首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to evaluate the effects of organic and inorganic fertilizers on the yield and quality of sugar beet genotypes (Beta vulgaris L.). Therefore, a field trial was carried out in Peshawar, Pakistan, during the winters in 2012–2013. The field experiment was conducted in a randomized complete block design with split plots, having three replications. Fertilizer treatments (control, composted manure Higo Organic Plus at 5 t ha?1, Maxicrop Sea Gold seaweed extract at 5 L ha?1, farm yard manure at 10 t ha?1, inorganic nitrogen–phosphorus (NP) at 90:60 kg ha?1, NP at 120:90 kg ha?1 and NP at 150:120 kg ha?1) were allotted to main plots, while genotypes (Sandrina, Serenada and Kawe Terma) were allotted to the sub-plots. Plots treated with the application of NP at 120:90 kg ha?1 produced the highest beet yield (76.4 t ha?1) and sugar yield (11.1 t ha?1), and had the second highest polarizable sugar content (14.52%) and more economic return (Rs. 553,000 per hectare) as compared to control plots. Sugar beet genotype Serenada had significantly higher beet yield (55.5 t ha?1) and sugar yield (7.9 t ha?1) and a higher economic return (Rs. 380,000 per hectare) than the other genotypes. Sugar beet genotype Serenada supplied with NP at 120:90 kg ha?1is recommended for the general cultivation in the agro-climatic conditions of Peshawar valley.  相似文献   

2.
甜菜M14品系与二倍体栽培甜菜耐盐性的比较研究   总被引:2,自引:0,他引:2  
【目的】甜菜属于耐盐碱作物,通过比较两个优质甜菜材料的耐盐性,为甜菜育种提供科学依据。【方法】本试验以甜菜M14品系(18+1条染色体)和来自同一亲本分离得到的二倍体栽培甜菜(18条染色体)为试验材料,在正常和200 mmol/L NaCl胁迫条件下进行水培试验。在处理0、1、3、5、7天后,采集幼苗样品,测定株高、根长,分析K^+、Na^+、丙二醛(MDA)和甜菜碱含量,测定主要抗氧化物酶基因(SOD、CAT、APX、GR)和甜菜碱合成基因(CMO、BADH)的转录水平及以上6个基因编码酶活性。【结果】1)正常条件下,两个甜菜材料的株高和根长均无明显差异;200 mmol/L NaCl胁迫条件下,M14品系的株高和根长均优于二倍体。2)正常条件下,M14品系与二倍体的根吸收K^+和Na^+的能力相似,代谢过程中产生甜菜碱的量相当;200 mmol/L NaCl胁迫条件下,两个甜菜材料根中的K^+、Na^+含量差异不显著,而M14品系根中的甜菜碱含量高于二倍体。3)正常条件下,两个甜菜材料根中的SOD、CAT、APX、GR、CMO和BADH基因转录水平差异均不显著;200 mmol/L NaCl胁迫条件下,M14品系根中的SOD和GR基因转录水平均在第1天时高于二倍体,CAT、APX、CMO和BADH基因转录水平在第3~5天显著高于二倍体。4)正常条件下,两个甜菜材料根中SOD、CAT、APX、GR、CMO和BADH活性差异不显著;200 mmol/L NaCl胁迫条件下,M14品系根中各酶活性均显著高于二倍体。【结论】在200 mmol/L NaCl胁迫条件下,甜菜M14品系根部的甜菜碱含量较高,抗氧化物酶基因转录水平及酶活性均显著高于二倍体,表现出更高的耐盐性。  相似文献   

3.
Various characteristics of the photosynthetic apparatus of sugar beet were investigated with respect to changes in leaf copper content due to copper depletion. Copper deficiency inhibited whole chain electron transport or photosystem (PS) I or PS II electron transport measured separately. The minimal copper requirement was found to be 0.95 natom/cm2 for whole chain electron transport and 0.75 natom/cm2 for PS I or PS II electron transport. The minimum copper requirement to maintain normal contents of chlorophylls, carotenoids, and plastoquinone was 0.5 natom Cu/cm2.  相似文献   

