10 t ha?1) and phosphorus increased bulk density and decreased porosity at 0–5 and 15–20 cm soil depth on a loamy sand soil in both seasons. The interaction between biochar and phosphorus increased total C and total N on a clay soil in the summer sowing. However, in the loamy sand soil, biochar (10 t ha?1) increased total C, C:N ratio, K and Mg in the summer sowing. The effect of biochar was more evident in the loamy sand soil than the clay soil suggesting that the influence of biochar may be soil-specific.  相似文献   

8.

Purpose

Organo-mineral biochar fertiliser has the potential to replace conventional biochar and organic fertiliser to improve soil quality and increase plant photosynthesis. This study explored mechanisms involved in nitrogen (N) cycling in both soil and ginger plants (Zingiber officinale: Zingiberaceae) following different treatments including organic fertiliser, commercial bamboo biochar fertiliser, and organo-mineral biochar fertiliser.

Materials and methods

Soil received four treatments including (1) commercial organic fertiliser (5 t ha?1) as the control, (2) commercial bamboo biochar fertiliser (5 t ha?1), (3) organo-mineral biochar fertiliser at a low rate (3 t ha?1), and (4) organo-mineral biochar fertiliser at a high rate (7.5 t ha?1). C and N fractions of soil and plant, and gas exchange measurements were analysed.

Results and discussion

Initially, organo-mineral biochar fertiliser applied at the low rate increased leaf N. Organo-mineral biochar fertiliser applied at the high rate significantly increased N use efficiency (NUE) of the aboveground biomass compared with other treatments and improved photosynthesis compared with the control. There was N fractionation during plant N uptake and assimilation since the 15N enrichment between the root, leaf, and stem were significantly different from zero; however, treatments did not affect this N fractionation.

Conclusions

Organo-mineral biochar fertiliser has agronomic advantages over inorganic and raw organic (manure-based) N fertiliser because it allows farmer to put high concentrations of nutrients into soil without restricting N availability, N uptake, and plant photosynthesis. We recommend applying the low rate of organo-mineral biochar fertiliser as a substitute for commercial organic fertiliser.
  相似文献   

9.
This study investigated the impacts of organic- and clay-based soil amendments, and their combinations on crop water productivity (CWP) using maize as a test crop. On-station field trials were established over two consecutive years at the Naphok and Veunkham sites in Laos. At each site, 10 treatments were applied in a randomized complete block design with three replications. The treatments were control, rice husk biochar (10 t ha?1), bentonite clay (10 t ha?1), compost (4 t ha?1), clay-manure compost (10 t ha?1), rice husk biochar compost (10 t ha?1), bentonite clay + biochar, bentonite-clay + compost, biochar + compost, and bentonite clay + biochar + compost. All treatments were applied in 2011. Significant (p < 0.05) treatment effects in CWP and growing period evapotranspiration were determined. At Naphok, differences between the amended and control plots in CWP varied between 0.1 and 0.6 kg m?3 in 2011 and from 0.1 to 0.4 kg m?3 in 2012, whereas differences at Veunkham varied between 0.3 and 1.0 kg m?3 in 2011 and from 0.05 to 0.29 kg m?3 in 2012. At both sites, CWP in 2012 was significantly lower than 2011. Our results illustrate that organic- and clay-based soil amendments improve CWP, indicating that soil-based interventions could be suitable options for improving agricultural productivity.  相似文献   

10.
Abstract

This study was designed to investigate the effect of biochar on maize production and nutrient retention with recommended full and half dose of nitrogen (N) and phosphorus (P) nutrition in loamy soil. In the first study, maize was grown in pots with four levels of biochar (0, 2, 4, and 6?t?ha?1) under two levels of NP fertilizer, viz. recommended (200–150?kg?NP?ha?1) and it’s half (100–75?kg?NP?ha?1) dose. The prominent improvement in plant roots traits, leaf area, plant growth, morphological and yield-related parameters were observed with addition of biochar at 2 and 4?t?ha?1; while, plant height, number of grains per cob, grains and biological yield decreased with biochar addition 6?t?ha?1 along with full dose of NP nutrition. In subsequent field studies, two levels of biochar along with control (0, 2, 4?t?ha?1) were investigated. The more improvement in root growth, leaf area and crop growth was observed when biochar was applied at 2?t?ha?1 with full NP nutrition. Biochar application at 2?t?ha?1 with full NP nutrition produced the highest grain yield (6.64?t?ha?1); however, biochar addition (2?t?ha?1) with half NP nutrition resulted in better grain yield than full dose of NP to enhance maize production as compared with full dose of NP without biochar. Therefore, biochar addition (2?t?ha?1) with half-recommended dose of NP prominently improved the maize productivity in loamy soil and serve as better in replacement of full dose of NP fertilizer.  相似文献   

