首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Common bean (Phaseolus vulgaris L.) proved to be very sensitive of low pH (4.3), with large genotypic differences in proton sensitivity. Therefore, proton toxicity did not allow the screening of common bean genotypes for aluminium (Al) resistance using the established protocol for maize (0.5 mM CaCl2, 8 μM H3BO3, pH 4.3). Increasing the pH to 4.5, the Ca2+ concentration to 5 mM, and addition of 0.5 mM KCl fully prevented proton toxicity in 28 tested genotypes and allowed to identify differences in Al resistance using the inhibition of root elongation by 20 μM Al supply for 36 h as parameter of Al injury. As in maize, Al treatment induced callose formation in root apices of common bean. Aluminium‐induced callose formation well reflected the effect of Ca supply on Al sensitivity as revealed by root‐growth inhibition. Aluminum‐induced callose formation in root apices of 28 bean genotypes differing in Al resistance after 36 h Al treatment was positively correlated to Al‐induced inhibition of root elongation and Al contents in the root apices. However, the relationship was less close than previously reported for maize. Also, after 12 h Al treatment, callose formation and Al contents in root apices did not reflect differences in Al resistance between two contrasting genotypes, indicating a different mode of the expression of Al toxicity and regulation of Al resistance in common bean than in maize.  相似文献   

2.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

3.
Abstract

Growing evidence of positive crop responses to gypsum or phosphogypsum (PG) application in acid soils strongly support the use of these amendments as an ameliorant of subsoil acidity. Although gypsum improves Ca availability in subsoils, its role in alleviation of Al toxicity needs careful attention. In the current study, either PG, CaSO4.2H2O or CaCl2.2H2O was added (to supply 12 mM Ca) to solutions containing 40 μM Al at pH 4.1 + 0.1. Solution pH was gradually raised to 4.5, 4.8 and then to 5.3 at various time intervals during 25 d aging of the solutions at 25 + 1OC.

Concentration of Al measured by aluminon method without preacidification and preheating, referred to as “reactive Al”; in this paper, was 16 μM in 2 g L‐1PG solution without added Al. This accounted 38% of total soluble Al in PG solution. Addition of 2 g L‐1PG to solution containing 40 μM Al, resulted in only 42% of total Al in solution present in forms reactive with aluminon. According to MINTEQ speciation model, Al in solution was present as an entirely complexed form with F. An increase in solution pH up to 5.3 had no effect on measured concentration of reactive Al or predicted distribution of Al species.

Addition of CaSO4.2H2O to 40 μMAl solutions had no effect on the concentration of reactive Al within pH 4.1 ‐4.8, however, up to 62% of total Al was in a form complexed with SO4 2‐, as predicted by MINTEQ model. The concentration of reactive Al decreased by 60% at pH 5.3. Addition of CaCl2.2H2O also had no effect on the concentration of reactive Al within pH 4.1 ‐ 4.8. Nearly 73 ‐ 94% of total Al was present in Al3+form. An increase in pH to 5.3, decreased the concentration of reactive Al by 27%. The results suggest that ion‐pairing of Al with Fwould appear to be a possible mechanism for alleviation of Al toxicity by PG at pH range 4.1 ‐ 5.3. With regard to CaSO4.2H2O, at pH 4.1 ‐ 4.8 ion‐pairing with SO.4 2‐appears to be possible mechanism for the alleviation of Al toxicity. In addition, at pH 5.3 a considerable decrease in reactive Al was evident which would further alleviate Al toxicity.  相似文献   

