首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We germinated and grew tomato, pepper, lettuce, and marigold seedlings in a standard commercial soilless plant growth medium (Metro-Mix 360), and in coir/perlite and peat/perlite-based container media substituted with 10% or 20%, by volume, of vermicompost derived from pig manure or food wastes. Half of the treatments were watered with liquid inorganic fertilizer while the other half received only water. Germination rates of tomato, pepper, lettuce, and marigold seeds in the coir/perlite mixture did not differ significantly from that in Metro-Mix 360. However, the germination rate of tomato, pepper and lettuce seedlings was very low in the peat/perlite mixture. Substituting some of the peat/perlite mixtures with equal amounts of vermicomposts, particularly pig manure vermicompost, enhanced germination rates greatly, making it comparable to that in the commercial medium (Metro-Mix 360). Pepper, lettuce, and marigold seedlings grown in Metro-Mix 360, which already contains a starter nutrient fertilizer in its formulation, had greater root and shoot dry weights than those grown in the control media (coir/perlite mix and peat/perlite mix). Substituting coir/perlite and peat/perlite mixtures with 10% or 20% of either vermicompost enhanced the growth of seedlings significantly, resulting in an overall plant growth as good as and sometimes better than that in Metro-Mix 360. When the plants were provided daily with a complete fertilizer solution, marigold seedlings in peat-based substrate with 20% pig waste vermicompost, and lettuce seedlings in both coir and peat-based substrates, mixed with 20% food wastes vermicompost, produced greater shoot dry weights than those grown in the commercial potting medium. The growth enhancements tended to be greater in peat/perlite-based mixes than in coir/perlite-based mixes, more so with the addition of pig manure vermicompost than with food waste vermicompost. Earthworm-processed pig manure and food wastes would be suitable materials for inclusion into the formulation of soilless potting media, since substitution of these media with relatively low concentrations of vermicomposts can promote plant growth.  相似文献   

2.
The aim of the study was to investigate sewage sludge vermicompost application effects on growth and mineral nutrition of winter rye (Secale cereale L.) plants as compared to two initial levels of mineral nutrient availability, pure sand and sand enriched with inorganic nutrients at the optimal level. Addition of sewage sludge vermicompost significantly inhibited rye seed germination at 20 to 50% sand substitution independently on mineral nutrient supplement. Growth inhibition was evident at early stages of plant development. However, at the later stages, sewage sludge vermicompost acted both as mineral fertilizer and plant growth-promoting agent. Significant stimulation of mineral uptake was seen only at high rates of vermicompost substitution (40 and 50%) already causing decrease in shoot dry matter accumulation. Vermicompost substitution resulted in a significant increase of leaf chlorophyll content. Beneficial effect of sewage sludge vermicompost in conditions of optimal mineral supply can result mainly from plant growth-promoting activity.  相似文献   

3.
Abstract

Water extracts from vermicomposts, commonly known as “teas,” contain plant available nutrients and plant growth regulators. Their applications on plants have shown to increase seed germination, plant growth and yield, and suppress diseases. This experiment evaluates the effects of vermicompost teas, extracted from food and paper-waste vermicompost, on the rooting characteristics of stem cuttings. Stem cuttings from sugarcane and mint, and leaf cuttings from begonia were treated with four concentrations of vermicompost teas from food wastes: 1%, 2%, 5%, and 10%, compared with water only control and a commercial rooting hormone, Dip ‘N Grow, arranged in randomized complete block design with 10 replications. Rooting characteristics such number of roots, root density, and length of roots were assessed. Results showed that rooting of the stem cuttings from three plants responded differently to applications of vermicompost teas. Vermicompost teas applied at 2% showed as the optimum concentration for sugarcane and mint, while 1% vermicompost tea was optimum for begonia leaf cuttings. The increased rooting in stem cuttings was due to the combination of auxins, cytokinins, GA, and humic acids found in vermicompost teas extracted from food and paper waste vermicompost. Further studies are needed to evaluate whether interactions exist between concentration and length of application time.  相似文献   

