首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
An investigation was conducted on two contrasting inland valley soils (Fluvauents and Tropaquents) over two cropping seasons (1993, 1994, and 1995) in two benchmark wetlands in Nigeria, and the contents and dynamics of iron (Fe) forms (active and organic) were examined when two different rice (Oryza sativa L) cultivars (‘ITA 212’ and ‘Suakoko 8’) were planted. Results showed that active Fe ranged between 0.96 and 3.16% on Fluvaquents and between 1.57 and 4.73% on Tropaquents; organic Fe, on the other hand, ranged between 0.05 and 2.84% (Fluvaquent) and between 0.60 and 2.38% (Tropaquents). Dynamics of the two Fe forms did not follow any clear pattern in the two cropping seasons on both soil types. On Fluvaquents, grain yields (GY) ranged between 2.40 and 3.46 t/ha (‘ITA 212’) and between 2.35 and 3.15t/ha (‘Suakoko 8’). Similarly, on Tropaquents, the GY ranged between 0.68 and 2.13 t/ha (‘ITA 212’) and between 0.61 and 2.11 t/ha (‘Suakoko 8’). Generally, the GY on Fluvaquents was higher than on Tropaquents and declined in the second cropping seasons. Results further showed that active Fe is significantly negatively correlated with GYs of rice. Critical active Fe and organic Fe contents for lowland rice on these soils were 2.90 and 1.80%, respectively.  相似文献   

2.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   

3.
《Journal of plant nutrition》2013,36(8):1471-1504
Abstract

Iron (Fe) toxicity is a widespread nutrient disorder of wetland rice grown on acid sulfate soils, Ultisols, and sandy soils with a low cation exchange capacity, moderate to high acidity, and active Fe (easily reducible Fe) and low to moderately high in organic matter. Iron toxicity reduces rice yields by 12–100%, depending on the Fe tolerance of the genotype, intensity of Fe toxicity stress, and soil fertility status. Iron toxicity can be reduced by using Fe-tolerant rice genotypes and through soil, water, and nutrient management practices. This article critically assesses the recent literature on Fe toxicity, with emphasis on the role of other plant nutrients, in the occurrence of and tolerance to Fe toxicity in lowland rice and puts this information in perspective for future research needs. The article emphasizes the need for research to provide knowledge that would be used for increasing rice production on Fe-toxic wetlands on a sustainable basis by integration of genetic tolerance to Fe toxicity with soil, water, and nutrient management.  相似文献   

4.
In iron toxic wetlands, ferric hydroxide is commonly deposited on rice roots. This study aims to to evaluate the differences in iron plaque formation in rice cultivars from different cropping systems. Thirty days old seedlings of Brazilian rice cultivars from the lowland cropping system (‘BRS Atalanta’ and ‘Epagri 107’) and upland cropping system (‘Canastra’) or both systems (‘BRSMG Curinga’) and the cultivar ‘Nipponbare’ were exposed to iron excess [4 mM iron sulfate heptahydrate (FeSO4.7H2O)] for seven days in nutrient solution. It was observed iron plaque formation and ruptures of the root epidermal cells. The lowland cultivars showed higher Fe content in iron plaque. Iron stain was detected in the root hairs, epidermis, hypodermis, and exodermis. The root exodermis may be contributed to prevent the deposit of iron in the cortex of the lowland cultivars and in the cultivar ‘BRSMG Curinga’. It was observed in plants with iron plaque formation significant reductions in the shoot content of phosphorous, manganese and magnesium due to different causes. The differences in iron plaque formation among the cultivars might be an indicative of variations in exodermis selectivity, root oxidative capacity, and iron nutrition mechanisms.  相似文献   