4.
Alleviation by calcium (Ca) of inhibition of soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation by hydrogen (H) and aluminum (Al) was evaluated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment containing nutrient solution with treatments consisting of factorial combinations of either pH (4.0, 4.6, and 5.5) and Ca (0.2, 2.0, 10, and 20 mM), Al (7.5, 15, and 30 μM) and Ca (2.0,10, and 20 mM) at pH 4.6, or Ca (2, 7, and 12 mM) levels and counter ions (SO4 and Cl) at pH 4.6 and 15 μM Al. Length of tap roots and their laterals increased with solution Ca concentration and pH value, but decreased with increasing Al level. Length of both tap and lateral roots were greater when Ca was supplied as CaSO4 than as CaCl2, but increasing Ca concentration from 2 to 12 mM had a greater effect on alleviating Al toxicity than Ca source. In the absence of Al, relative root length (RRL) of tap and lateral roots among pH and Ca treatments was related to the Ca:H molar activity ratio of solutions (R2≥0.82). Tap and lateral RRL among solutions with variable concentrations of Al and Ca at pH 4.6 were related to both the sum of the predicted activities of monomeric Al (R2≥0.92) and a log‐transformed and valence‐weighted balance between activities of Ca and selected monomeric Al species (R2≥0.95). In solutions with 15 μM Al at pH 4.6, response of tap and lateral RRL to variable concentrations of CaSO4 and CaCl2 were related to predicted molar activity ratios of both Ca:Al3+ (R2≥0.89) and Ca:3 monomeric Al (R2≥0.90), provided that AISO4 and AI(SO4)2 species were excluded from the latter index. In all experiments H and Al inhibited length of lateral roots more than tap roots, and a greater Ca:H or Ca:Al concentration ratio was required in solutions to achieve similar RRL values as tap roots.  相似文献   

5.
Abstract

Considerable uncertainty prevails concerning a suitable measure that can adequately describe Al phytotoxicity in nutrient and soil solutions. A study was conducted to evaluate the ability of a modified aluminon technique to discriminate between phytotoxic and non‐phytotoxic Al in solutions containing 80 μM Al with varying levels of CaSO4(625 to 10000 μM), at two pH levels (4.2 and 4.8). The concentration of Al measured by the modified aluminon technique ranged from 18.3 to 77.7 μM,thereby indicating substantial polymerization in some of the solutions. The greatest amount of polymerization occurred at pH 4.8 in the presence of 625 μM CaSO4. Increasing additions of CaSO4resulted in an increase in predicted activity of AlSO4 +at both pH levels. However, with increasing addition of CaSO4, the predicted activity of Al3+decreased at pH 4.2 or remained relatively constant at pH 4.8. The relationship between the sum of predicted activities of monomeric Al (SaAl mono.) in solution and tap root length of soybean [Glvcine max(L.) Merr.] cv. Lee was extremely poor, thereby indicating the inability of the modified aluminon technique to measure phytotoxic Al in solutions employed in the current study. This difficulty was due to failure of the modified aluminon technique to exclude lesser phytotoxic AlSO4 +species. The activity of Al3+was closely related to tap root length (R2= 0.865). The prediction of root length response to Al was further improved (R2= 0.899) by considering the solution Al index as: S[3aA13+ + 2aAl(OH)2+ + aA1(OH)+]. There was a poor relationship between tap root length and the concentration of polymeric Al, thus suggesting the lower phytotoxicity of this component under the prevailing solution conditions.  相似文献   

6.
Soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation under varying concentrations of solution hydrogen (H) and aluminum (Al) was investigated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment with solutions adjusted to either different pH values from 3.7 to 5.5 or a factorial combination of pH (4.0,4.6, and 5.2) and Al (0,7.5, 15, and 30 μM) levels. Ionic forms of Al were estimated with GEOCHEM and solution Al was determined with ferron. Boron (B) (18.5 μM) and zinc (Zn) (0.5 μM) were supplied to all solution treatments, in addition to 2000 μM Ca, after preliminary studies at pH 5.2 without Al indicated that their omission inhibited length of tap roots and their laterals in the subsurface compartment. Both H+ and Al inhibited the length of lateral roots more than tap roots. Lateral roots failed to develop on tap roots at pH<4.3 or in treatments with 30 μM Al. Relative tap root length (RRL) among treatments receiving Al correlated with Al as measured by reaction with ferron for 30s. Ferron‐reactive Al was correlated to GEOCHEM‐predicted Al3+ activity (r=0.99). A 50% reduction in RRL occurred with either 2.1 μM Al3+ activity or 4.9 uM ferron‐reactive Al. The absence of shoot and soil‐root biomass differences among solution treatments in the split‐root system indicated that differences in root growth in the subsurface compartment were not directly confounded with differences in top growth.  相似文献   