4.
This study investigated the effects of vermicompost tea (aqueous extract) on yield and chemical quality of pak choi (Brassica rapa cv Bonsai, Chinensis group) grown in three media (two soils and a peat-perlite medium) under two fertilizer regimes (compost and synthetic fertilizer). The impacts of tea application on the chemical and biological properties of the growth media were also investigated. Vermicompost teas were prepared using various extraction methods (non-aerated, aerated, aerated with additives) with 1:10 (v:v) chicken manure-based vermicompost to water dilution and applied weekly at the rate of 200 mL plant?1 for 4 weeks. Application of vermicompost tea increased plant production, total carotenoids and total glucosinolates in plant tissue. This effect was most prominent under compost fertilization. Total phenolic was lower in vermicompost tea treated plants compared to those treated with only mineral nutrient solution and the water control. Vermicompost tea improved mineral nutrient status of plants and media, and enhanced the biological activity of the media. Variability in yield and chemical quality of plants across treatments was explained largely by variability in tissue N uptake and dry matter accumulation. Dehydrogenase activity and soil respiration of vermicompost tea-treated growth media were approximately 50% higher than untreated media. This study confirmed that vermicompost tea can positively influence plant yield and quality and increase soil biological activity in multiple soil types.  相似文献   

5.
蚓粪施用方式对不同品种番茄生长和土壤肥力的影响   总被引:1,自引:0,他引:1  
肥料的施用方式会影响有机肥料的分解和养分释放过程,且不同作物品种在养分需求方面也各有差异。蚓粪是一种能够改善土壤和促进植物生长的新型替代肥料。采用盆栽试验研究了蚓粪施用方式对不同番茄品种生长和土壤肥力的影响,盆栽试验设置为:两个番茄品种:金棚三号和艾瑞尔;4种施肥方式:单施化肥(CF);蚓粪表施(VS),即蚓粪与盆钵上部8 cm厚土壤混施;蚓粪中施(VL),即蚓粪均匀平铺紧邻8 cm处下方;蚓粪全土混施(VM),即蚓粪与所有土壤混合。结果表明:相比全土混施,蚓粪表施和中施更能增加番茄的茎叶生物量并且促进其对氮、钾的吸收;与单施化肥相比,蚓粪的效果更依赖于施用方式,蚓粪表施和全土混施比中施更能提高土壤pH和有机碳含量。在盛花期,无论番茄品种,土壤有效磷、速效钾含量都在蚓粪表施时最高;而在收获期,蚓粪表施和全土混施的有效磷含量高于中施处理。相比蚓粪中施和全土混施,表施降低了艾瑞尔的土壤矿质氮含量。总之,蚓粪的集中施用如表施和中施,能促进番茄生长及养分吸收,并且在不同品种之间效应一致。  相似文献   

6.
不同氮浓度对温室番茄生长发育和叶片光谱特性的影响   总被引:8,自引:2,他引:6  
营养液培养法研究不同氮浓度对温室番茄的生长发育及叶片光谱特性的影响。结果表明,在01~5 mmol/L范围内,随着营养液中氮浓度的增加,番茄的叶面积指数、株高、叶片数、花穗数、产量和叶片的吸光度都增大,但是超过一定的范围,植株的生长和发育均会受到抑制,说明适宜的氮素促进了植株的生长和发育。其中,处理N15的叶面积指数达到了3.0,叶片数和花穗数分别是26.7和7.0,均高于其它处理。不同处理间番茄产量均存在极显著的关系,以N15处理最高,N5的最低。从叶片的光谱图中可提取出与叶绿素有关的特征波段。在本试验条件下,番茄水培时营养液适宜的氮浓度为15 mmol/L。  相似文献   

7.
The objective of this experiment was to assess the effects of organic or chemical nutrient solutions on the growth and composition of lettuce (Lactuca sativa L.) in greenhouse production. Hoagland and Arnon nutrient solution, an organic hydroponics solution, and no fertilization were factored with lettuce cultivars of different phenotypes, iceberg, romaine, loose head, and loose leaf. Lettuce growth was higher with Hoagland and Arnon solution than with the organic fertilizer or with no fertilization. The organic fertilizer increased growth above no fertilizer applied. Hoagland and Arnon solution gave the highest concentration of nitrogen, potassium, magnesium, and iron in the lettuce whereas lettuce grown with the organic fertilizer had the highest phosphorus. Plant nutrient accumulation differed slightly among the cultivars. Hoagland and Arnon solution produced high nitrate in leaves. Nitrate concentrations with organic or no fertilization were low. Loose head or loose leaf cultivars had higher nitrate than romaine or iceberg.  相似文献   

