首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic wastes can be usefully recovered to produce organic amendments, for example, compost, to be used for crop production, thus reducing impacts through efficient waste management. The aim of this work was to study the effects of compost obtained from municipal waste in combination with poultry manure on plant growth, nitrate reductase (NR) activity and absorption and distribution of heavy metals (HM) in plant tissues of tomatoes, grown in pots in greenhouses. Two compost types obtained from municipal waste mixed with poultry manure (C1?=?3:2 and C2?=?2:3) were used at two different ages (105 d and 173 d) and at two mix rates with soil (32.5?g pot?1 and 65?g pot?1); soil with no compost amendment was used as control. The experiment was conducted using tomato plants in pots and plant growth and nutrient plant uptake was determined after 65?days from plant transplanting. Results obtained indicated that compost type and compost rate affected biomass production. However, compost age did not influence the development of plants. Nutrient status of tomato plants was also investigated with reference to the N cycle. Nitrite accumulation in the leaves increased with the increase in compost doses. The accumulation of NO2? was associated with a significant increase in NR activity. HM content in leaves decreased with compost use. HM accumulated preferentially in roots and leaves and the soil to root metals transfer was in this order: Fe (1.08–2.14)> Co (0.53–4.10)>Cu (0.28–2.28) >Mn (0.3–1.34) >Zn (0.87–1.21)>Cr (0.12–1.64). The highest and lowest dynamic bioaccumulation factors (BAFdyn) were observed in roots and stems, respectively. The root system acted as a barrier for Cd and Pb. It was concluded that compost use is beneficial for tomato plants, with particular reference to the compost obtained by using a higher amount of poultry manure (C2) in the mix.  相似文献   

2.
The purpose of this research project was to 1) evaluate rate of compost application and 2) to compare compost with uncomposted raw material and inorganic fertilizer N application upon maize and soybean growth and productivity, and upon soil characteristics. During the first three years of the study, the source of uncomposted material and compost was food waste and ground newsprint. During years 4 to 9 of the study, the source of uncomposted material and compost was dairy cow manure and wood chips. Application rates in field site 1 were 0, 11.2, 22.4, 33.6 and 44.8 Mg ha?1 compost, 44.8 Mg ha?1 uncomposted material and 140 kg ha?1 fertilizer N (as urea). Application rates in field site 2 were 0, 22.4, 44.8, 67.2 and 134.4 Mg ha?1 compost, 134.4 Mg ha?1 uncomposted manure and 180 kg ha?1 fertilizer N (dry matter basis). The high rates of compost application significantly raised organic matter levels, and available P and K compared to inorganic fertilizer N. Uncomposted manure and increasing compost application rates significantly increased grain yield, number of kernels per plant and plant weight. Composting significantly reduced pathogen indicator bacteria concentrations. The data of this study suggest that on these high organic matter soils 22.4 Mg ha?1 to 44.8 Mg ha?1 are optimal compost application rates.  相似文献   

3.
Abstract

The influence of farmyard manure (FYM) and equivalent mineral NPK application on organic matter content, hot water extractable carbon (HWC), microbial biomass C (Cmic), and grain yields in a long-term field experiment was assessed after 40 years in Hungary. The unfertilized plot, FYM fertilized plots and plots fertilized with equivalent NPK fertilizer contained 0.99%, 1.13% and 1.05% total organic carbon (TOC) respectively. Compared to the unfertilized plot, FYM application resulted in 8.2% higher TOC than equivalent NPK fertilization. The highest TOC was only 1.21%, much lower than expected for a soil containing 21.3% of clay. The quantity of HWC varied depending on the type of fertilization: Compared to control, FYM treatments lead to 29% more HWC than mineral fertilization (FYM: 328 mg kg?1; NPK: 264 mg kg?1). The impact of FYM and equivalent NPK fertilizer on Cmic was contrary. FYM and NPK resulted in 304 and 423 mg kg?1 Cmic, respectively. The difference was 119 mg kg?1; 42% as compared to the unfertilized plot. Despite the higher HWC content, FYM treatments lead to significantly less (35%) grain yields than equivalent NPK doses; Cmic content showed closer correlation to grain yields.  相似文献   

