首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To develop optimum nitrogen (N) fertilization practices with the least impact on environmental quality and with the greatest economic return, it is imperative that a greater understanding of crop and soil N dynamics be sought. This paper reports on research conducted with these objectives: (i) to determine the relationship between plant N and dry matter accumulation and soil N status as affected by N‐source fertilization as a function of accumulated growing degree days (GDD), and (ii) to determine if western Oregon soil conditions favor ammonium (NH4) over nitrate (NO3) nutrition during the period of grass seed crop growth. In a companion paper, plant growth and seed yield component data were discussed in relation to N‐source treatments and climatic year effects. Western Oregon field plots of Italian ryegrass (Lolium multiflorum Lam.) were fertilized with calcium nitrate, ammonium nitrate, ammonium sulfate, ammonium chloride, and urea‐dicyandiamide (DCD) to manipulate soil NH4 and NO3 ratios. Italian ryegrass accumulated the greatest portion of plant N and dry mass between tiller elongation and mid‐heading. Reduced growth and seed yield in 1991, compared to 1992, were associated with lodging and low soil pH. Higher soil NH4 levels in 1991 was most likely responsible for a greater reduction in soil pH for that year. Declines in soil pH due to elevated NH4 levels during climate years normal to western Oregon, wet and cool, may have an additive effect to other factors limiting seed yield. When cool wet soil conditions exist NH4 was the predominate mineral N‐form. Information reported here and in the companion paper is valuable to farm managers and consultants in the context of N fertilization of ryegrass grown for seed in western Oregon. It begins to establish criteria for the future development of site specific nutrient management plans and adds knowledge that will aid in improving N‐use efficiency through improving N fertilizer timing and N source use.  相似文献   

2.
Struvite (MgNH4PO4.6H2O) and nitrification inhibitors are applied to soils to, respectively, provide nutrients and reduce nitrogen (N) loss. Given its low N composition (5.7%) relative to that of phosphorus (P, 12.6%) and magnesium (Mg, 9.9%), struvite could be added to soil concurrently with N fertilizers as a source of P and Mg. Nutrient release from struvite could be impacted if nitrification of its ammonium component is reduced by a nitrification inhibitor. Accordingly, a pot trial gauged whether struvite‐fertilized ryegrass had comparable Mg or P uptake and shoot yields with treatments receiving conventional Mg and P fertilizers. Struvite precipitated from milk industry wastewater, or conventional fertilizers, were added to a soil–sand mixture of low fertility. The inhibitor dicyandiamide (DCD) was added to assess its effect on P uptake by ryegrass. Relative to Epsom salt, struvite led to increased Mg uptake without significantly affecting shoot biomass, indicating luxury consumption. Regarding shoot yield and P uptake, struvite was as effective as triple super phosphate. DCD significantly reduced P uptake in the first harvest; the inhibited nitrification of the ammonium is surmised to have diminished struvite dissolution. In later harvests, DCD led to a trend (albeit not statistically significant) of increased biomass; this N‐rich (66% N) compound was probably biodegraded and utilized as an N source. The impact of DCD on P uptake in this experiment was short‐lived. Nevertheless, DCD degradation occurs less rapidly in field conditions, potentially affecting early P supply which is vital for optimum yield.  相似文献   

3.
Abstract

Nitrogen fertilization is of major importance in maintaining turfgrass stands. Although rates and sources of N may vary on different turfgrass areas, efficient utilization of N applications is always important. This research was conducted in the field to determine the value of dicyandiamide (DCD) as a nitrification inhibitor and as a slow‐release N source in turfgrass fertilization. The inhibitory effect was studied by applying ammonium sulfate (AS), urea, and a complete fertilizer alone and with 10 and/or 15% of the N replaced with DCD‐N to stands of Kentucky bluegrass. Single and split rates totaling up to 196 kgN/ha/yr were used. Soil NO3‐N and NH4‐N analyses sometimes indicated decreased nitrification; however, turfgrass yield and color were essentially unaffected by these rates of DCD. To assess the slow‐release effect of DCD, various ratios of AS‐N or urea‐N to DCD‐N were used to fertilize turf in two experiments. Initial response decreased as the proportion of DCD‐N increased, and in one experiment, a residual effect was noted a year after application when DCD comprised 80 or 100% of the N. Severe, but short‐lived, phytotoxicity from DCD was noted in the other experiment when more than 40% of the N was from DCD. Under the conditions of this research, DCD appeared to have little value in increasing the efficiency of N fertilization.  相似文献   