8.
Increasing fertilizer and energy costs, as well as awareness of environmental quality, require greater fertilizer use efficiency. Providing plant nutrients in the quantity and at the time needed, possibly through fertigation, should lead to more efficient fertilizer use. Knowledge on crop nutrient requirements and minimum nutrient concentrations in the root zone at different stages of growth is important. Hydroponic greenhouse experiments were conducted using tomato and lettuce plants to determine minimum solution nitrogen concentrations which would allow maximum plant growth for a system of frequent nitrogen application and to quantitatively measure nitrogen uptake rates as a function of time. Minimum N levels for the tomato experiment were 2, 10, and 20 mg/1. Solutions were analyzed three times a week to determine N uptake and sufficient KNO3 was added each time to supply the plant N demand so that the targeted minimum N concentration would be achieved at the next sampling time. The minimum N concentrations in the lettuce trial were 5, 10, 20 and 50 mg/1. A control consisting of 105 mg/1 N was used for both crops. There was no significant effect of N concentration on N uptake throughout the experiment for lettuce and during the early stages of tomato growth. Higher N uptake during the latter stages of tomato growth occurred for the control as compared to the other treatments. The latter observation was probably caused by N diffusion gradient development because of the dense root system and inadequate solution stirring. Plant growth results were comparable to N uptake results. The ratio of N to water uptake was fairly constant throughout the growth period with a trend toward decrease in the ratio with time for tomatoes. Low N concentrations can occur at the root surface without limiting plant growth.  相似文献   

9.
Organic amendments not only promote soil quality and plant performance directly but also facilitate the establishment of introduced microbial agents. A field experiment with a fully factorial design was conducted using three levels of vermicompost (without vermicompost, low dose of 15 Mg ha−1 and high dose of 30 Mg ha−1), with and without plant growth-promoting rhizobacteria (PGPR) to investigate their effects in a tomato – by spinach rotation system. Our results demonstrated that applying PGPR alone had no effect on soil properties and crop performance. Vermicompost enhanced the beneficial effects of PGPR on both soil and crop, with the extent of promotion depending on the dose of vermicompost and crop types. In the presence of vermicompost, PGPR significantly (P < 0.05) reduced soil carbon and nitrogen but increased soil microbial biomass carbon and nitrogen. PGPR also significantly increased the yield of tomato and spinach under the low dose of vermicompost, but only significantly increased tomato yield under the high dose of vermicompost. There were strongly synergistic effects between vermicompost and PGPR on crop quality, with crop nitrate concentration being significantly decreased, while the vitamin C in tomato and soluble protein in spinach was significantly increased. Our results revealed the high potential of integrating vermicompost and microbial agents to substitute for regular chemical fertilization practices.  相似文献   

10.
Growth of a nonpathogenic E. coli strain (K12- MG1655, ATCC 700926) in aerated and nonaerated compost teas containing molasses, kelp and carrot juice was examined. Teas were prepared using four different compost types that had undetectable levels of indigenous E. coli. Three of the composts were produced by turn pile windrow composting method using dairy, swine and horse manure as feedstock, while the fourth, a vermicompost, was produced by feeding separated dairy solids to worms Eisenia feotida. Molasses and kelp enhanced the growth of E. coli in inoculated teas and the E. coli density was positively correlated with nutrient concentrations ranging from 0.1 to 8.0 g/L. Irrespective of the presence of molasses and kelp, E. coli was not detected in noninoculated teas. Even though E. coli is a facultative anaerobe, its growth was significantly higher in nonaerated teas than in aerated teas. Without aeration, dissolved oxygen in teas declined rapidly and fell below 0.1 mg/L within 20 h, whereas continuous aeration at 0.8 L/min maintained an aerobic condition (> 5 mg/L dissolved oxygen) in teas during the 48 h brewing period. The pH values of nonaerated teas were significantly lower than those of aerated teas and were always slightly acidic. E. coli growth in different compost types was significantly different. The density of E. coli was lowest in teas made with vermicompost and highest in teas made with swine manure compost. E. coli proliferations in both aerated and nonaerated swine manure compost teas were inhibited by carrot juice. Carrot juice lowered dissolved oxygen in aerated teas. The total bacterial densities in noninoculated compost teas were not reduced by carrot juice.  相似文献   