4.
Plant species differ in their potassium (K) efficiency, but the mechanisms are not clearly documented and understood. Therefore, K efficiency of spring wheat, spring barley, and sugar beet was studied under controlled conditions on a K fixing sandy clay loam. The effect of four K concentrations in soil solution ranging from low (5 and 20 μM K) to high (2.65 and 10 mM K) on plant growth and K uptake was investigated at 3 harvest dates (14, 21, and 31 days after sowing). The following parameters were determined: shoot dry matter (DM), K concentration in shoot dry matter, root length (RL), root length/shoot weight ratio (RSR), shoot growth rate/average root length ratio (GRs/aRL), K influx, and soil solution K concentrations. Wheat proved to have a higher agronomic K efficiency than barley and sugar beet, indicated by a greater relative yield under K‐deficient conditions. As compared to both cereals, sugar beet was characterized by higher K concentrations in the shoot dry matter, only 30—50 % of the root length, 15—30 % of the RSR and a 3 to 6 times higher GRs/aRL. This means that the shoot of sugar beet had a 3 to 6 times higher K demand per unit root length. Even at low K concentrations in the soil solution, sugar beet had a 7 to 10 times higher K influx than the cereals, indicating that sugar beet was more effective in removing low available soil K. Wheat and barley were characterized by slow shoot growth, low internal K requirement, i.e. high K utilization efficiency, and high RSR, resulting in a low K demand per unit root length. At low soil K concentrations, both cereals increased K influx with age, an indication of adaptation to K deficiency. The mechanism of this adaptation merits closer investigation. Model calculations were performed to estimate the K concentration difference between the bulk soil and the root surface (ΔCL) needed to drive the measured K influx. For the two cereals, the calculated ΔCL was smaller than the K concentration in the soil solution, but for sugar beet, ΔCL was up to seven times higher. This indicates that sugar beet was able to mobilize K in the rhizosphere, but the mechanisms responsible for this mobilization remain to be studied.  相似文献   

5.
低磷胁迫对不同基因型甜菜抗性生理特征的效应   总被引:1,自引:1,他引:1  
选用对低磷胁迫抗性各异的3个甜菜品种:品20、品17和品14,在人工培养室内采用沙培试验法,研究了甜菜抗耐低磷胁迫的生理机制。结果表明,低磷胁迫限制了甜菜对磷的吸收,导致植株含磷量和生物产量显著下降;不同品种间差异显著,品14降幅最大,品17次之,品20最小。与足磷处理(P 100μmol/L)相比,低磷胁迫后甜菜品种间体内抗性生理特征差异显著。其中,品14和品17的丙二醛含量、脯氨酸含量、过氧化物酶活性均显著增加;品20的丙二醛含量、脯氨酸含量极显著下降,而过氧化物酶活性变化不显著。叶片中Mg2+-ATPase活性降低,不同品种降幅各异,从小到大依次为品20品17品14,其中品20与后两者间的差异均达显著。品20和品17体内的钙调素(CaM)含量显著增加,而品14变化不明显,其相对值从大到小依次为品20品17品14,差异显著,与品种自身抗磷胁迫能力顺序一致。不同磷素营养条件对甜菜抵御外界不良环境有较大影响,叶片在受到热伤害时,抗磷胁迫能力较弱的品14和品17在低磷胁迫时质膜损伤率显著增加;而抗磷胁迫能力较强的品20叶片质膜的损伤率显著下降,抗热能力得到改善。  相似文献   

6.
滴施改良剂对新疆盐碱土改良及甜菜产量的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
为了明确滴施化学改良剂对新疆盐碱土盐碱指标的影响,合理选用化学改良剂,选择4种滴灌专用盐碱改良剂类产品(酸碱平衡护理剂、酸酸肥霸、肽能氮、生物有机菌肥),以不施化学改良剂为对照,对施用前后土壤盐分、pH值、钠吸附比、总碱度、碱化度指标变化和甜菜锤度、产量的差异进行分析。结果表明:与不施化学改良剂相比,酸碱平衡护理剂处理和生物有机菌肥处理使土壤pH值分别降低了0.67和1.03个单位,达到显著水平(P0.05)。除施用酸酸肥霸处理的土壤盐分上升外,其余3种改良剂处理的土壤盐分均下降,施用生物菌肥使土壤盐分下降1.19 g/kg,达到显著水平(P0.05)。施用改良剂使土壤CO_3~(2-)和HCO_3~-的降幅达2.00%~80.00%,酸碱平衡护理剂和肽能氮主要降低土壤中CO_3~(2-)的含量,分别降低了49.50%和30.00%;酸酸肥霸降低HCO_3~-的效应优于CO_3~(2-);生物菌肥对HCO_3~-和CO_3~(2-)均有显著的降低作用,分别下降了60.40%和80.00%。4种盐渍土改良剂均能够有效地降低土壤耕层总碱度和pH值,以生物有机菌肥效果最显著;肽能氮和生物有机菌肥可同时降低土壤钠吸附比和碱化度,显著提高了甜菜的产量,但酸酸肥霸和酸碱平衡护理剂处理的甜菜产量与对照相比差异不显著。  相似文献   