4.
The inadequacy of most models to simulate crop growth and yield is due to complexity, difficulty to understand, and lack of input data. Therefore, several simple crop growth models are presented to reduce these failures. In this investigation, yield and aboveground dry matter (DMabove) of rapeseed were simulated by two logistic growth models that were based on days after planting (DAP) and growing degree days (GDD) under water salinity and deficit irrigation, in a 2-year experiment. Data of first and second year were used for calibration and validation of the model, respectively. The coefficients of logistic function were determined as a function of irrigation water salinity and sum of applied water and rainfall in spring of the first year. Results indicated that logistic function based on GDD-predicted DMabove during growing season more accurately than logistic function based on DAP. Furthermore, seed yield of rapeseed was estimated based on harvest index with a good accuracy. Therefore, logistic function based on GDD that is based on the cumulative heat units can be used for different weather conditions and planting dates to determine rapeseed DMabove and yield under water salinity and deficit irrigation.  相似文献   

5.
《Journal of plant nutrition》2013,36(12):2375-2389
Abstract

Nitrogen (N) fertilization rate, form, and timing in perennial ryegrass (Lolium perenne L.) vary according to the purpose of the grass. Double or triple spring N applications are required in forage production of perennial ryegrass. Whereas in perennial ryegrass grown for seed production the effect of more than one application has not received much attention. The hypothesis is that in perennial ryegrass grown for seed production the utilization of applied N depends on the current N status. Perennial ryegrass was grown in a hydroponic system with two N rates: low‐N (0.2 mM) and high‐N (6.0 mM). After 47 days of growth, additional N was applied as double‐labeled 15NO3 ? 15NH4 + on four successive occasions in order to distinguish between the recoveries of the initial N applications and the additional N applied. Growth parameters and N content were analyzed on five harvesting occasions. Additional N applications to plants with low N status were primarily used to increase both N content in all organs as well as shoot number. By contrast, in high‐N treatments, the additional N supplied was primarily used to increase total‐N content in leaves. In all treatments, leaves were the preferable storage organs for N, however, the results from the high‐N treatments suggest a shift to pseudo‐stems as the preferable storage organ when additional N was supplied. It is suggested that the current N concentration in perennial ryegrass determines the potential of the plants to utilize additional applied N.  相似文献   

6.
Catch crop strategy and nitrate leaching following grazed grass-clover   总被引:1,自引:0,他引:1  
Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0, 60 or 120 kg of ammonium‐N ha?1 in cattle slurry. In spring 2003, two grass‐clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley/perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley/Italian ryegrass reduced leaching by 163–320 kg N ha?1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg N ha?1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catch crops was reduced compared with the bare soil treatment. It was concluded that the green barley/Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers.  相似文献   

7.
A two‐year field experiment was conducted to determine if using mixed strains of Rhizobium inoculant and starter nitrogen (N) fertilizer could improve yield and nodulation of four common bean varieties on a Vertisol at Alemaya, Ethiopia. A granular mixed inoculant of CIAT isolates 384, 274, and 632 and a starter N fertilizer at a rate of 23 kg N ha‐1 (50 kg urea ha‐1) were applied separately at planting. Inoculation with mixed strains and starter N fertilizer gave a significantly higher grain yield, nodule number, and dry matter yield for most varieties used. Both grain yield and dry matter yield showed a significant correlation (r=0.93 and r=0.87; P<0.05 for grain yield and dry matter yield, respectively, for 1991 crop season and r=0.90 and r=0.86; P<0.05 for grain yield and dry matter yield, respectively, for 1992 crop season) with nodule number. It is recommended that resource‐poor farmers adopt the practice of using a Rhizobium inoculant or starter N to improve common bean yields in the Hararghe highlands, Ethiopia.  相似文献   