4.
ABSTRACT

Incorporating deep litter cow and deep litter poultry manures with the top 30-cm soil improved orchard soil chemistry, including nutrient availability, soil organic matter, electrical conductivity (EC), pH, cation exchange capacity (CEC) and biological activity in a ‘Golden Delicious’ apple (Malus domestica Bork) orchard in Zanjan, Iran. Application of deep litter cow manure at 30 t ha?1 or deep litter poultry manure at 10 t ha?1 resulted in a higher rate of nitrogen (N) release, and thus increased yield and fruit size, but decreased fruit color. The least leaf minerals were found in the untreated control trees. The control trees showed minor symptoms of N, iron (Fe), and magnesium (Mg) deficiencies during the following season. Positive correlation existed between the rate of manure applied and the content of soil organic matter (OM). The deep litter poultry manure at 10 t ha?1 increased the soil K, Mg, calcium (Ca), ammonium-N, and EC levels.  相似文献   

5.
Bulking agents and bedding materials used on farms for composting manures affect the time required for composts to mature. The effects of these materials on guidelines for the use of composted manures in potting mixes are not fully known. Several chemical and biological compost characteristics were mentioned and a cucumber plant growth greenhouse bioassay was performed on samples removed from windrows during composting of: (i) dairy manure amended with wheat straw; (ii) dairy manure amended with sawdust (mostly Quercus spp.); and (iii) pig manure amended with sawdust and shredded wood (mostly Quercus spp.). Dry weights of cucumber seedlings grown in fertilized and unfertilized potting mixes amended with composts (30%, v/v) having stability values of <1 mg CO2-C g-1 dw d−1, did not differ significantly from those in a control peat mix. Only the most mature dairy manure-wheat straw compost samples consistently established sufficient N concentrations in cucumber shoots in unfertilized treatments. For the dairy manure-wheat straw compost, all possible subset regression analyses of compost characteristics versus cucumber plant dry weight revealed that any of several compost characteristics (electrical conductivity-EC, compost age, total N, organic C, C-to-N ratio, ash content, CO2 respirometry, Solvita CO2 index and the Solvita® Compost Maturity Index) predicted growth of cucumber in the unfertilized treatments, and thus maturity. In contrast, at least two characteristics of the dairy manure-sawdust compost were required to predict growth of cucumber in the unfertilized treatments. Effective combinations were EC with compost age and the Solvita® maturity index with total N. Even five compost characteristics did not satisfactorily predict growth of cucumber in the non-fertilized pig manure-wood compost. Nutrient analysis of cucumber shoots indicated N availability was the principal factor limiting growth in potting mixes amended with the dairy manure-sawdust compost, and even more so in the pig manure-wood compost even though the compost had been stabilized to a high degree (<1 mg CO2-C g−1 dw d−1). Maturity of the composted manures, which implies a positive initial plant growth response of plants grown without fertilization, could not be predicted by compost characteristics alone unless the bulking agent or bedding type used for the production of the composts was also considered.  相似文献   

6.
Generation of different biowastes is increasing day by day, and ultimate load on agricultural lands has increased. Concerns over increased phosphorus (P) application with nitrogen (N)–based compost application shifted the trend to P‐based applications. But focus on only one or two nutritional elements will not serve the goals of sustainable agriculture. Full insight into nutrient availability from different composts is necessary. The need to understand the nutrient release and uptake from different composts has increased because of the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, current greenhouse studies were designed to evaluate the bioavailability and leachability of some micronutrients [calcium (Ca), magnesium (Mg), and zinc (Zn)] from different biocomposts under chloride (Cl?) and sulfate (SO4 ?2) saline environment. In the first pot experiment, soil was amended with livestock compost (AC), poultry compost (PC), and composted sludge (SC) at the rate of 200 kg P ha?1 equivalent bases. Pots were irrigated with artificial saline water of sodium chloride (NaCl) or sodium sulfate (Na2SO4; 60 mmolc L?1), and leachates were collected for Ca and Mg analysis. As composts were applied on total P bases, which left varying amounts of nutrients in each treatment, it was observed that nutrient uptake and release differed greatly regardless of the total amount applied with each compost type. Amount of Ca applied with PC (3.9 g pot?1) was greater, but Ca concentration in leachate was greater under AC‐amended treatments. Magnesium concentration also varied greatly under compost types. Among the saline irrigation, Ca and Mg concentration in leachate increased under both saline irrigations compared to nonsaline treatment, and SO4 ?2 had relatively greater ionic strength to replace cations than Cl?. Calcium, Mg, and Zn uptake by maize stem and leaves were greater from SC‐amended pots followed by PC, SC, and control. Irrespective of the salt types, Ca and Mg uptake reduced under both saline irrigations, whereas Zn uptake increased as compared to nonsaline treatment. Among the salt types, it was observed that plant growth and nutrient uptake was more influenced by Cl? than SO4 ?2 saline irrigation. In the second experiment, soil was saturated with NaCl and NaSO4 (75 mmolc L?1) and amended with AC. The trend of nutrient uptake under both salt types was similar to first experiment, and the results of AC amendments have been discussed. It can be inferred from the results that regardless of the total amount applied, nutrient uptake greatly varies under different composts and their availability depends upon the source rather than total amount applied. Analogously, sulfate‐dominated irrigation water can increase the leaching of Ca and Mg from root zone more than chloride.  相似文献   