7.
The main objective of this work was to evaluate the effects of saline irrigation water and leaching on the sugar beet yield components. In a field experiment in Rudasht region (Isfahan, Iran), three irrigation water salinity levels (1.6, 8.1, and 12.3 dS m?1) and with/without leaching were applied. The experimental units comprised of a completely randomized block design, with split plot in four replications. The results indicated that the white sugar yield and alkalinity decreased by increasing the water salinity. Salts leaching significantly increased the root yield, white sugar yield, and white sugar concentration. With higher levels of water salinity molasses sugar, leaf weight, and the concentrations of Na, K, and α- amino-N in sugar beet significantly increased. Consequently, it appears that the use of drainage water in combination with fresh water could be recommended as a strategic management way to grow sugar beet in the investigated arid region.  相似文献   

8.

Background and aims

Increasing demand for lithium (Li+) for portable energy storage is leading to a global risk of Li+ pollution from the manufacture, use, and disposal of Li+-containing products. Although Li+, a reactive alkali metal, has no essential function in plants, they readily take it up and accumulate it in large amounts in their tissues. The underlying mechanisms for this Li+ uptake and accumulation are, however, not well described. Our aim has been to investigate the effects of other alkali metals with similar physicochemical properties on the uptake, accumulation, and toxicity of Li+ at low and high osmolarity.

Methods

To determine the way in which Li+ affects the accumulation of other cations under saline conditions, sugar beet plants were grown in hydroponic culture with equimolar amounts of Li+, potassium (K+), and sodium (Na+) at low and high concentrations in various combinations.

Results

Sugar beet plants tolerated high Li+ concentrations in the leaf and petiole. Low Li+ concentrations had no impact on plant growth but induced stomata closure. The presence of other monovalent cations at equimolar concentrations did not affect Li+ accumulation, but Li+ application altered the ratio of monovalent and divalent cations in leaves. Plants treated with high Li+ in combination with Na+ or K+ showed reduced plant growth and leaf necrosis, indicating the severe stress caused by Li+ toxicity.

Conclusion

The presence of cations with similar physicochemical properties to those of Li+ cannot mitigate its toxicity.  相似文献   

9.
灌溉制度对膜下滴灌甜菜产量及水分利用效率的影响   总被引:5,自引:0,他引:5  
为制定新疆合理的甜菜膜下滴灌制度,设置3个灌水次数(8、9和10次)和2个灌水定额(45和60mm)两因素全组合试验,于2016—2017年在新疆玛纳斯县农科院甜菜改良中心开展田间试验。结果表明,灌水次数增加时甜菜叶面积指数与产量增加,含糖率降低,对甜菜的水分利用效率、耗水量无明显影响(P0.05),甜菜叶绿素值随灌水次数与定额增加呈下降趋势;在灌水次数与定额交互作用下,灌水8次时由于土壤相对含水率低于50%,甜菜会减产;当灌水9次,灌水定额为45 mm时,增加15 mm灌水定额土壤相对含水率达50%以上,此时甜菜增产7.4%~7.7%,糖产增加9.4%~9.7%;而继续增加灌水次数时,会导致甜菜含糖率降低而降低糖产。因此针对新疆膜下滴灌甜菜以60 mm灌水定额灌水9次为宜,可获得高产与糖产,较传统新疆膜下滴灌甜菜制度节水10%。该研究对指导新疆膜下滴灌甜菜灌溉制度具有一定意义。  相似文献   