11.
On-farm research was conducted to investigate the effects of nitrogen (N) and compost (C) on yield and yield components of spring maize (Zea mays L.) under conventional and deep tillage system (T) at the research farm of the University of Agriculture, Peshawar, Pakistan, during spring 2013. The experiment was laid out in a randomized complete block design with split-plot arrangement, using three replications. Three compost levels (0, 1, and 2 t ha?1) and two tillage systems (conventional and deep tillage) were allotted to the main plot, whereas N levels (60, 90, 120, and 150 kg N ha?1) were allotted to subplots in the form of urea. Nitrogen and compost levels had significantly affected all the parameters. Plots treated with 150 kg N ha?1 increased ear length (31 cm), grains ear?1 (413), thousand-grain weight (240.2 g), grain yield (3097 kg ha?1), straw yield (9294 kg ha?1), harvest index (24.7 percent), and shelling percentage (81.7 percent). Compost applied at 2 t ha?1 increased ear length (32 cm), grains ear?1 (430), thousand-grain weight (242.3 g), grain yield (2974 kg ha?1), straw yield (8984 kg ha?1), harvest index (24.6 percent), and shelling percentage (83.2 percent). Tillage system had significant effect on all parameters except ear length and harvest index. Deep tillage system produced more grains ear?1 (365), thousand-grain weight (233.3 g), grain yield (2630 kg ha?1), straw yield (8549 kg ha?1), and shelling percentage (79.6 percent). It was concluded from the results that application of 120 kg N ha?1 + 2 C t ha?1 under a deep tillage system could improve spring maize yield and yield-contributing traits under semi-arid conditions.  相似文献   

12.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

13.
The aim of this study was to determine whether by applying biochar, it is possible to augment the beneficial effects of legume–crop rotation systems on soil fertility and crop performance. Repeated experiments were established in 2012 and 2013 in South-western Benin using a split-split plot design. Two legumes, Mucuna pruriens (mucuna) and Vigna unguiculata (cowpea), were planted for 42 days on biochar-amended and unamended plots and subsequently cut and applied as mulch 5 days before planting rice. Rice plants were either fertilized or not using a fertilizer rate of 60, 30, and 30 kg ha?1 of N, P2O5, and K2O, respectively. The results showed that the application of legume green manures and fertilizer, either singly or in combination, improved soil nutrient availability, CEC, shoot yield, and grain yield of rice on both biochar-amended and unamended plots. However, the effect was significantly (p < 0.05) greater on biochar-amended plots. The mean grain yield for all cropping seasons was 1.8 t ha?1 for biochar-amended plots and 1.3 t ha?1 for unamended plots. The greater grain yield of rice on biochar-amended plots was associated with improved soil fertility and increased N uptake.  相似文献   

14.
Abstract

Effective soil diagnostic criteria for exchangeable potassium (Ex-K) combined with inorganic potassium (K) application rates were developed to lower K input in forage corn (Zea mays L.) production using experimental fields with different application rates and histories of cattle manure compost. Two corn varieties, ‘Cecilia’ as a low K uptake variety and ‘Yumechikara’ as a high K uptake variety, were selected from among 20 varieties and tested to make diagnostic criteria for K fertilization applicable to varieties with different K uptakes. The K uptakes increased from 96 to 303 kg K ha?1 for ‘Cecilia’ and from 123 to 411 kg K ha?1 for ‘Yumechikara’ with increasing Ex-K content on a dry soil basis from 0.11 to 0.92 g kg?1 with no inorganic K fertilizer application. The K uptake by corn for achieving the target dry matter yield of 18 Mg ha?1 was estimated to be approximately 200 kg K ha?1 in common between the two varieties. Yields of both varieties achieved the target yield at an Ex-K content of approximately 0.30 g kg?1 with no K fertilization, although ‘Yumechikara’ reached the target yield at a lower Ex-K content. At the low Ex-K content of 0.1 g kg?1, inorganic K fertilizer application at 83 kg K ha?1 was needed to gain the target yield, and apparent K recovery rate for K fertilizer was calculated to be 70% for both varieties. The K uptakes for gaining the target yield by the K fertilization were lower than that by soil K supply. Based on these results, diagnostic criteria of Ex-K and inorganic K application rates were set up as follows: at an Ex-K content of < 0.15 g kg?1, inorganic K fertilizer is applied at 83 kg K ha?1 (100 kg ha?1 as potassium oxide (K2O) equivalent); at an Ex-K content of 0.15–0.30 g kg?1, the application rate is reduced to 33 kg K ha?1 (40 kg K2O ha?1); at an Ex-K content of ≥ 0.30 g kg?1, inorganic K fertilizer is not applied because of sufficient K in the soil. Additionally, we propose that cattle manure compost be used to supplement soil K fertility.  相似文献   