8.
A better understanding of the impact of fertilizer nitrogen (N) on biomass and N accumulation, and their partitioning into different plant components is needed to optimize crop yield and quality. A field experiment with spring wheat (Triticum aestivum), hulless (Avena nuda), and hulled (Avena sativa) oats was conducted for 3 years in Ottawa, ON, Canada, to determine the crop responses to N addition (0, 75, and 150 kg N ha–1). Biomass, N, and phosphorus (P) accumulation and partitioning into different plant components were examined during the growth season. Lodging score was determined for all crops when it occurred and again at harvest. During the growth season, both hulless and hulled oats and the wheat cultivar showed almost similar patterns of N and P accumulation with maximum contents at late grain filling or at harvest. Plant N concentration was up to 60 g kg–1 during the seedling stage, decreased gradually with advancing growth stages, and was lowest at harvest. Nitrogen treatments significantly increased plant N and P contents. At heading stage, N treatments enhanced dry matter (24%–45%), N (35%–135%), and P (27%–45%) contents in plant components (i.e., culm, leaf, and head), but also enhanced crop lodging, especially in oats. Both hulled and hulless oats had higher total plant N (5%–35%), N : P ratio, and dry‐matter content in leaf (6%–43%) and head (0%–129%) along with higher P (up to 27%) in culm than the wheat cultivar. The wheat cultivar accumulated greater dry matter and higher N content in kernels than both hulled and hulless oats at harvest. Both hulled and hulless oat cultivars exhibited similar lodging susceptibility to N addition (75 or 150 kg N ha–1), produced lower dry weight and lower kernel N, and hence lower grain yield than the wheat cultivar. The larger vegetative dry‐matter accumulation at heading coupled with higher P content in culms under high‐N‐supply conditions may be related to severe lodging in oat cultivars.  相似文献   

9.
为探明油菜精量联合直播同步分层施肥机械作业条件下,深浅层施肥比例对油菜根系生长、植株抗倒伏能力和产量等农艺性状的影响,该研究选用“华油杂62”油菜品种作为供试作物,在施肥量600 kg/hm2条件下,以10 cm定位侧深施肥CK1和机械旋耕浅层混施CK2作为对照,设置机械旋耕浅层混施-定位侧深施肥量分层比例为1∶3(FL)、1∶1(FM)和3∶1(FH)3个施肥处理,于2020年和2021年在长江中游冬油菜区开展田间试验,研究不同分层施肥处理对油菜根系分布、耕层土壤坚实度变化、倒伏指数和产量的影响。结果表明,分层深施处理能显著(P<0.05)改善油菜根系构型并促进根系下移,平均根表面积、根体积、根干质量和主根长分别是CK1处理的1.58、1.47、1.29和1.16倍,是CK2处理的3.63、2.79、1.46和1.28倍,且土壤坚实度相较于CK1和CK2处理平均分别降低4.91%和15.25%。不同分层施肥处理的油菜主根长、根表面积、根体积和根干质量在处理间从大到小依次均为:FM、FH、FL;FH处理植株的根茎粗、倒伏角度、抗折力分别是FM处理的1.11、...  相似文献   

10.
Abstract

Inhibition of nitrification in soil results in a decreased ratio of nitrate‐nitrogen (NO3‐N) to ammonium‐nitrogen (NH4‐N). If the conditions for NO3‐N loss by leaching or denitrification exist, nitrification inhibitors should increase concentrations of total inorganic soil nitrogen (N) (TISN) (NH4‐N + NO3‐N). This can then result in plants taking up more N and developing more crop yield or biomass. This study examined whether inhibition of nitrification by dicyandiamide (DCD) would result in increased concentrations of TISN under field conditions. The effects of DCD on soil N were evaluated in hyperthermic sandy soils planted to potato (Solanum tuberosum L., cv. Atlantic). Treatments were factorial combinations of N as ammonium nitrate (NH4NO3) at 67, 134, and 202 kg N ha‐1 and DCD at 0, 5.6, and 11.2 kg DCD ha‐1. Soil NH4‐N, NO3‐N, and TISN concentrations were determined for up to five potato growth stages at two locations for two years for a total of 16 determinations (cases), i.e., four were not determined. The N form ratio [NO3‐N/(NH4‐N + NO3‐N] x 100 was decreased in 10 of 16 cases, indicating that nitrification was inhibited by DCD. With two of these 10 cases, TISN concentration increased, but with four others, TISN concentration decreased with at least one N rate. With four of these 10 cases, inhibition of nitrification had no effect on TISN concentration. Under the conditions of these field studies, DCD inhibited nitrification more often than not. Inhibition of nitrification was, however, more likely to reduce TISN concentration than to increase it. This may have been due to DCD effects on immobization of applied NH4‐N.  相似文献   