11.
A pot experiment based on completely randomized factorial arrangement design with four replications was conducted under greenhouse condition at Malayer University, Malayer, Iran. Pots contained a mixture of soil and different concentrations (0% and 60% w/w) of vermicompost. Plants were exposed to three lead nitrate concentrations: 0, 4, and 8 mM. Based on the results of this research, shoot height and root length of the studied plants significantly decreased with increased lead concentrations in all vermicompost application levels. Generally, plants exposed to lower levels of lead and vermicompost application had higher root:shoot ratio. The survival capacity of all the studied plants was significantly reduced with increased lead concentrations, but increased with increased vermicompost application level. The total protein content increased with decrease in lead nitrate concentration, but decreased with decrease in vermicompost application. Generally, translocation factor increased significantly as vermicompost application rate increased. The highest root concentration factor of lead was found in V1×Pb2 as compared to the other treatment levels. Generally, tolerance index values of all the studied plants were significantly higher in the lower lead concentration treatments.  相似文献   

12.
蚯蚓粪与椰糠配施对盐渍土的改良效应   总被引:1,自引:0,他引:1       下载免费PDF全文
选用蚯蚓粪和椰糠为改良剂,不同浓度人工海水淹泡的土壤为改良对象,通过盆栽试验种植空心菜研究未施肥、单施蚯蚓粪、单施椰糠、蚯蚓粪+椰糠不同比例组合配施对盐渍土的改良效应.结果表明:(1)对于20%、60%和100%人工海水淹泡的盐渍土,蚯蚓粪与椰糠分别按1:2.5、3:2.5和3:3.5配施种植空心菜效果最好,空心菜平均...  相似文献   

13.
A comparison was made to investigate the effects of two potting methods: coconut husk/ sphagnum moss and a plastic forestry tube with a peat-based medium (Sunshine® mix #1, Sungro Horticulture, Agawam, MA, USA), on the growth and yield of Romaine ‘Ridgeline’ and Buttercrunch ‘UH Manoa’ lettuce (Lactuca sativa) using a non-circulating hydroponics system. Two-week old lettuce seedlings were transplanted into 5 cm holes, 20 × 30 cm apart on polystyrene bead boards fitted on top of a 0.6 m wide, 1.2 m long and 25 cm deep hydroponics tanks. A standard hydroponics nutrient solution was prepared using Chem Gro® (Hydro-Gardens, Colorado Springs, CO) (8-15-36 + micronutrients), calcium nitrate [Ca(NO3)2] and magnesium sulfate (MgSO4). Each tank contained either one lettuce variety, replicated 12 times in completely randomized design. Growth and yields significantly increased in both lettuce varieties grown in coconut husk/sphagnum moss plugs which were attributed by their relatively greater water holding capacities and a more favorable media that allowed better root growth.  相似文献   

14.
Exposing tomato seedlings to elevated CO2 concentrations may have potentially profound impacts on the tomato yield and quality. A growth chamber experiment was designed to estimate how different nutrient concentrations influenced the effect of elevated CO2 on the growth and nutrient uptake of tomato seedlings. Tomato (Hezuo 906) was grown in pots placed in controlled growth chambers and was subjected to ambient or elevated CO2 (360 or 720 μL L-1), and four nutrient solutions of different strengths (1/2-, 1/4-, 1/8-, and 1/16-strength Japan Yamazaki nutrient solutions) in a completely randomized design. The results indicated that some agricultural characteristics of the tomato seedlings such as the plant height, stem thickness, total dry and fresh weights of the leaves, stems and roots, the G value (G value = total plant dry weight/seedling age),and the seedling vigor index (seedling vigor index = stem thickness/(plant height × total plant dry weight) increased with the elevated CO2, and the increases were strongly dependent on the nutrient solution concentrations, being greater with higher nutrient solution concentrations. The elevated CO2 did not alter the ratio of root to shoot. The total N, P, K, and C absorbed from all the solutions except P in the 1/8- and 1/16-strength nutrient solutions increased in the elevated CO2 treatment. These results demonstrate that the nutrient demands of the tomato seedlings increased at elevated CO2 concentrations.  相似文献   