15.
Abstract

The objective of this study was to determine the effects of nitrogen fertilizer sources of ammonium sulphate and municipal sewage sludge on yield, N content and uptake of the maize (Zea mays L.). Nutrient and heavy metals were determined in soil and plant. The experiment with three sludge rates (256, 513 and 1026 kg total N ha?1 or 9.5, 18.0 and 38.1 t ha?1 sludge), two nitrogen rates (80 and 160 kg N ha?1) and zero-N control were conducted on a clay loam soils under irrigated conditions in Eastern Anatolia region in Turkey. Treatments were arranged in a randomized complete block design with four replications. Yield, N content and total N uptake of maize increased significantly with sludge application. 9.5 t and 19.0 t ha?1 sewage sludge applications did not significantly affect heavy metal content of leaf and grain. However, 38.1 t ha?1 sludge applications increased leaf Pb and Zn. DTPA-extractable Cd, Cu, Fe, Pb and Zn concentrations of the soil increased at applications of 38.1 t ha?1 sewage sludge, whereas applications of 9.5 t and 19.0 t ha?1 sludge only resulted in elevated levels of Cu and Zn, We conclude that if sewage sludge is to be used in production of maize, applications rate up to 19 t ha?1 could be accepted. However, this means also that the N requirement of maize crop is not covered by the sludge; therefore, the rest of nitrogen could be supplied as inorganic N.  相似文献   

16.
Excessive and inappropriate use of fertilizers is a key factor of low sugarcane yield and degradation of soil. A two-year (2013–14 and 2014–15) field study was conducted to assess the impact of combined application of organic and inorganic fertilizers on sugarcane at research farm of Shakarganj Sugar Research Institute, Jhang, Pakistan. Experiment was conducted under randomized complete block design with three replications. Treatments were used as control (no exogenous application), spent wash (160 t ha?1), (nitrogen, phosphorus and potassium) NPK (168:112:112 kg ha?1), spent wash (120 t ha?1) + NPK (42:28:28 kg ha?1), spent wash (80 t ha?1) + NPK (84:56:56 kg ha?1), spent wash (40 t ha?1) + NPK (126:84:84 kg ha?1), and spent wash (160 t ha?1) + NPK (42:28:28 kg ha?1). Application of spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1 resulted maximum crop growth rate (11.35 g m?2 d?1), leaf area index (7.78), and net assimilation rate (2.53 g m?2 d?1). Maximum number of millable canes (14), weight per stripped cane (0.90 kg), stripped cane yield (117.60 t ha?1) and unstripped cane yield (141.25 t ha?1) were observed with spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1, followed by sole fertilizer application @ 168:112:112 kg NPK ha?1 and spent wash @160 t ha?1 + NPK @ 42:28:28 kg ha?1. Similar trend was observed regarding quality parameters. The maximum benefit–cost ratio (1.80) was achieved with integrated application of spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1.  相似文献   

17.
This study was designed to observe physiological indices of a spring maize response with the integration of beneficial microorganism, organic and inorganic nitrogen (N) fertilizer, and N levels. Field experiments were conducted in three replications during 2014 and 2015 at Agronomy Research Farm, the University of Agriculture Peshawar, Pakistan. Different beneficial microbes (BM) (with BM and without BM), organic (farm yard manure, FYM) and inorganic (ammonium nitrate) N ratios (0:100, 25:75, 50:50, 75:25, and 100:0), and nitrogen levels (N) (100, 150, and 200 kg ha?1). Beneficial microorganism, 50:50 ratio of organic and inorganic N, and 200 kg N ha?1 seem better in terms of improving SPAD value, plant height (cm), leaf rea (cm2), and leaf area index (LAI) of spring maize. Therefore, the application of BM, 50:50 ratio of organic and inorganic N, and 200 kg N ha?1 were recommended for enhancing crop physiology in agro-climatic condition for Peshawar, Pakistan.  相似文献   