7.
分别用焦磷酸钠和氢氧化钠浸提新鲜牛粪、蜉金龟堆肥(APCM)和自然堆肥(腐熟牛粪)产物中的类胡敏酸,采用元素组成、红外光谱及差热分析研究了其结构特征。元素分析结果表明,蜉金龟堆肥焦磷酸钠浸提物——类胡敏酸(NaHLA)的芳香性低于新鲜牛粪和自然堆肥,而碳水化合物及氮元素含量增加。蜉金龟堆肥氢氧化钠浸提物——类胡敏酸(PAHLA)的碳水化合物和氮元素含量也高于新鲜牛粪和自然堆肥,而自然堆肥PAHLA的芳香性略低于新鲜牛粪和蜉金龟堆肥。红外光谱分析结果表明,与自然堆肥NaHLA相比,蜉金龟堆肥NaHLA中羧酸脂类化合物、酮类化合物、脂肪族化合物及碳水化合物有所增加。与新鲜牛粪PAHLA相比,蜉金龟堆肥和自然堆肥PAHLA的碳水化合物、脂肪族化合物、酚类化合物及纤维素酯类减少,同时蜉金龟堆肥PAHLA的酰胺化合物在蜉金龟消化过程中被其吸收。差热分析结果表明,自然堆肥NaHLA的热稳定性高于新鲜牛粪和蜉金龟堆肥,而蜉金龟堆肥NaHLA的脂族化合物、外围官能团和分子内部芳香结构含量较高,分子结构较复杂。蜉金龟堆肥PAHLA存在两个放热峰,而新鲜牛粪和自然堆肥的中温放热峰消失。综上,蜉金龟堆肥和自然堆肥采用两种提取液浸提出类胡敏酸的结构特征存在差异性。  相似文献   

8.
The effect of various Mg-fertilizers (MgSO4; calcined dolomite) on root growth and mineral composition of 40 yr old Norway spruce at different sites and stages of decline was studied. Two years after fertilization, density of living fine roots of Mg-deficient trees had significantly increased on fertilized compared to non-fertilized plots. Only fertilization of calcined dolomite appeared to induce new root formation in the upper mineral soil. No such changes were observed for healthy looking trees at a second experimental site, where base saturation of the bulk soil was also low but trees were sufficiently supplied with Mg. At the third experimental site where foliar analyses reflected a luxurious Ca and Mg but an insufficient K nutrition at high Mg and Ca saturation of the bulk soil, calcined dolomite caused an increase of root growth due to a reinforced antagonism between Ca and Mg competing with K uptake. In general, at the experimental sites the fine root necromass decreased when base saturation of the bulk soil increased. The elemental contents of fine roots from the minenal soil of all three sites under investigation indicated that fine root growth in the mineral soil is strongly related to the root Ca and Mg contents. Root Ca contents seemed to be mainly a function of the Ca availability in the soil. Since there was no close relationship between fine root growth and the Ca/Al molar ratio in living fine roots, Al toxicity may not completely account for the differences in root growth and nutrition on the experimental sites.  相似文献   