15.
秸秆钾替代化肥钾对莴笋的营养效应研究   总被引:2,自引:0,他引:2  
谷守宽  袁婷  陈益  杨东  文娟  熊小莉  李戎  李振轮  王正银 《土壤》2017,49(4):699-705
在重庆地区多年种植蔬菜的两个基地进行田间试验,研究了秸秆钾替代化肥钾对莴笋的产量、品质、养分吸收量和钾素利用率的影响。秸秆钾替代化肥钾较无钾肥处理极显著提高两个试验点莴笋产量,增产11.4%~13.7%和11.4%~15.3%,各处理产量大小为:MH+KL(有机肥钾50%+化肥钾50%)MM+KM(有机肥钾30%+化肥钾70%)ML+KH(有机肥钾10%+化肥钾90%)CK2(常规施钾处理)CK1(无钾肥处理),以高量(50%)秸秆钾处理(MH+KL)增产作用最大。秸秆钾替代化肥钾较常规施钾提高莴笋产量,但增产作用不显著。两个试验点秸秆钾替代化肥钾显著降低莴笋叶维生素C和可溶性糖含量,降幅分别为4.7%~16.8%和3.2%~30.5%,但对莴笋茎该两个品质指标略有提高;莴笋叶硝酸盐含量增加8.0%~8.2%和11.4%~17.2%,莴笋茎硝酸盐含量在试验点1降低2.5%~11.5%,而试验点2则增加8.0%~13.5%。试验点1莴笋叶钙、镁、铁和锰含量为提高,试验点2降低。两个试验点秸秆钾替代化肥钾均显著提高莴笋对氮、磷和钾吸收量,以MH+KL处理莴笋钾素利用率最高。综合莴笋产量、品质、养分吸收和钾素利用效率,以MH+KL处理效果最佳。  相似文献   

16.
The study assessed the impact of continuous application of vermicompost and chemical fertilizers nitrogen, phosphorus and potassium (NPK) on arecanut in India. Key parameters examined were biomass production, nutrient uptake, yield, soil fertility and net benefit. Pooled analysis of 8-year data revealed that nutrient application registered significantly higher yield (2585–3331 kg ha?1) than no nutrition (1827 kg ha?1). Yields in organic nutrition were around 85% of the yields obtained in inorganic NPK. The concentrations of leaf N and K were significantly higher with NPK than with vermicompost. Vermicompost significantly increased soil organic carbon and the availability of calcium (Ca), magnesium (Mg), manganese (Mn) and copper (Cu), but reduced exchangeable K in soil. The total uptake of K and Ca together contributed positively to 75% variability in total biomass production. Nutrient removal of iron (Fe), P, K and Cu positively influenced the yield with about 81% variability. Biomass partitioning and nutrient uptake pattern are important for fertilization program of arecanut.  相似文献   

17.
施用蚯蚓粪对杨树苗根际土壤生物学特征的影响   总被引:1,自引:0,他引:1  
通过盆栽试验,研究了CF(单施化肥)、VC(蚯蚓粪)和VC+CF(蚯蚓粪和化肥各提供50%的氮)处理对一年生欧美I-107杨根际土壤微生物数量、酶活性、根系建造水平及理化性状的影响。结果表明,VC+CF处理有利于协调土壤C/N比,并且化肥的施入补充了土壤中氮的消耗,从而明显提高了根际土壤中微生物数量及脲酶、过氧化氢酶、多酚氧化酶和蔗糖酶活性,其中细菌数量分别比CK,CF和VC处理提高165.99%,67.34%和31.73%,蔗糖酶活性分别提高90.37%,45.31%和32.34%。施用蚯蚓粪有利于杨树苗细根的生长,但对地上部的增长速度显著快于地下部。此外,VC+CF处理使根际土壤pH值明显降低,显著增加了根际土壤中养分离子的有效性。与VC+CF处理相比,VC处理对根际土壤生物学特征的影响较小。因此,蚯蚓粪与化肥配施更好地改善了杨树苗根际区域的微生态环境。  相似文献   