18.
Abstract

Up to 50% of nitrogen (N) fertilizer can remain in soil after crop harvest in dryland farming. Understanding the fate of this residual fertilizer N in soil is important for evaluating its overall use efficiency and environmental effect. Nitrogen-15 (15N)-labeled urea (165 kg N ha?1) was applied to winter wheat (Triticum aestivum L.) growing in three different fertilized soils (no fertilizer, No-F; inorganic nitrogen, phosphorus and potassium fertilization, NPK; and manure plus inorganic NPK fertilization, MNPK) from a long-term trial (19 years) on the south of the Loess Plateau, China. The fate of residual fertilizer N in soils over summer fallow and the second winter wheat growing season was examined. The amount of the residual fertilizer N was highest in the No-F soil (116 kg ha?1), and next was NPK soil (60 kg ha?1), then the MNPK soil (43 kg ha?1) after the first winter wheat harvest. The residual fertilizer N in the No-F soil was mainly in mineral form (43% of the residual 15N), and for the NPK and MNPK soils, it was mainly in organic form. The loss rate of residual 15N in No-F soil over summer fallow was as high as 48%, and significantly (P < 0.05) higher than that in the NPK soil (22%) and MNPK soil (19%). The residual 15N use efficiency (RNUE) by the second winter wheat was 13% in the No-F soil, 6% in the NPK soil and 8% in the MNPK soil. These were equivalent to 9.0, 2.0 and 2.2% of applied 15N. The total 15N recovery (15N uptake by crops and residual in 0–100 cm soil layer) in the MNPK and NPK soils (84.5% and 86.6%, respectively) were both significantly higher than that in the No-F soil (59%) after two growing seasons. The 15N uptake by wheat in two growing seasons was higher in the MNPK soil than in NPK soil. Therefore, we conclude that a high proportion of the residual 15N was lost during the summer fallow under different land management in dryland farming, and that long-term combined application of manure with inorganic fertilizer could increase the fertilizer N uptake and decrease N loss.  相似文献   

19.
It is important to develop integrated fertilization strategies for various crops that enhance the competitive ability of the crop, maximize crop production and reduce the risk of nonpoint source pollution from fertilizers. In order to study the effects of mineral nitrogen fertilization and biofertilizer inoculation on yield and some physiological traits of rapeseed (Brassica napus L.) under different levels of sulfur fertilizer, field experiments in factorial scheme based on randomized complete block design were conducted with three replications in 2012 and 2013. Experimental factors were: (1) four levels of chemical nitrogen fertilizer (0, 100, 150 and 200 kg N ha?1), (2) two levels of biofertilizer (with and without inoculation) consisting Azotobacter sp. and Azospirillum sp. and (3) two levels of sulfur application (0 and 50 kg S ha?1). Rapeseed yield, oil content of grains and studied physiological traits had a strong association with the N fertilization, biofertilizer inoculation and sulfur (S) application. Higher rates of N fertilization, biofertilizer inoculation and S application increased the grain yield of rapeseed. In the case of physiological traits, the highest value of relative water content (RWC) was recorded in 100 kg N ha?1 that was statistically in par with 150 kg N ha?1 application, while usage of 150 kg N ha?1 showed the maximum cell membrane stability (CMS). Inoculation with biofertilizer and S fertilization resulted in higher RWC and CMS in rapeseed plants. The chlorophyll content showed its maximum values in the highest level of N fertilization, biofertilizer inoculation and S application. The usage of 200 kg N ha?1 significantly decreased the oil content of rapeseed grains, but the highest grain oil content was obtained from the application of 150 kg N ha?1, Azotobacter sp. and Azospirillum sp. inoculation and S fertilization. It seems that moderate N rate (about 150 kg N ha?1) and S application (about 50 kg S ha?1) can prove to be beneficial in improving growth, development and total yield of inoculated rapeseed plants.  相似文献   

20.
Abstract

Optimisation of water and nitrogen use is an effective management tool to conserve resources and reduce environmental pollutions. Response surface methodology (RSM) is defined as a collection of mathematical and statistical methods that are used to develop, to improve or to optimize a product or process. In order to determine optimum levels of water, nitrogen and planting density of canola (Brassica napus L.), a 2-year experiment (2010–2011) was carried out by central composite design as RSM at the research station of Ferdowsi University of Mashhad. The treatments were designed based on low and high levels of irrigation (1500 and 4000 m3 ha?1), nitrogen (0 and 400 kg N ha?1) and density (50 and 150 plant m?2) as independent variables. Furthermore, seed yield, nitrogen losses, nitrogen use efficiency (NUE) and water use efficiency (WUE) were measured as response variables in a full quadratic polynomial model. Optimum levels of irrigation, nitrogen and planting density were suggested to achieve the target range of dependent variables based on three scenarios: economic, environmental and eco-environmental. The results showed that increasing irrigation and fertilizer led to an increase in seed yield and nitrogen losses, whereas increasing canola density resulted in an increase in seed yield but a decrease in nitrogen losses. The optimum levels of water, fertilizer and density based on environmental scenario were 1802 m3 ha?1, 11 kg N ha?1 and 122 plant m?2, respectively. To achieve optimum conditions under the economic scenario, it is necessary to use 3411 m3 water ha?1, 178 kg N ha?1 and 119 plant m?2. Amounts of 2347 m3 water ha?1, 92 kg N ha?1 and 114 plant m?2 were found to be the optimum conditions for the eco-environmental scenario. In general, it seems that resource use based on the eco-environmental scenario may be the most favorable cropping strategy for canola production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号