11.
In 1991 and 1992, drip irrigation was used to apply various rates and timings of nitrogen (N) and potassium (K) to black polyethylene plastic‐mulched bell pepper (Capsicum annuum L.) to determine the effect on fruit quality and susceptibility to postharvest bacterial soft rot (Ervinia carotovora subsp. carotovora). Neither rate nor application timing affected total yield in either year. In 1991, the high fertilizer rate (266–309 kg/ha of N and K, respectively) increased class 1 yield in the first harvest and reduced total discards. In 1992, a year with a colder than average spring, the low fertilizer rate (70–81 kg/ha of NK) increased class 1 yield in the first harvest. Mid‐ or late‐season fertigation produced more second harvest yield and less discards than the first harvest in 1991, but not in 1992. Fruits of plants fertilized with high N and K rates had greater N and dry matter concentration. No differences in color or wall thickness at harvest were detected among treatments. Stored fruits turned red slower with the late season low fertilizer rate. There were no differences in rate of weight loss during storage at 10°C. No differences in progression of bacterial soft rot were detected among treatments in 1991, but the higher fertigation rates or late timing application increased resistance in 1992.  相似文献   

12.
Abstract

Preliminary soil incubation studies established that the nitrification inhibitor, Dicyandiamide (DCD), could maintain the ratio of NH.‐N to NO3‐N at predetermined levels. When one part DCD was mixed with 10 parts of the ammonium fertilizer prior to incorporation with the soil, nitrification was inhibited for at least six weeks. In a greenhouse experiment, wheat was grown to maturity and millet to the flowering stage in pots containing nitrate and ammonium fertilizers treated with DCD. Soil analyses during the plant growth period indicated that ammonium oxidation in soil was effectively inhibited. Plants of both species exposed to ammonium only with DCD produced lower yields than those exposed to a mixture of nitrate and ammonium nitrogen with DCD. Plants supplied with nitrate‐only gave somewhat lower yields than the mixtures. The nitrate‐only treatments resulted in the lowest accumulation of reduced nitrogen compounds in shoots of both species. Magnesium uptake by millet and calcium and magnesium uptake by wheat were reduced as the proportion of ammonium in soil was increased.  相似文献   

13.
Insufficient potassium (K) nutrition produces detrimental effects on cotton (Gossypium hirsutum L.) lint yield and fiber quality. To further understand the deleterious effects caused by K deficiency, a 2‐yr (1991 and 1992) field study was conducted to determine how dry matter partitioning and nutrient concentrations of various plant tissues for the cotton genotypes, ‘DES 119’ and ‘MD 51 ne’, were altered by varying the application rate of fertilizer K and nitrogen (N). All plots received a preplant application of 112 kg N ha‐1, and half of the plots were later sidedressed with an additional 38 kg N ha‐1. Within each N treatment, half the plots received 112 kg K ha‐1, preplant incorporated, with the remaining plots not receiving any fertilizer K. Dry matter harvests were taken three times in 1991 and two times in 1992. At cutout (slowing of vegetative growth and flowering), plants that received K fertilization had a 14% more leaf area index (LAI), a 3% increase in the number of main stem nodes, and a 2% increase in plant height. However, those plants had a 12% lower specific leaf weight (SLW) than plants receiving no K fertilization. By the end of season, the of K fertilization had resulted in more stem (21%), bur (13%), seed (19%), and lint weight (20%), but harvest index was not affected. Varying the level of N fertilization did not affect any of these dry matter parameters at any harvest. In general, the larger plants produced under K fertilization had reduced concentrations of N, phosphorus (P), magnesium (Mg), and sodium (Na) in the various plant parts. While N uptake efficiency was not affected by K fertility, plants that received K fertilization had increased efficiency of fertilizer N use and of N utilization within the plant. The smaller LAI of the K deficient plants probably reduced the photosynthetic capacity per plant. A reduced assimilation capacity could explain the inefficiency of N use, lint yield reductions, and poorer fiber quality often associated with K deficiencies.  相似文献   