18.
The effect of suboptimal supply of nitrogen (N) and of replacing nitrate in the nutrient solution with ammonia on growth, yield, and nitrate concentration in green and red leaf lettuce was evaluated over two seasons (autumn and spring) using multiple regression analysis. The plants were grown in a greenhouse on a Nutrient Film Technique (NFT) system. Nitrogen concentrations in the nutrient solution were either 3?mM or 12?mM, and the form of N was varied as follows: 100% NO3, 50% NO3?+?50% NH4, and 100% NH4. In both seasons, the biomass (fresh weight) of lettuce heads increased with increasing NO3 concentrations and in autumn, NO3 even at 1.5?mM was sufficient for high yield. However, head dry weight was affected neither by the season nor by changes in the composition of the nutrient solution. The concentration of NO3 had no effect on root dry weight, but it decreased at higher concentrations of NH4. The number of leaves increased as the ratio of NO3 to NH4 in the nutrient solution increased and was higher in autumn because of the longer growth period. Increasing the concentration of NO3 in nutrient solution increased both total N and nitrate concentration in lettuce heads (dry weight) but decreased the concentration of total C. Also, leaf nitrate concentration was lower in spring than in autumn and decreased with increasing NH4 concentration. Nitrogen utilization efficiency was maximum when NH4 levels in the nutrient solution were either 0% or 50% irrespective of the season. Our results thus show that suboptimal N supply in autumn will not affect lettuce yield, and that nitrate concentration in leaves is lower when NH4 concentrations in nutrient solution are higher and also much lower in red lettuce than in green lettuce.  相似文献   

19.
Soil degradation in the semi-arid tropics (SAT) is mainly responsible for low crop and water productivity. In Madhya Pradesh and Rajasthan states in India, the soil analyses of farmers’ fields revealed widespread deficiencies of S (9–96%), B (17–100%) and Zn (22–97%) along with that of P (25–92%). Soil organic C was deficient in 7–84% fields indicating specifically N deficiencies and poor soil health in general. During on-farm evaluations in rainy seasons 2010 and 2011, the soil test based addition of deficient nutrient fertilizers as balanced nutrition (BN) increased crop yields by 6–40% (benefit to cost ratios of 0.81–4.28) through enhanced rainwater use efficiency. The integrated nutrient management (INM), however, decreased the use of chemical fertilizers in BN by up to 50% through on-farm produced vermicompost and recorded yields at par or more than BN with far better benefit to cost ratios (2.26–10.2). Soybean grain S and Zn contents improved with INM. Applied S, B, Zn and vermicompost showed residual benefits as increased crop yields for succeeding three seasons. Hence, results showed INM/BN was economically beneficial for producing more food, while leading to resilience building of SAT production systems.  相似文献   

20.
Study aims to investigate the effects of vermicomposts containing oil processing wastes, dairy manure, municipal open market wastes and straw on the growth, nutrient concentrations and nutrient uptakes of corn plant. For this, there different mixtures were prepared. Vermicomposts were applied with the rates of 0, 5000, 10000, and 20000 kg ha?1 to 2 kg soil containing pots. Study was conducted in growth chamber for 2 months. Vermicompost applications increased plant growth, some plant nutrient concentrations and uptake. Also, vermicomposts showed the variation on parameters depending on their mixtures. Results showed that nutrients taken by the plant increased with the vermicompost until 10000 kg ha?1 dose. Most of the nutrient concentrations such as phosphorus, potassium, calcium, magnesium, iron, and manganese (P, K, Ca, Mg, Fe, and Mn) were not increased in plant tissues, whereas uptake of them by the plant showed a significant increase. In addition, residual soil nutrients increased with the increase in vermicompost levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号