9.
The effect of various Mg-fertilizers (MgSO4; calcined dolomite) on root growth and mineral composition of 40 yr old Norway spruce at different sites and stages of decline was studied. Two years after fertilization, density of living fine roots of Mg-deficient trees had significantly increased on fertilized compared to non-fertilized plots. Only fertilization of calcined dolomite appeared to induce new root formation in the upper mineral soil. No such changes were observed for healthy looking trees at a second experimental site, where base saturation of the bulk soil was also low but trees were sufficiently supplied with Mg. At the third experimental site where foliar analyses reflected a luxurious Ca and Mg but an insufficient K nutrition at high Mg and Ca saturation of the bulk soil, calcined dolomite caused an increase of root growth due to a reinforced antagonism between Ca and Mg competing with K uptake. In general, at the experimental sites the fine root necromass decreased when base saturation of the bulk soil increased. The elemental contents of fine roots from the mineral soil of all three sites under investigation indicated that fine root growth in the mineral soil is strongly related to the root Ca and Mg contents. Root Ca contents seemed to be mainly a function of the Ca availability in the soil. Since there was no close relationship between fine root growth and the Ca/AI molar ratio in living fine roots, Al toxicity may not completely account for the differences in root growth and nutrition on the experimental sites.  相似文献   

10.
Abstract

Soil pH can be increased by manure or compost application because feed rations usually contain calcium carbonate. This study was conducted from 1992 to 1996 to evaluate effects of phosphorus (P) and nitrogen (N)‐based manure and compost application management strategies on soil pH level. Composted and uncomposted beef cattle (Bos taunts) feedlot manure was applied to supply N or P needs of corn (Zea mays L.) for either a one‐ or two‐year period. Phosphorus‐based manure or compost treatments also received additional fertilizer N (ammonium nitrate) to provide for a total of 151‐kg available N ha‐1 yr‐1. Fertilized and unfertilized checks also were included. Manure and composted manure contained about 9 g CaCO3kg‐1 resulting in application rates of up to 1730 kg CaCO3 ha‐1 in 4 years. The surface soil (0–150 mm) pH was significantly decreased with ammonium nitrate application compared to soil in the unfertilized check or to soil receiving manure or compost. Soil pH was significantly increased with the N‐based management strategy compared with the soil original level. In contrast, 4 yr of P‐based manure and compost application strategy maintained soil pH at the original level. Nitrogen‐based applications resulted in higher soil pH than P‐based. Beef cattle feedlot manure and compost can be good sources of CaCO3 for soils requiring lime addition.  相似文献   

11.
ABSTRACT

Broccoli sprouts (Brassica oleraceae var. italica) have been attributed health protective effects based on their glucosinolate content, and thus, are recommended in diets. However, no information is available on the mineral content of this novel product and how fertilization might influence it. The influence of nitrogen (N) and sulfur (S) applications (0, 14, and 28 mg· N dish?1 and 0, 4.5, and 9 mg· S dish?1) on the mineral content [N, S, potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), chloride (Cl), and silicon (Si)] of broccoli sprouts (Brassica oleraceae var. italica cv. ‘Marathon’) was determined 11 d after sowing. It was found that N and S fertilization significantly (P < 0.001) influenced the uptake of all elements except phosphorus (P). Sulfur concentrations in broccoli sprouts varied between 11.4 and 15.2 mg· g?1 (dw), while the Ca, Mg, P, K, and Na concentrations were below 10 mg· g?1 (dw). The Cl contents ranged from 13.6 to 23.1 mg· g?1 (dw). The highest S concentration was found when 9 mg· dish?1 S and 14 mg· dish?1 N was applied. A higher N rates of 28 mg· dish?1, N yielded no higher S uptake. The significantly (P < 0.05) highest Ca, Mg, and Na concentrations were found in the control treatments, while this effect proved to be not consistent for P. The results clearly revealed that N and S fertilization increased biomass production even in the early growth stages. With view to maintaining high Ca concentrations an application in the form of ammonium sulfate would be preferable.  相似文献   

12.
In this study, the influence of 10 years’ continuous application of organic manure at various rates combined with chemical fertilizer on microbial residues was evaluated in a highly fertile temperate soil. The presence and origin of microbial residues were indicated by amino sugar analysis. The treatments were: (1) CK, unfertilized control; (2) OM0, only chemical fertilizer, no manure added; (3) OM1, organic manure added at 7.5 Mg?ha?1?year?1 plus chemical fertilizer; (4) OM2, organic manure added at 15 Mg?ha?1?year?1 plus chemical fertilizer; and (5) OM3, organic manure added at 22.5 Mg?ha?1?year?1 plus chemical fertilizer. Fertilization significantly increased the total amino sugar concentrations, especially in the plots with higher manure addition rates (OM2 and OM3 plots, P?<?0.05). This suggests a positive effect of organic manure combined with chemical fertilizer on the accumulation of microbial residues in soil. However, the highest manure rate (OM3) did not lead to further increase in the total amino sugar pool as compared with the moderate manure rate (OM2). This suggests manure addition “saturates” in its effect on microbial residue build-up. The different patterns of individual amino sugars suggest a change in the quality of microbial-derived soil organic matter after 10 years.  相似文献   

