首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
A better understanding of the impact of fertilizer nitrogen (N) on biomass and N accumulation, and their partitioning into different plant components is needed to optimize crop yield and quality. A field experiment with spring wheat (Triticum aestivum), hulless (Avena nuda), and hulled (Avena sativa) oats was conducted for 3 years in Ottawa, ON, Canada, to determine the crop responses to N addition (0, 75, and 150 kg N ha–1). Biomass, N, and phosphorus (P) accumulation and partitioning into different plant components were examined during the growth season. Lodging score was determined for all crops when it occurred and again at harvest. During the growth season, both hulless and hulled oats and the wheat cultivar showed almost similar patterns of N and P accumulation with maximum contents at late grain filling or at harvest. Plant N concentration was up to 60 g kg–1 during the seedling stage, decreased gradually with advancing growth stages, and was lowest at harvest. Nitrogen treatments significantly increased plant N and P contents. At heading stage, N treatments enhanced dry matter (24%–45%), N (35%–135%), and P (27%–45%) contents in plant components (i.e., culm, leaf, and head), but also enhanced crop lodging, especially in oats. Both hulled and hulless oats had higher total plant N (5%–35%), N : P ratio, and dry‐matter content in leaf (6%–43%) and head (0%–129%) along with higher P (up to 27%) in culm than the wheat cultivar. The wheat cultivar accumulated greater dry matter and higher N content in kernels than both hulled and hulless oats at harvest. Both hulled and hulless oat cultivars exhibited similar lodging susceptibility to N addition (75 or 150 kg N ha–1), produced lower dry weight and lower kernel N, and hence lower grain yield than the wheat cultivar. The larger vegetative dry‐matter accumulation at heading coupled with higher P content in culms under high‐N‐supply conditions may be related to severe lodging in oat cultivars.  相似文献   

2.
A series of experiments on the effects of form and rate of seed row placed phosphorus (P) fertilizer were carried out under controlled environment conditions using flats of a P-deficient Brown Chernozemic soil from Saskatchewan, Canada. The experiments were conducted in the laboratory and growth chamber using rates of seed row placed granular P fertilizer up to 100 kg P2O5 ha?1. Two forms of monoammonium phosphate fertilizer were compared: 1) conventional MAP granules and 2) controlled release phosphorus (CRP) fertilizer granules (Agrium Inc, Denver, CO, USA.) made with a polymer coating to slow the release of phosphate to soil solution. Six crops were utilized in the study to provide a range of commonly grown cereal, oilseed, pulse and forage crops in Western Canada: wheat (Triticum aestivum), canola (Brassica napus), mustard (Brassica juncea), flax (Linum usitatissimum), yellow pea (Pisum sativum) and alfalfa (Medicago sativum). Parameters measured were percentage of planted seeds that had emerged after two weeks, plant biomass yield, and plant P uptake after four weeks. Most of the crops tested showed no negative impact on emergence with seed row placed conventional P fertilizer at rates up to ~20 to 30 kg P2O5 ha?1. Pea, flax and mustard tended to be most sensitive to injury from high rates of seed placed MAP while wheat was least sensitive. The controlled release phosphorus fertilizer (CRP) product greatly increased the tolerance of crops to high rates of seed row placed P, with rates of 80 kg P2O5 ha?1 placed in the seed row producing no significant injury for most crops. This effect is attributed to the coating reducing the harmful salt effect that occurs when high rates of fertilizer are placed in the seed row in close proximity to the seed. Generally, a rate of 30 kg P2O5 ha?1 was sufficient to produce maximum early season biomass yield and P uptake for both conventional MAP and CRP fertilizers. Large differences in early P availability were not evident between the conventional P and controlled released P fertilizer products.  相似文献   

3.
有机无机肥配施对冬小麦耗水特性和干物质生产的影响   总被引:5,自引:0,他引:5  
为探讨黄淮海地区冬小麦水肥高效利用的合理施肥方式,于2013—2015年冬小麦生长季进行田间试验,以石麦15(SM15)为试验材料,以长期定位试验的大型水肥渗漏研究设施为平台,设计单施尿素(U)、单施有机肥(M)、尿素和有机肥(腐熟的牛粪)1∶1配施(U+M)3个施肥处理,以不施氮肥(CK)为对照,研究了有机无机肥配施对冬小麦耗水特性和干物质生产的影响。结果表明:U+M处理下冬小麦总耗水量最高,达548.46~556.72 mm,各生育阶段中,开花至成熟期的耗水量最高,该阶段耗水模系数达33.55%~42.38%,有利于满足小麦灌浆期对水分的需求;U+M处理能够增强土壤的持水能力,增加冬小麦对土壤贮水特别是深层贮水的消耗,降低了淋洗损失,整个生育期内U+M处理的水分淋洗体积最低,比CK、U和M处理分别降低66.79%,52.45%和37.61%,土壤贮水向灌浆阶段分配较多,增加了土壤贮水对籽粒产量的贡献率。U+M处理在两个生长季均获得最高干物质积累量,较U和M处理分别提高11.93%和23.33%,并且其籽粒干物质积累量和籽粒在植株干物质中的分配比例均显著高于其他处理。籽粒产量以U+M处理最高,U+M、U和M处理的籽粒产量分别较CK处理增产65.96%,49.44%和46.59%,U+M处理的产量水分利用效率和干物质水分利用效率均显著高于其他施肥处理。综上所述,在本试验条件下,化肥和有机肥(牛粪)1∶1配施能显著提高冬小麦籽粒产量和干物质积累量,改善冬小麦耗水特性,增加作物耗水量,且显著降低水分淋洗损失,增加灌浆阶段的水分供应,提高冬小麦的水分利用效率,是黄淮海地区小麦/玉米轮作体系下较为合理的施肥方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号