5.
With increasing water shortages in China, rice (Oryza sativa L.) cultivation is gradually shifting away from continuously flooded conditions to partly or even completely aerobic conditions. The effects of this shift on the growth and iron (Fe) nutrition of different aerobic and lowland rice genotypes are poorly understood. A field experiment was conducted to determine the effects of cultivation system (aerobic vs. flooded), genotype (five aerobic rice varieties and one lowland rice variety), and Fe fertilization [no Fe and 30 kg ha?1 ferrous sulfate (FeSO4·7H2O] on rice grain yield and Fe nutrition. Plants were sampled at tillering and physiological maturity. In both aerobic and flooded plots, Fe application significantly increased shoot dry weight, shoot Fe concentration, and shoot Fe content at tillering but not physiological maturity. At physiological maturity, grain yield and Fe and grain harvest indices were significantly lower in aerobic than in flooded plots. Shoot dry weight and shoot Fe content differed among genotypes at tillering and at physiological maturity. The grain harvest index of aerobic rice genotype 89B-271-17(hun) was significantly greater than that of the other five genotypes when no Fe was applied. Because soil Fe fertilization did not improve the Fe nutrition of rice in aerobic plots, the results indicate that the shift from flooded to aerobic cultivation will increase Fe deficiency in rice and will increase the problem of Fe deficiency in humans who depend on rice for nutrition.  相似文献   

6.
Cadmium (Cd) contamination in soils is a serious problem for crop production in the world. Zero-valent iron [Fe (0)] is a reactive material with reducing power capable of stabilizing toxic elements in a solution. In the present study, we examined the effect of zero-valent iron [Fe (0)] application on Cd accumulation in rice plants growing in Cd-contaminated paddy soils. The application of 1.0 and 0.5 mg Fe (0) per 100 g soils significantly reduced the Cd concentration in seeds and leaves by less than 10% and 20% of those without Fe (0) application, respectively. The form of Cd in soil was determined by sequential extraction. The Fe (0) application increased the free-oxides-occluded (less available) Cd content, and decreased the exchangeable and iron-manganese-oxides-bound (more available) Cd content, in Cd-contaminated soils. Thus, this study clearly showed that the application of Fe (0) is a promising approach for remediation of Cd-contaminated paddy soils.  相似文献   

7.
水稻锰毒与铁素营养关系的研究   总被引:1,自引:0,他引:1  
通过水培试验,研究了水稻锰毒与铁素营养关系,并探讨了过量锰对一些生理指标的影响。试验结果表明:地上部是生长介质中过量锰对水稻危害的主要部位;过量的锰增加铁在水稻根系的沉积,减少铁的吸收,改变体内铁的分布,降低铁的活性,诱发水稻缺铁胁迫;过量锰缺铁胁迫的水稻正常代谢受阻,叶片叶绿素、蛋白质含量减少,过氧化氢酶活性降低,而过氧化物酶活性增加  相似文献   

8.
现代人类活动对新疆灌淤土养分特性影响   总被引:3,自引:0,他引:3  
采集新疆4个典型灌淤土和其源土样品,分析养分含量,进行时间和空间尺度变化的比较分析,结果表明,现代人类活动使灌淤土有机质、全氮、有效氮和有效磷含量增加,有效钾降低,微量元素铜、铁、锌、锰等的有效含量增加,进一步分析表明合理的管理和利用土壤是灌淤土养分含量维持和增加的关键。  相似文献   

9.
Local farmers who living in South Kalimantan (Banjarese farmers) apply almost none of phosphatic (P) fertilizers to grow local rice varieties. This practice has been adopted for many years. We have investigated the mechanisms involved in P availability for the crop. This study focuses on identifying microorganisms involved in solubilizing insoluble P. The study was conducted in Balandean District, South Kalimantan, Indonesia. The soil was classified as acid sulfate soil. Three out of 8 rice varieties grown were selected for net P balance in the soil-plant system and the microbial studies. We found that the P uptakes by the rice crop was much higher than the sum of P released from soil, water and soil microbial biomass P. It was also observed that these soils harboured bacteria and fungi that have the capability of dissolving aluminium phosphate (AIPO4) and tricalcium phosphate [Ca3(PO4)2].
Based on the area of clear zone on plates, it seem that there were variations of ability in dissolving Al-P or Ca-P. DNA sequence analysis shown that Burkholderia sp. was the common P solubilizing bacterium found in the rhizosphere of rice varieties Siam Unus, Siam Ubi and Siam Puntal. The presence of other bacteria was specific for each rice variety grown.  相似文献   