7.
Beneficial effects of aluminum (Al) on plant growth have been reported for plant species adapted to acid soils. However, mechanisms underlying the stimulatory effect of Al have not been fully elucidated. The aim of this study was to determine the possible contribution of photosynthesis, antioxidative defense, and the metabolism of both nitrogen and phenolics to the Al‐induced growth stimulation in tea (Camellia sinensis [L.] Kuntze) plants. In hydroponics, shoot growth achieved its maximum at 50 μM Al suply (24 μM Al3+ activity). A more than threefold increase of root biomass was observed for plants supplied with 300 μM Al (125 μM Al3+ activity). Total root length was positively related to root Al concentrations (r = 0.98). Chlorophyll a and carotenoid concentrations and net assimilation rates were considerably enhanced by Al supply in the young but not in the old leaves. Activity of nitrate reductase was not influenced by Al. Higher concentrations of soluble nitrogen compounds (nitrate, nitrite, amino acids) and reduction of protein concentrations suggest Al‐induced protein degradation. This occurred concomitantly with enhanced net CO2‐assimilation rates and carbohydrate concentrations. Aluminum treatments activated antioxidant defense enzymes and increased free proline content. Lowering of malondialdehyde concentrations by Al supply indicates that membrane integrity was not impaired by Al. Leaves and roots of Al‐treated plants had considerably lower phenolic and lignin concentrations in the cell walls, but a higher proportion of soluble phenolics. In conclusion, Al‐induced growth stimulation in tea plants was mediated by higher photosynthesis rate and increased antioxidant defense. Additionally, greater root surface area may improve water and nutrient uptake by the plants.  相似文献   

8.
The present study was conducted to investigate the cell-wall polysaccharides and hydroxycinnamates in wheat plants (Triticum aestivum L.) under aluminum (Al) stress at a higher level of calcium (Ca) supply. Seedlings were grown in nutrient solution for 7 d and then subjected to treatment solutions containing Al (0 or 100 μM) and Ca (0 or 2500 μM) in a 500 μM CaCl 2 solution at pH 4.5 for 8 d. Calcium treatment (2500 μM) improved root growth significantly under Al-stress conditions. The contents of pectin and hemicellulose in roots were increased under Al-stress conditions, and this increase was conspicuous in the hemicellulosic fraction. The increase in the hemicellulose was attributed to increases in arabinose, xylose, and glucose in neutral sugars. High Ca treatment decreased these contents in Al-stressed cell walls. Aluminum treatment increased the content of ferulic acid, whereas Ca treatment with Al reduced the content. These results suggest that Al may modify the mechanical properties of cell-wall polysaccharides by enhancing the synthesis of arabinoxylan, β-glucan, and ferulic acid in the cell wall. High Ca treatment may maintain the normal synthesis of these materials even under Al-stress conditions.  相似文献   