13.
Following 13‐year treatments of soil pH and nitrogen (N) source in a peach orchard of North Carolina, the concentration of calcium (Ca), magnesium (Mg), N, phosphorus (P), and potassium (K) in leaves, shoots, trunks and roots, as well as soil pH, soil exchangeable Ca, Mg, and K content, were determined. Through liming, higher soil pH treatment enhanced soil Ca and tissue Ca level. Among six N sources examined, the highest values of soil pH and soil Ca, Mg, and K were detected following poultry manure application. Compared to ammonium sulfate [(NH4)2SO4], calcium nitrate [Ca(NO3)2] increased soil pH and soil Ca and K content, but reduced soil Mg. For most of macronutrients examined in peach tissues, the highest levels were found in manure treatment. Mineral N sources containing Ca(NO3)2 resulted in high tissue Ca and low tissue N. In the above‐ground tissues, Mg concentration was relatively low following application of mineral N materials containing Ca, K, or sodium (Na). Acid‐ forming N, especially (NH4)2SO4, reduced tissue Ca and P. The magnitude of impact of liming and N source on macronutrients was tissue‐type dependent, with leaves and other new growth the most sensitive ones while trunks seldom responded to the treatments.  相似文献   

14.
Two municipal solid waste composts were added to three agricultural soils developed over different parent material (schist, gabbro and granite) and incubated in two laboratory studies, in order to assess the effect of compost addition in the dynamics of soil Ca, Mg, K and P. Soils and mixtures of soil and compost (2.5% dry weight, roughly equivalent to 60 t ha?1) were incubated at 25°C for three months in a first experiment, and for five months in a second experiment. The concentrations of available Ca, Mg, K and P were determined throughout both experiments. The soils amended with compost always had higher available Ca, Mg and K concentrations than the soils without amendment. The increases were approximately 800 mg kg?1 for Ca, 30 mg kg?1 for Mg, and 150 mg kg?1 for K. Nevertheless, the concentrations of these elements did not increase with time. The available P concentrations were not increased by the addition of compost, an effect which is attributed both to microbial immobilization and to the P-fixation capacity of the soils. Therefore, the expected release of these elements in parallel to compost mineralization was not observed during the experiments, and the only fertilizing effect of the compost was that of their initial input in available forms.  相似文献   

15.
The potential of an organically managed Cambic Arenosol to supply nitrogen (N) from either an applied commercial organic fertilizer (granulated hen manure), a compost produced on‐farm, or four different mixtures of both fertilizers was studied in a laboratory incubation and a pot experiment with lettuce. In the incubation experiment, a significant higher apparent N mineralization occurred after hen‐manure application (53.4% of the organic N applied) compared to compost (4.5%) or mixed‐fertilizer application (8.7% to 16.7%). The apparent N mineralization in a mixed treatment consisting of compost and half rate of hen manure (15.4% of the organic N applied) was significantly higher than that estimated based on the N mineralization for compost and hen‐manure treatments (7.6%), proving that a combined application of both fertilizers enhanced organic‐N mineralization when compared to separate fertilizer supply. In the pot experiment, a higher lettuce fresh‐matter yield was obtained with hen manure (1.9 kg m–2) than with compost (1.7 kg m–2) or unfertilized control treatment (1.3 kg m–2). Combined application of compost with only a half rate of hen manure led to yields (2.0 kg m–2) equal to those obtained with only hen manure. A good correlation was observed between the N‐mineralization incubation data and the N accumulated by lettuce plants in the pot experiment (r = 0.983). Hence, in the organic production of baby‐leaf lettuce, a mixture of compost and hen manure appears to be a good fertilization alternative, since it allows a reduction by half of the typical amount of commercial fertilizer usually applied (granulated hen manure), cutting fertilization costs, and providing an amount of available N that allows maintaining lettuce yields.  相似文献   