14.
Abstract

Cover crops can be used to reduce leaching and erosion, introduce variability into crop rotation and fix nitrogen (N) for use by the main crops, less is however known about effects on weeds. The effects on weed seed bank, weed growth and grain yield of 4 years of annual undersown clover and ryegrass alone and in combination, and one of the 4 years with clover or clover + grass as green manure, were studied in oat and spring wheat at two experimental sites in south-eastern Norway. These treatments were compared with no undersown crop (control) and with weed harrowing. In contrast to many results in the literature, the undersown clover in this study did not suppress annual weeds, but fertilized the weeds as well as the cereals. Undersown clover resulted in a statistically significant increase of grain yield at the two sites to 116% and 121% of control. During the 4-year period relative seed bank and density of emerged weed (dominated by Spergula arvensis) increased significantly about 4.5 and 10 times respectively in the undersown clover plots at Apelsvoll. At Kise both ryegrass alone and ryegrass mixed with clover significantly suppressed the weed biomass to 70% and 74% of control respectively. It is concluded that fertilization effects of undersown clover may have dominated and overriden the competitive effects. One whole-season clover green manure did not increase the mean yield, but resulted in a significant drop in seed bank size the following year, because of limited weed establishment in an established ley. Only a slight increase in average weed biomass was observed at one of the two experimental sites. The weed seed bank and the weed biomass were essentially kept at steady state during the experimental period in harrowed plots, but harrowing decreased grain yield significantly at both sites.  相似文献   

15.
Nonnodulated soybean plants (Glycine max. [L.] Merr. ‘Lee') were supplied with nutrient solutions containing growth limiting concentrations of N or P to examine effects on N‐ and P‐uptake efficiencies (mg nutrient accumulated/gdw root) and utilization efficiencies in dry matter production (gdw2/mg nutrient). Nutritional treatments were imposed in aerial environments containing either 350 or 700 μL/L atmospheric CO2 to determine whether the nutrient interactions were modified when growth rates were altered.

Nutrient‐stress treatments decreased growth and N‐ and P‐uptake and utilization efficiencies at 27 days after transplanting (DAT) and seed yield at maturity (98 DAT). Atmospheric CO2 enrichment increased growth and N‐ and P‐utilization efficiencies at 27 DAT and seed yield in all nutritional treatments and did not affect N‐ and P‐uptake efficiencies at 27 DAT. Parameter responses to nutrient stress at 27 DAT were not altered by atmospheric CO2 enrichment and vice versa. Nutrient‐stress treatments lowered the relative seed yield response to atmospheric CO2 enrichment.

Decreased total‐N uptake by P‐stressed plants was associated with both decreased root growth and N‐uptake efficiency of the roots. Nitrogen‐utilization efficiency was also decreased by P‐stress. This response was associated with decreased plant growth as total‐N uptake and plant growth were decreased to the same extent by P stress resulting in unaltered tissue N concentrations. In contrast, decreased total P‐uptake by N‐stressed plants was associated with a restriction in root growth as P‐uptake efficiency of the roots was unaltered. This response was coupled with an increased root‐to‐shoot dry weight ratio; thus shoot and whole‐plant growth were decreased to a much greater extent than total‐P uptake which resulted in elevated P concentrations in the tissue. Therefore, P‐utilization efficiency was markedly reduced by N stress.  相似文献   

16.
Abstract

Numerous experiments have been conducted in Maryland and Pennsylvania since 1981 to determine if adding the nitrification inhibitor dicyandiamide (DCD) to an ammonium‐containing or producing N fertilizer source would increase the efficiency of that source with turfgrass, wheat, or corn. Greater yields per unit of fertilizer N were attained in three of eight experiments with wheat when DCD was included with an early spring application of N as urea or UAN. There was no significant beneficial effect of DCD on turf clipping yields or color in the 3 years of the turf study or on corn grain yields in the 22 field comparisons of N fertilizer with and without DCD. In five of the 22 comparisons with corn, there was a significantly lower grain yield with DCD than when it was not included. In three of these five cases, it was hypothesized that the lower yields with DCD were due to increased NH3 volatilization from urea or urea‐ammonium nitrate solutions containing DCD that were surface‐applied to no‐till corn. It was concluded that there was little likelihood that the inclusion of a nitrification inhibitor such as DCD with N fertilizer would increase N fertilizer efficiency with corn or turf on the predominantly well‐drained silt loam soils in the two states.  相似文献   