9.
The effect of varying solution calcium (Ca) and magnesium (Mg) concentrations in the absence or presence of 10 μM aluminum (Al) was investigated in several experiments using a low ionic strength (2.7 × 10‐3 M) solution culture technique. Aluminium‐tolerant and Al‐sensitive lines of wheat (Triticum aestivum L.) were grown. In the absence of Al, top yields decreased when solution Ca concentrations were <50 μM or plant Ca concentrations were <2.0 mg/g. Top and root yields decreased when solution Mg concentrations were <50 μM or plant Mg concentrations were <1.5 mg/g. There were no differences between the lines in solution or plant concentrations at which yield declined. Increasing solution Ca concentrations decreased plant Mg concentrations in the tops (competitive ion effect) but increased plant Mg concentrations in the roots of wheat. This suggests that Ca is competing with Mg when Mg is transported from the roots. Increasing solution Mg concentrations decreased plant Ca concentrations in the tops and the roots (competitive ion effect). In the roots, increasing solution Mg concentrations decreased plant Ca concentrations at a lower solution Ca concentration in the Al‐sensitive line than the Al‐tolerant line. In the presence of Al, increasing solution Ca and Mg concentrations increased yield (Ca and Mg ameliorating Al toxicity). Yield increased until the sum of the solution concentrations of the divalent cations (Ca+Mg) was 2,000 μM for the Al‐tolerant line or 4,000 μM for the Al‐sensitive line. The exception was that yield decreased when solution Mg concentrations were > 1,500 μM and the solution Ca concentration was 100 μM (Mg exacerbating Al toxicity). The ameliorative effects of solution Ca or Mg on Al tolerance were not related to plant Ca or Mg concentrations per se.  相似文献   

10.
Cadmium (Cd) uptake by white lupin (Lupinus albus) was studied at low Cd concentrations (0.05nM to 5 μM) in hydroponic solution. Ten 12‐day old seedlings were pretreated in 0.5 mM CaCl2 solution in presence and absence of metabolic inhibitors (DCCD, DNP or NaN3). Cadmium solutions were labelled with carrier free 109CdCl2. Cadmium uptake was measured after a 2 h desorption in unlabelled CdCl2 solution. In the absence of any metabolic inhibitor and at 5 [μM Cd, roots absorbed 235.23 μg Cd/g root dry weight. Over the range of lnM to 5 μM Cd, exchangeable Cd represented approximately 5% of the absorbed fraction, and about 25 % of the total absorbed Cd was adsorbed to the root. Cadmium was passively absorbed to about 30% as observed in the presence of the inhibitor (DCCD). Ative absorption which represented 70% of Cd uptake involved H+‐ATPase carriers. Cadmium absorption was reduced to 30 and 20% in presence of lanthanum (La3+) and zinc (Zn2+), respectively which suggested that calcium (Ca), Cd, and Zn use the same carriers. Cadmium uptake in presence of DNP or NaN3 was approximately 4‐ fold that in control. Data showed presomption for an excretion of Cd out of root cells which could be the expression of a detoxification process limiting cell contamination.  相似文献   

11.
Three experiments were conducted in which roots of two species of Lotus were immersed for up to 40 min in complete nutrient solutions containing 6, 15 or 25 μM Al. The two species tested were L. pedunculatus cv. Grasslands Maku (Al‐tolerant) and L. corniculatus cv. Maitland (Al‐sensitive). There was an initial rapid (< 5 min) decrease in solution Al at 25 μM Al. The effect was less marked with solution Al ≤ 15 μM. The decrease in solution Al was greater in the Al‐sensitive Maitland than in the Al‐tolerant Grasslands Maku, particularly when expressed on the basis of root fresh mass and root length. Root cation‐exchange capacity (CEC) was lower in Grasslands Maku than in Maitland, viz. 23.9 vs 36.5 mmol kg‐1 dry mass. Maitland roots removed more Al from solution than did those of Maku on the basis of total exchange capacity.