10.
张吉立  冀金凤  王宁  王鹏 《土壤》2023,55(2):441-445
通过研究甜菜在雨养条件下施肥和施肥后补灌对甜菜干物质积累、产量、产糖量和养分吸收的影响规律,可以为甜菜栽培中施肥和灌溉提供理论依据。试验在田间条件下,设置雨养无肥(对照)、雨养施肥、补灌施肥3个处理,大区试验设计,3次重复。结果表明:收获期补灌与雨养施肥处理相比显著提高了甜菜总干物质积累量和产糖量;补灌施肥、雨养施肥与无肥处理相比显著提高了地上部和总干物质积累量、产量、产糖率和产糖量;收获期补灌与雨养施肥处理相比显著降低了甜菜地下部、地上部氮吸收量和总氮、总钾吸收量,雨养施肥与无肥处理相比显著提高了总氮、总钾吸收量;收获期补灌与雨养施肥处理相比显著提高了甜菜地下部、地上部干物质积累量和总磷吸收量,雨养施肥与不施肥处理相比显著提高了地上部干物质积累量和总磷吸收量。综合分析认为,补灌与雨养施肥处理相比利于促进甜菜生长发育,提高产量、产糖量和磷吸收量,降低甜菜对氮、钾的吸收量,建议在5—6月发生季节性干旱时进行人工补灌。  相似文献   

11.
不同控制灌溉方式下稻田土壤盐分动态变化研究   总被引:5,自引:0,他引:5  
对不同控制灌溉方式下稻田土壤盐分在水稻各生育期的动态变化规律进行了深入分析,并结合各生育期水稻冠层叶面积指数和稻田腾发量对土壤盐分动态成因进行了探讨。研究结果表明:控制灌溉或控制灌溉+淋洗条件下,各水稻生育期土壤含盐量均有不同程度降低,表现为随着淋洗水量的增加土壤含盐量逐渐降低的规律性,试验条件下不同处理间的差异不太显著;试验各灌溉方式并未引起土壤盐分显著积聚,并且具有重要的节水增产效益,其中水稻控制灌溉(即处理1)从节水增产角度而言是稻田较佳的灌溉管理方式。本项研究内容及其成果对于指导水稻灌溉管理实际具有重要的理论指导意义。  相似文献   

12.
In the future, UK summers are likely to be warmer and drier. Modelling differential water redistribution and uptake, we assessed the impact of future drier climates on sugar beet yields. Weather was generated for 1961–1990 (BASE) and predictions based on low‐ and high‐emission scenarios (LO, HI) described in the most recent global climate simulations by the Hadley Centre, UK. Distributions and variability of relative soil moisture deficit (rSMD) and yield gap (drought‐related yield loss, YGdr = 1?actual yield/potential yield), and sugar yield were calculated for different time‐lines using regional weather, soil texture and management inputs. The rSMD is estimated to exceed the senescence threshold with a probability of 75% (2050sLO) to 95% (2080sHI) compared with 65% (BASE). The potential yield loss, YGdr, is likely to increase from 17% (BASE) to 22% (2050sLO) to 35% (2080sHI). However, increasing potential growth rates (CO2 × temperature) cause average sugar yields to rise by between 1.4 and 2 t ha?1 (2050sLO and 2050sHI respectively). Yield variation (CV%) may increase from 15–18% (BASE) to 18–23% (2050s) and 19–25% (2080s). Differences are small between regions but large within regions because of soil variability. In future, sugar yields on sands (8 t ha?1) are likely to increase by little (0.5–1.5 t ha?1), but on loams yields are likely to increase from 11 to 13 t ha?1 (2050sHI) and 15 t ha?1 (2080sHI). Earlier sowing and later harvest are potential tools to compensate for drought‐related losses on sandy soils.  相似文献   

13.
Salinity and sodicity are prime threats to land resources resulting in huge economic and associated social consequences in several countries. Nutrient deficiencies reduce crop productivity in salt‐affected regions. Soil fertility has not been sustainably managed in salt‐affected arid regions. Few researchers investigated the crop responses to phosphorus and potassium interactions especially in saline–sodic soils. A research study was carried out to explore the effect of diammonium phosphorus (DAP) and potassium sulphate (K2SO4) on sugar beet (Beta vulgaris L.) grown in a saline–sodic field located in Kohat district of Pakistan. The crop was irrigated with ground water with ECiw value of 2.17–3.0 dS/m. Three levels each of K2O (0, 75 and 150 kg/ha) as K2SO4 and P2O5 (0, 60 and 120 kg/ha) as DAP were applied. The application of P significantly affected fresh beet and shoot yield while K fertilizers had significant effect on fresh beet yield and ratio of beet:shoot, while non‐significant effects on the fresh shoot were observed. The application of K1 and K2 promoted sugar beet shoot yield by 49.2 and 49.2% at P1 and 64.4 and 59.7% at P2, respectively over controls. In comparison with controls, fresh beet yield was increased (%) by 15 and 51, 45 and 84, and 50 and 58 for corresponding K1 and K2 at P0, P1 and P2, respectively. Addition of P1 and P2 increased beet yield by 37 and 47% over control. The shoot [P] (mmol/kg) were achieved as 55.2, 73.6 and 84.3 at P0, P1 and P2, respectively. The shoot [Mg] and [SO4] tended to decrease with increasing P levels, while [SO4] was markedly reduced at P2. The effect of P on leaf [Na] was non‐significant, but increasing levels of K decreased [Na] substantially at P0 and P1, but there was no difference in the effect of K level on [Na] at P2. Consequently, K application reduced leaf Na:K ratios. Fresh shoot yield was weakly associated with leaf [P] (R2 = 0.53). The leaf Na:K ratio showed a negative relationship (R2 = 0.90) with leaf [K]. A strongly positive relationship (R2 = 0.75) was observed between leaf [K] and fresh beet yield. The addition of K2SO4 also enhanced [SO4] and SO4:P ratios in leaf tissues. The ratio of Na:K in the shoot decreased with increasing K application. These results demonstrated that interactions of K and P could mitigate the adverse effects of salinity and sodicity in soils. This would contribute to the efficient management of soil fertility system in arid‐climate agriculture.  相似文献   