17.
Nitrogen (N) losses through nitrate leaching, occurring after slurry spreading, can be reduced by the use of nitrification inhibitors (NIs) such as dicyandiamide (DCD) and 3,4‐dimethyl pyrazole phosphate (DMPP). In the present work, the effects of DCD and DMPP, applied at two rates with cattle slurry, on soil mineral N profiles, annual ryegrass yield, and N uptake were compared under similar pedoclimatic conditions. Both NIs delayed the nitrate formation in soil; however, DMPP ensured that the soil mineral N was predominantly in the ammonium form rather than in the nitrate form for about 100 days, whereas with DCD such effect was observed only during the first 40 days after sowing. Furthermore, the use of NIs led to an increase of the dry‐matter (DM) yields in a range of 32–54% and of the forage N removal in a range of 34–68% relative to the slurry‐only (SO) treatment (without NIs). A DM yield of 8698 kg ha?1 was obtained with the DMPP applied at the greater rate against only 7444 kg ha?1 obtained with the greater rate of DCD (4767 kg ha?1 in the SO treatment). Therefore, it can be concluded that DMPP is more efficient as an NI than DCD when combined with cattle slurry.  相似文献   

18.
为探明机械直播同步深施肥对冬油菜抗倒伏能力及产量的影响,该研究选用"华油杂62"油菜品种为供试作物,设置肥料深施、肥料混施和不施肥3个处理,于2020年10月至2021年5月在湖北监利和沙洋试验地开展了田间试验,研究不同施肥处理对油菜根系特征、茎秆发育特性、干物质累积、植株氮素吸收、倒伏性状及产量等指标的影响,明晰机械直播同步深施肥冬油菜茎秆抗倒性及产量对株型特征的响应。结果表明,肥料深施较肥料混施处理促进了油菜茎秆生长发育且影响倒伏相关性状,茎粗、茎秆干质量、地上部鲜质量和茎秆抗折力分别显著(P<0.05)增加了9.5%、16.6%、17.4%和31.5%,而油菜株高及地上部鲜质量乘积的增幅小于茎秆抗折力的增幅,导致倒伏指数降低了5.0%,说明深施肥能够增强油菜茎秆抗倒性。此外,肥料深施较肥料混施处理显著增加了油菜根干质量、地上部干质量及地上部氮素积累量,增幅分别达到23.2%、20.4%和27.4%,最终使得油菜产量提高了20.7%(P=0.014),收获指数提高了2.0%。综上,长江中下游地区,肥料深施能改善冬油菜株型,优化油菜群体结构,提升油菜抗倒性能且提高油菜产量,是实现油菜高产且低倒伏风险的机械化种植方式。  相似文献   

19.
Abstract

Plant growth in saline soils is regulated by the availability of nitrogen (N). High soil nitrate (NO3)‐N can lead to poor water quality. Many workers think that NO3‐N as a source for N can contribute to better plant growth in saline soils. The purpose of this work was to determine the necessity of NO3‐N and the ratio of NO3/ammonium (NH4) in the N fertilizer which gives higher productivity of the biomass yield of corn. Corn (Zea mays L.) plants (Var. LG11) were grown under saline soil conditions (8.5 dS m‐1), soils taken from the Euphrates valley (ACSAO Research Station) at Deir‐Ez‐Zor, east of Syria, from the surface layer of soil (0–25 cm). Five levels of N were applied in two forms, ammonium sulfate [15(NH4)2SO4] with enrichment (1.5% a) as the NH4‐N form and calcium nitrate [Ca(NO3)2] as the NO3‐N form, besides fixed amounts of phosphorus (P) and potassium (K) for all N treatments. The corn plants were harvested at the flowering stage (56 days old), oven dried, weighed, and analyzed for total N and 15N recovery. The results indicated that the dry matter weight for treatments which received a combination of NH4‐N and NO3‐N gave higher dry matter yield than a single treatment of one source of N. But, NO3‐N was more effective in improving yield than NH4‐N. Nitrogen recoveries on the basis of added and absorbed N derived from fertilizer were significantly more affected by NO3‐N than NH4‐N.  相似文献   

20.
Abstract

The action and decomposition of dicyandiamide (DCD), a nitrification inhibitor, is discussed.

DCD is especially efficient when used with animal manure slurries or potato starch waste water. As a consequence, nitrate leaching can be reduced, yields and N uptake increased. DCD‐amended mineral N fertilizers applied once can substitute for split N applications, thus reducing labor costs without any loss in crop yield and quality. With wheat and sugar beets, use of a DCD‐containing product ("Alzon 22") reduced the requirement of N for maximum yield. New formulations, such as DCD plus a reducing substance, ammonium thiosulfate (ATS), or new inhibitors, such as guanylthiourea (GTU), will receive more attention in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号