We propose a mechanism of Al tolerance on the basis of the results of this study and of other published information, viz. that differential Al tolerance results from differences in root CEC. Aluminum‐tolerant genotypes have roots with low CEC, and high Al activities (> 20 μM in the case of Grasslands Maku) are required to precipitate the relatively highly methylated pectins associated with low CEC. In contrast, relatively low activities of Al would precipitate the pectins in plants with roots of high CEC. This would decrease the protective capacity of the pectins, enabling the toxic, monomeric Al ions to come in contact with a number of Al‐sensitive compounds or processes in the cell wall, plasmalemma, or cell cytoplasm.  相似文献   

12.
Seedlings of Norway spruce (Picea abies [L.] Karst.), which had been grown under sterile conditions for three months, were treated for one week in a hydroculture system with either 500 μM AlCl3 or 750 μM CaCl2 solutions at pH 4. Organic acids were determined in hot‐water extracts of ground root tissue. Oxalate (3.3—6.6 μmol (g root dry weight)—1) was most abundant. Malate, citrate, formate, acetate, and lactate concentrations ranged between 1—2 μmol (g root dry weight)—1. Organic substances and phosphate found in the treatment solutions at the end of the experimental period were considered to be root exudates. Total root exudation within a 2‐day period ranged from 20—40 μmol C (g root weight)—1. In root exudates, organic acids, and total carbohydrates, total amino acids, and total phenolic substances were quantified. Citrate and malate, although present in hot‐water extracts of root tissue, were not detected in root exudates. Phosphate was released from Ca‐treated plants. In Al treatments, there was indication of Al phosphate precipitation at the root surface. Oxalate and phenolics present in the exudates of Norway spruce seedlings are ligands that can form stable complexes with Al. However, concentrations of these substances in the treatment solutions were at micromolar levels. Their importance for the protection of the sensitive root apex under natural conditions is discussed.  相似文献   

13.
White clover (Trifolium repens L., cultivar Huia), a dominant forage legume in Appalachia, usually grows poorly on acidic soils common to the region. The effects of bulk solution concentrations of calcium (Ca), hydrogen (H), and aluminum (Al) on the relative root growth (RRG) of white clover were determined using one‐ to three‐day‐old seedlings to assess the relative toxicity of H+ and Al. The RRG was affected by bulk solution concentrations of Ca, Al, and pH, in a manner indicative of significant interactions among these parameters. The RRG was directly related to the activities of Al3+ or H+ at the surface of the root as calculated by the Gouy‐Chapman‐Stern model. Fifty percent inhibition of RRG occurred at activities of 5 and 200 μM Al3+ and H+, respectively. A large part of the interaction between bulk solution concentrations of Ca, Al, and H could be explained by how these parameters affected the activities of these ions at the root surface.  相似文献   

14.
Aluminum toxicity is an important limitation to crop yields in the acid soils of southeastern U. S. and other parts of the world due to its detrimental effects on roots. Soluble organics in soil solution ameliorate Al toxicity, a phenomenon which can be studied employing synthetic chelates. Theoretical models predict that Al will be complexed on nearly a one to one molar basis by nitrilotriacetic acid (NTA) at toxic pH levels found in acid soils (4.0 to 4.5). A series of growth chamber experiments were conducted with NTA at various Al and pH levels to test equilibrium models using sorghum [Sorghum bicolor (L.) Moench] as a bioassay for the uncomplexed Al. At pH 3.5 neither Al nor NTA affected root growth which was very poor, probably because of H+ toxicity. At pH 4.0 and 4.5 root growth was reduced by Al levels, and NTA ameliorated toxicity as predicted by the theoretical model. Root length was reduced at pH 4.0 relative to pH 4.5 indicating that H+ ion was toxic at pH 4.0. The bioassay method was successful in confirming the model for Al-chelate equilibria for NTA. Differential pulse polarography was found to be sensitive to the uncomplexed Al and may have potential in determining toxic Al in soil solution.  相似文献   