14.
Two creeping bentgrass clones having contrasting salinity tolerance collected from a salinity tolerant population were examined for growth responses and ion uptake under NaCl stressed conditions. The two clones showed differences in dry weight partitioning and morphological changes under salt stress. The clone with greater salt tolerance has greater ion partitioning differences in Na, Na/K and Cl levels between organ tissues.  相似文献   

15.
滴灌甜菜对糖分积累期水分亏缺的生理响应   总被引:4,自引:0,他引:4  
滴灌条件下,于甜菜糖分积累期设置0~40 cm土层含水量下限分别为70%、50%、30%田间持水量的3种土壤水分处理,从叶片光合特性、水分胁迫指数、恢复度、产量及产糖量方面分析复水前后甜菜的生理响应,明确甜菜糖分积累期可忍受最大程度的水分亏缺下限。结果表明:30%田间持水量处理甜菜产量及产糖量都显著高于70%田间持水量和50%田间持水量,分别比70%田间持水量提高51.34%和51.47%,比50%田间持水量提高36.72%和39.48%。复水前30%田间持水量处理的甜菜叶片净光合速率显著低于其他处理,复水后处理间的叶片净光合速率的差异随时间推移减小,胞间CO2浓度表现出相反的趋势。当土壤水分下降到既定下限时,叶片脯氨酸和可溶性糖含量变化最为灵敏,且与缺水程度呈正相关;复水后叶片的细胞膜透性、抗氧化防御体系以及渗透调节物质均产生了正补偿效应,表现为丙二醛含量降低,抗氧化性酶活性增强,控制渗透调节的脯氨酸和可溶性糖含量增加。因此,在糖分积累期,土壤含水量下降至田间持水量的30%时进行补充灌溉,在一定程度上补偿水分亏缺对甜菜产生的负面影响,实现干旱区滴灌甜菜节水高产优质的目的。  相似文献   

16.
Abstract

The nutritional profile of sweet sorghum [Sorghum bicolor (L.) Moench] cultivars grown under acid soil field stress conditions is a critical consideration when developing plants which are adapted to these infertile soils. Uptake and accumulation of macro‐ and micronutrients vary among genotypes and ultimately Influence plant growth and development. This study compared fourteen sweet sorghum germplasm lines and varieties for their Individual patterns of leaf nutrient concentrations and productivity when grown under acid soil field conditions (pH 4.45 to pH 4.85) at three locations over a two‐year period. Significant year x location interactions were found for Fe, K, and Ca concentrations at both Blairsville and Calhoun and for Mn and P levels at Blairsville and Calhoun, respectively. Data from Calhoun on plant height, dry weight, visual stress ratings, and rainfall indicate a possible association between drought tolerance and acid soil tolerance in sorghum. No significant differences in A1 concentrations were found among these sweet sorghum lines and varieties, which indicate that their acid soil tolerance mechanisms are probably not related to A1. MN 1054 accumulated the highest levels of Mn in the three acid soils. The highest concentrations of Mg and P were found in Brandes. MN 960 had the highest visual stress ratings (highest susceptibility) while Brandes, Ramada, Roma, and Wray were the most tolerant. All fourteen cultivars apparently have some tolerance to acid soil stress conditions.  相似文献   