10.
秸秆育苗容器土埋条件下养分释放动态规律   总被引:1,自引:0,他引:1  
为了解秸秆育苗容器在土壤中养分释放情况,以不含样品土壤作对照,进行了以改性淀粉胶和改性豆胶为胶黏剂、稻壳粉为填充料制作而成的秸秆育苗器土埋试验。结果显示:在土埋过程,两种育苗容器均发生了不同程度降解并伴随有碳氮磷钾养分释放。起初5天各养分释放较快,主要为水溶性养分的释放;中后期释放平稳,主要是微生物降解引起的养分释放。土埋65天,淀粉胶容器碳、氮、磷、钾释放量分别为67.1%、68.0%、80.2%、85.9%,豆胶容器为45.9%、55.5%、73.8%、81.3%,两种容器养分释放速率均表现为钾磷氮碳。秸秆容器碳氮钾释放量与土壤总凯氏氮、速效钾增长速率呈极显著相关关系(P0.01),磷素和碳素释放量与土壤速效磷和土壤有机碳增长无确定相关性(P0.05),研究结果为秸秆容器的田间应用提供了理论依据。  相似文献   

11.
ABSTRACT

Phosphorus (P) fertilization is reported to alleviate the adverse effects of sodicity on survival of the seedlings, growth, and yield of rice. However, it is not known if required levels of Olsen's P to alleviate the adverse sodicity effects varies with increased sodicity stress. The present study, conducted at various pH values (8.0, 9.3, 9.7, and 9.9) with varying levels of P fertilization (P0.0, P0.2, P0.4, P0.6, and P0.8 kg hm? 2), showed that P requirements of rice increased with increases in sodicity stress. At a pH of 8.0, 4.3 mg kg? 1 Olsen's P was sufficient for survival of the seedlings, but not for grain weight (6.3 mg kg? 1). Seedlings required 7.0 and 9.5 mg kg? 1Olsen's P to survive at pH 9.7 and 9.9, respectively. Similarly, high P levels were needed for more total and fertile tillers and spikelets numbers. One thousand (1000) grain weight and grain yield responded to 6.3, 7.7, 8.8, and 10.4 mg kg? 1 Olsen's P at pH values of 8.0, 9.3, 9.7, and 9.9, respectively. Total chlorophyll in the leaves was significant in P fertilized plants. At a pH of 9.7, plants with 7.9 mg kg? 1 Olsen's P had 52% more chlorophyll per 100 ppm sodium (Na) in the leaves compared to those at 6.3 mg kg? 1 Olsen's P. This could possibly be due to improved tissue tolerance to Na in P-fertilized plants. Plants fertilized with P had higher P and potassium (K) concentrations in their shoots. Olsen's P levels of 7.7 mg kg? 1, 7.9 mg kg? 1, and 9.5 mg kg? 1 were effective in restricting increases of Na (a potentially toxic ion) in shoots at pH 9.3, 9.8, and 9.9, respectively, thus helping plants have better yields.  相似文献   

12.
云南绿春哈尼梯田湿地水稻土基本养分特征   总被引:2,自引:0,他引:2  
选取了云南绿春县规东河片区、松东河片区、二号桥河片区为样区,分析了样区未发生土壤冲蚀、发生土壤冲蚀后修复1a,修复8a的梯田湿地水稻土表层土壤pH值、有机质、碱解氮、速效磷和速效钾特征。结果表明,(1)绿春哈尼梯田湿地水稻土pH值在5.21~6.79之间,呈微酸性;土壤有机质含量在3.80~47.14g/kg之间;土壤碱解氮含量在39.51~137.47mg/kg之间;土壤速效磷含量在1.29~13.31mg/kg之间;土壤速效钾含量在33.32~178.90mg/kg之间。从空间上看,绿春哈尼梯田湿地水稻土基本养分在同一地方相同片区较稳定,变异不大,但是不同地方之间有一定差异。(2)未发生土壤冲蚀的梯田水稻土基本养分显著高于发生土壤冲蚀后修复的梯田水稻土基本养分。经过修复和田间管理,梯田湿地水稻土养分含量有所升高,发生土壤冲蚀后修复8a在0.05水平上显著高于发生土壤冲蚀后修复1a。(3)绿春哈尼梯田同一山麓不同海拔高度土壤有机质含量基本稳定,变化较小。土壤速效养分含量在不同海拔高度变化较大,随着海拔高度的升高或者降低,养分并没有表现出明显的垂直变化特征。  相似文献   