15.
Recent investigations have shown that phosphate (P) mobilization by root exudates is an important feature of genotypes to acquire P even in soils of low‐P availability. We, therefore, investigated P mobilization processes in the rhizosphere of red clover (Trifolium pratense L.) and black mustard (Brassica nigra L.) on a humic podzol. As measured by the Kuchenbuch‐Jungk method (Kuchenbuch and Jungk, 1982), both species accumulated similar quantities of citrate (12 μmol/g soil) in the rhizosphere in about 1 mm distance from the soil‐root interface. Despite of similar concentrations of P‐mobilizing citrate in the rhizosphere of both species, red clover took up nearly the two‐fold of P compared to black mustard. Differences in rhizosphere pH were determined between both species. Black mustard did not acidify the rhizosphere, whereas red clover decreased the pH in the rhizosphere from 5.8 to about 4.0 (in 0.01M CaCl2). The simultaneous acidification and excretion of citrate compared to citrate excretion alone had consequences for P mobilization processes in the rhizosphere. Phosphate mobilization from the soil solid phase was higher at higher pH. Thus, the citrate‐induced P desorption was not the limiting step in P acquisition by red clover and black mustard. Calculations of P distribution in the soil solution between free ortho‐P and humic‐associated P showed that at higher pH most of the P was associated with dissolved humic substances, whereas at pH < 5, most of the P was present as free ortho‐P. These P species can readily be taken up by the roots whereas humic‐associated P must probably be desorbed from the humic surface before uptake. Phosphate species calculations, therefore, explained the higher P uptake of red clover compared to black mustard. Aluminum species distribution calculations in the soil solution further show that even at pH < 5.0 in the soil solution, citrate strongly complex Al and thereby reduce the activity of monomeric Al species. The excretion of citrate can, therefore, counteract the root induced acidification of the rhizosphere with respect to Al toxicity.  相似文献   

16.
Maize cultivars (Zea mays L.) were evaluated for their aluminum (Al) sensitivity using intact plants and excised root tips exposed to 25 μM Al in nutrient solution of low ionic strength and pH 4.3. Aluminum supply increased callose formation and Al concentrations in root tips of intact plants as well as in excised root tips. Using intact plants, differences in Al sensitivity among cultivars could be characterized by Al‐induced callose formation, Al‐induced inhibition of root elongation, as well as Al contents in root tips as parameters. Significant correlations between Al‐induced callose formation and Al contents in root tips (r2 = 0.64**) and inhibition of root elongation (r2 = 0.80***) were found. Excised root tips did not show a significant Al‐induced inhibition of root elongation. While average Al‐induced callose formation was similar for root tips of intact plants and excised root tips, mean Al contents in excised root tips were up to 1.5‐fold higher than in root tips of intact plants after 24 h of Al treatment. Aluminum‐induced callose formation as found in excised root tips did neither correspond to Al‐induced callose formation nor to inhibition of root elongation of intact plants. The addition of 10 mM glucose to the incubation medium led to a significant increase in the elongation of excised root tips and a 2‐3‐fold increase in Al‐induced callose formation. Staining with triphenyl‐tetrazolium‐chloride (TTC) revealed increased viability of these root segments. However, these effects of glucose supply did not improve the characterization of the cultivars for Al resistance. The results presented suggest that Al exclusion mechanisms expressed in root tips of intact plants might be non‐operational in excised root tips. Therefore, the characterization of maize germplasm for Al resistance using excised root tips appears not to be reliable.  相似文献   

17.
Labile Al in the soil solution measured by 8-hydroxyquinoline (AlHQ) was a better predictor of plant growth than trivalent Al (AlIC3+) measured by ion chromatography (IC). HQ reacted with some organic Al complexes which did not separate during chromatography. In the presence of oxalic acid, AlHQ was greater than AlIC3+, which was the same as the greater than Al3+ (Al3+Calc), whereas in the presence of citric acid, AlHQ was greater than AlIC3+, and both were greater than Al+3Calc, In extracts of soils that had been acidified, Al3+IC was less than AlHQ, which was similar to Al3+Calc, when it was assumed that the only complexing ligands were OH? and F?. The proportion of Al3+IC in the soil solutions decreased more than AlHQ as the pH increased. Organic ligands appeared to form complexes with Al at the expense of AIF complexes. Forms of Al detected by IC differed in CaCl2 extracts and soil solutions. AlHQ in the CaCl2 extracts and soil solution were closely correlated, although the proportion of AlHQ was higher in the CaCl2 extracts. And soil solutions. AlHQ in the CaCl2 extracts and soil solution were closely correlated, although the proportion of AlHQ was higher in the CaCl2 extracts.  相似文献   