17.
尿素增强烯草酮胁迫下紫苏幼苗耐性的研究   总被引:3,自引:0,他引:3  
为探讨烯草酮与尿素处理对紫苏生长的影响,阐明尿素对紫苏在烯草酮胁迫下耐性的调节效应。采用随机区组试验设计,在紫苏六叶期喷施不同浓度的尿素(0、1、2、4和 8 g/L)和24%烯草酮乳油(0、0.67、1.33、2.66和 3.99 mL/L),分析其对紫苏生长、光合特性、抗逆性指标、杂草防效和产量的影响。结果表明,烯草酮抑制紫苏幼苗生长,降低光合特性,使丙二醛积累增加,超氧化物歧化酶、过氧化物酶活性随其浓度的增加呈先上升后下降趋势;而1~4 g/L浓度的尿素处理则促进生长,并提高了光合特性;8 g/L的尿素处理效果相反。1~4 g/L的尿素和不同浓度的烯草酮先后处理,比单施烯草酮处理的效果好,A组(先喷施尿素后喷施烯草酮)的C1N3(4 g/L尿素,0.67 ml/L烯草酮)处理可使现蕾期产量和子粒产量比单独施用烯草酮增产13.94 %和10.54 %,株防效提高11%。表明在紫苏六叶期先喷施4 g/L的尿素再喷施0.67 mL/L 的烯草酮,能显著提高紫苏幼苗在烯草酮胁迫下的耐性,提高幼苗净光合速率,促进植株生长,这些效应与其提高抗氧化酶活性有关;该施药模式具有提高防效,安全高产等特点,有较高的推广价值。  相似文献   

18.
以48个杂交水稻组合(sz744~sz791)为供试材料, 分别以三系杂交稻“汕优63”和两系杂交稻“两优培九”为对照材料, 在单年水稻生育后期, 在同一实验田中, 分别对其耐高光强、耐低光强、耐水分匮乏、耐高肥及抗早衰等特性进行筛选, 并在收获后考察其结实率。结果表明: 供试水稻材料对不同逆境的耐性表现不同, 结合叶绿素含量、植株干重、穗期田间晒田时叶片Fv/Fm、茎伤流、硝酸还原酶活性等逆境筛选指标以及后期结实率的联合筛选, 通过联合聚类分析, 可将供试水稻对上述5种逆境的耐性分为5类型, 其中结实率与高光强下叶绿素含量变化、叶片硝酸还原酶活性及孕穗期剑叶叶绿素含量的相关系数分别为0.426**、0.295*和0.566**, 水稻当年的结实率也可作为水稻广适性筛选的参考指标  相似文献   

19.
This investigation was conducted to explore the effects of salt types with different concentrations on germination and growth parameters of flax seeds. The experiment was set out as a factorial experiment based on a completely randomized design with three replications. We used six kinds of salts (NaCl, CaCl2, CaCO3, Na2SO4, Na2CO3 and KCl) with concentrations of 0, 50, 100 and 200 mM. According to the results, the inhibitory effects of the five salt types differed substantially, especially in the case of CaCO3, Na2CO3 and Na2SO4. Inhibitory effects of these salts were very strong compared to those of NaCl and CaCl2. Germination of flax seeds by various salts was in the order of NaCl > CaCl2 > KCl > Na2CO3 > Na2SO4 > CaCO3. The effect of salt concentration was obvious, too. Seeds of flax were able to germinate even in 200 mM NaCl, but they only germinated in distilled water or at very low CaCO3, Na2CO3 and Na2SO4 concentrations (50 mM).  相似文献   

20.
不同促腐条件下玉米秸秆直接还田的生物学效应研究   总被引:13,自引:4,他引:13  
通过2年田间定位试验,研究了冀东地区小麦玉米轮作制度下,不同促腐条件下玉米秸秆配施化肥直接还田的生物学效应。结果表明,秸秆配施化肥并调节其C/N条件下,施用促腐剂较未施用处理增产达显著水平,作物各生育期土壤微生物量、酶活性均表现出高于未施用处理的趋势。以土壤微生物量、酶活性及氮、磷动态变化综合评判,秋季玉米秸秆直接还田在施用氮磷钾化学肥料作基肥的基础上,调节秸秆C/N.15∶1~35∶1范围内,不同C/N未影响秸秆的转化进程;在调节秸秆C/N的前提下,施用促腐剂则促进了秸秆的快速腐解,使秸秆转化过程中氮素的净释放和磷素再次进入净释放的时间提前,利于作物生长发育和产量形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号