13.
澧阳平原古水稻土铁形态演变特征   总被引:2,自引:0,他引:2  
刘沛  周卫军  顾海滨  李娟  郭子川  肖彦资 《土壤》2015,47(6):1151-1156
采用野外采样与室内分析的方法,研究了澧阳平原杉龙岗遗址埋藏古水稻土与现代耕作水稻土铁形态、含量变化及剖面演变特征,探讨了土壤铁形态变化与成土过程的关系。结果表明:澧阳平原现代耕作水稻土与埋藏古水稻土铁形态及含量分别为:全铁31.61~35.10 g/kg和33.97~46.88 g/kg,游离铁8.88~13.92 g/kg和11.10~20.36 g/kg,无定型铁2.52~4.06 g/kg和2.64~3.35 g/kg,结晶态铁5.06~11.40 g/kg和8.46~17.43 g/kg。澧阳平原水稻土各形态铁含量除无定型铁外,其他形态铁含量总趋势为埋藏古水稻土现代耕作水稻土,且古水稻土各形态铁分异明显。现代耕作水稻土全铁、游离铁、结晶铁含量均呈现随深度加深而增加趋势,而无定型铁则相反,且各形态铁含量波动性较小;埋藏古水稻土全铁含量随土层增深而增加,无定型铁含量呈现微幅增加趋势,但游离铁和结晶铁含量变化有异,PA剖面减少,PC剖面增加,埋藏古水稻土中各形态铁含量变化趋势多样。澧阳平原古水稻土的铁有明显的淋溶淀积特征,不同形态铁在各土层变异较大,埋藏古水稻土铁富集明显。  相似文献   

14.
谭洁  陈严  周卫军  崔浩杰  刘沛 《土壤》2021,53(4):858-864
氧化铁是土壤中含铁矿物的主体,是土壤发育和土壤分类最明显和最有用的指标之一。本文以湖南省大围山森林土壤为研究对象,通过实验室化学成分测定和光谱采集,在光谱预处理及组合变换基础上,采用相关性分析筛选土壤氧化铁全量的敏感波段,并分别建立多元逐步回归和偏最小二乘回归反演模型。结果表明:不同土壤光谱曲线趋势基本一致,均形似陡坎,且在420~580 nm波段,土壤氧化铁全量与光谱反射率呈负相关关系;不同的光谱数据变换方式可以提高光谱与氧化铁全量的相关性,Savitzky-Golay(S-G)平滑和去包络线相结合优于其他预处理方法;土壤氧化铁全量的特征波段主要为392、427、529、523、549、559、565、570、994和1040nm,偏最小二乘回归模型比多元逐步回归模型具有更好的稳定性,适合于快速估算红黄壤区森林土壤氧化铁全量。  相似文献   