16.
ABSTRACT

Roots of young ‘Golden Delicious’ apple on M9 rootstock were inoculated with four strains of Azotobacter chroococcum, which were isolated from various soils. Effects of these strains in combination with different levels of nitrogen (N) fertilizer and compost on plant growth and nutrient uptake were studied over two seasons. Therefore, a factorial arrangement included four strains of A. chroococcum, two levels of N-fertilizer (0 and 35 mg N kg?1soil of ammonium nitrate) and two levels of compost (0 and 12 g kg?1 soil of air-dried vermicompost). Among the four strains, AFA146 was the most beneficial strain, as it increased leaf area, leaf potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) uptake and root N, phosphorus (P), potassium (K), Mn, and Zn. The combination of AFA146 strain, compost and N fertilizer increased leaf uptake of Ca, Mg, Fe, Mn, Zn, and B, and root uptake of P, K, Ca, Mg, Mn, and copper (Cu), and root dry weight.  相似文献   

17.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

18.
The mineralization and nutrient evolution of an organic fertilizer compost of flour, meat, and crop residues was evaluated in two vineyard soils. A lysimetric testing, using 2.2-L Büchner funnels, was carried out to study the evolution of pH, electrical conductivity, and nutrients during the 400-day experiment. The net mineralization for two different doses of the fertilizer mixed with the soils was compared with an unfertilized control. The pH value of the acidic soil decreased to values less than 4.5 because of the yield of hydrogen (H+) in the organic fertilizer mineralization, whereas the soluble aluminium (Al3+) increased quickly in the leachates. The mineralization process was quicker in the alkaline soil (with a maximum mineralization rate of 0.83 mg nitrogen (N) kg?1 day?1 for the 8 Mg ha?1 dose and 0.43 mg N kg?1 day?1 for the 4 Mg ha?1 dose) in comparison with the acidic soil, which reduced these rates up to 50%. The N-nitrate (NO3) amounts yielded in a year were 150 and 79 kg N ha?1 for the 8 and 4 Mg ha?1 doses respectively in the alkaline soil, enough to cover the vineyard N demand. These values were reduced to 50% and 60% of N-NO3 for the acidic soil, indicating the important effect of pH in the mineralization.  相似文献   

19.
India imports large amounts of rock phosphate (RP) and potassium (K) fertilizers from other countries; hence, research priorities have been directed toward finding alternative sources of phosphorus (P) and K fertilizers. This study focuses on the transformations of P and K in soil amended with RP and waste mica–enriched compost. The enriched compost had greater total P, K, calcium (Ca), magnesium (Mg), micronutrients, and biological properties than ordinary compost. In a wheat–soybean rotation, application of 5 t ha?1 enriched compost along with 50% of the recommended rate of inorganic fertilizer resulted in increased concentrations of saloid P, iron (Fe) P, aluminum (Al) P, Ca-P, occluded P, water-soluble K, exchangeable K, and nonexchangeable K over unfertilized plots. In addition, plots that received enriched compost had greater microbial biomass and phosphatase activities than unfertilized plots. Thus, enriched compost could be an alternative source of water-soluble P and K fertilizers for crop production.  相似文献   

20.
In recent years the use of biowaste compost (BC) as a soil amendment is of increasing interest. The aim of the experiment was to investigate the influence of different fertilization systems: biowaste compost, annual average of 32 Mg ha—1 BC (fresh matter) and mineral fertilizer (83:52:95 kg ha—1 NPK fertilizer) on the nutrient and heavy metal contents of soil and plants. Soil samples (1997) and harvest products (1996—1998) from a field trial (initiated 1992) were analyzed for K, Mg, P, Cu, Mn, Mo, Zn, Cd, Ni, and Pb. The five‐year fertilization with composted biowaste did not influence the total contents of Cd, Mn, Mo, and Ni in soil. The total soil contents of Zn and Pb were significantly higher in soils of the BC treatment than in the unfertilized control. Both fertilized plots tended to have higher Cu and Zn contents in harvest products than the unfertilized control. The mineral fertilization inhibited the Mo uptake by plants. In 1998 the mineral fertilization led to higher, and the biowaste compost application to lower, Cd contents in potato tubers as compared to the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号