18.
Effects of Al toxicity and interaction of Al and Mg on growth of twelve sorghum (Sorghum bicolor (L.) Moench) genotypes have been studied in nutrient solutions (pH 4.2). Aluminium at 30 μM decreased biomass (dry matter yield) of the individual genotypes by factors between 1.27 and 7.36, with identical sensitivity grouping of genotypes as obtained in an earlier pot experiment with an acid soil. Resembling acid-soil stress, Al toxicity was simultaneously expressed in two independent ways, i.e. impairment of root development and induced Mg deficiency. The effect of Al on total dry matter production of the genotypes was correlated more closely with changes in specific root length (m g−1 dry root) than with changes in internal Mg status. Increased Mg concentrations in the solutions (2.5 and 7.5 instead of 0.25 mM) not only decreased Al-induced Mg deficiency but also reduced the concentrations of Al in/on the roots and its damaging effect on root development. Therefore, the sorghum genotypes were less sensitive to Al at the higher Mg levels. At a high Mg concentration in the solution (7.5 mM) dry matter yield of two genotypes was even stimulated by Al.  相似文献   

19.
A 1,4‐dihydroxypyridine type of ion channel blocker, nifedipine [1,4‐dihydro‐2,6‐dimethyl‐4‐(2‐nitrophenyl)‐3,5‐pyridinedicarboxylate dimethyl ester], was tested on the root absorption of Al3+ and Ca2+ by sorghum [Sorghum bicolor (L.) Moench] cultivars with varying acid stress tolerance. In an acid stress sensitive cultivar, Funk G522DR, nifedipine (1 μM) influenced Ca2+ but not Al3+ absorption. In one acid stress tolerant cultivar, SC574, nifedipine (1 μM) influenced both Ca2+ and Al3+ absorption. In a second acid stress tolerant cultivar, SC283, nifedipine (1 μM) did not influence Ca2+ but did influence Al3+ absorption. Considerable genetic diversity is present in Ca2+ and Al3+ absorption between sorghum cultivars.  相似文献   

20.
Aluminum (Al) toxicity has been identified as one of the most important factors limiting plant growth in acid soil. Besides Al, nitrite (NO2 ?) may also be a significant stress factor in an acid environment. The objective of this study was to examine the effects of Al and NO2 ? stress on the growth and potassium (K+) uptake of roots and their transport toward the shoots of an Al-resistant common wheat (Triticum aestivum L. cv. Jubilejnaja 50) and an Al-sensitive durum wheat (T. durum Desf. cv. GK Betadur) grown in 0.5 mM CaSO4 solution at pH 4.1 or 6.5. Root elongation of durum wheat was inhibited with 30% at 10 μM AlCl3 treatment, while this low Al-concentration did not show a significant effect on root growth of common wheat. In all cases shoot growth was not influenced under low-salt conditions by 10 μ M AlCl3, but exposure to 100 μM KNO2 (alone or in combination with Al) had a definite stimulatory effect on growth. Aluminum was found to stimulate the K+(86Rb) influx in short-term (6 h) experiments, but to inhibit it in long-term (3 days) experiments. This treatment was thought to damage the plasma membrane. When 10 μM 2,4-dinitrophenol was present in the uptake solution the Al-stimulated K+ uptake stopped even in short-term experiments. In the case of nitrite and nitrite + Al treatment combinations, however, a striking inhibition was observed in the K+(86Rb) influx and the K+ concentration of the roots and shoots of both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号