15.
Comparison of Iron Availability in Leaves of Barley and Rice   总被引:1,自引:0,他引:1  
Iron (Fe) is an essential trace element in all eukaryotes. In higher plants, Fe deficiency causes interveinal chlorosis in young leaves. However, in barley and rice, both of which are "Strategy II" plants, the degree and the pattern of Fe-deficiency symptoms differ. In the present study, barley and rice plants were grown in the same container, i.e., by "coculturing," to compensate for the amount of mugineic acids in rice in the nutrient solution. We examined the differential availability of Fe for distribution and retranslocation in shoots between barley and rice without considering the difference in the iron acquisition ability, which is affected by the differential mugineic acid secretion between barley and rice. Although the Fe concentration of young barley leaves had decreased under the coculture conditions, the SPAD value was similar to that in monocultured barley. In contrast, although there was an increase in the Fe concentration of the young leaves of cocultured rice, the SPAD value decreased, as in the case of monocultured rice. Rice accumulated Fe in old leaves, whereas in barley Fe was efficiently distributed to young leaves. Therefore, the SPAD value of the second leaf in rice remained constantly high. The Fe concentration of the second leaf in barley decreased under Fe-deficient coculture conditions, the SPAD value decreased and the senescence of the second leaf become accelerated. 59Fe pulse-labeling experiments suggested that in barley Fe was more efficiently retranslocated from old leaves to young leaves than that in rice. As a result, the level of Fe present in the fraction with a molecular weight lower than the 10,000/water-soluble Fe ratio was higher in the old leaves of barley than in the old leaves of rice under Fe-deficient conditions. Based on the results obtained, we suggest that the distribution and retranslocation characteristics of internal Fe in barley may be well adapted to Fe deficiency.  相似文献   

16.
Iron (Fe) is an essential trace element in all eukaryotes. In higher plants, Fe deficiency causes interveinal chlorosis in young leaves. However, in barley and rice, both of which are “Strategy II” plants, the degree and the pattern of Fe-deficiency symptoms differ. In the present study, barley and rice plants were grown in the same container, i.e., by “coculturing,” to compensate for the amount of mugineic acids in rice in the nutrient solution. We examined the differential availability of Fe for distribution and retranslocation in shoots between barley and rice without considering the difference in the iron acquisition ability, which is affected by the differential mugineic acid secretion between barley and rice. Although the Fe concentration of young barley leaves had decreased under the coculture conditions, the SPAD value was similar to that in monocultured barley. In contrast, although there was an increase in the Fe concentration of the young leaves of cocultured rice, the SPAD value decreased, as in the case of monocultured rice. Rice accumulated Fe in old leaves, whereas in barley Fe was efficiently distributed to young leaves. Therefore, the SPAD value of the second leaf in rice remained constantly high. The Fe concentration of the second leaf in barley decreased under Fe-deficient coculture conditions, the SPAD value decreased and the senescence of the second leaf become accelerated. 59Fe pulse-labeling experiments suggested that in barley Fe was more efficiently retranslocated from old leaves to young leaves than that in rice. As a result, the level of Fe present in the fraction with a molecular weight lower than the 10,000/water-soluble Fe ratio was higher in the old leaves of barley than in the old leaves of rice under Fe-deficient conditions. Based on the results obtained, we suggest that the distribution and retranslocation characteristics of internal Fe in barley may be well adapted to Fe deficiency.  相似文献   

17.
[目的]探究保水剂和微生物菌剂混合添加对土壤特性的影响,为促进矿山植被恢复提供理论依据。[方法]在刺槐(Robinia pseudoacacia)盆栽土壤中加入保水剂和溶岩微生物菌剂,保水剂浓度分别为B0(0%),B1(0.3%),B2(0.5%)。微生物处理为J0(不添加微生物),J1[添加NL11(苏云金芽孢杆菌,细菌],J2[添加NL11+NL1(嗜热一氧化碳链霉菌,放线菌)],J3[添加NL11+NL1+NL15(卵形孢球托霉,真菌)]。通过分析刺槐生长、土壤养分、有机碳和土壤酶活性等,探究保水剂和微生物混合添加对刺槐土壤养分和酶活性的影响。[结果](1)溶岩微生物添加提高了土壤速效养分含量和土壤酶活性,其中以J2微生物处理效果最好。(2)土壤速效养分随着保水剂浓度增加呈现先...  相似文献   

18.
生物质炭对水稻土中脱氢酶活性和铁还原过程的影响   总被引:1,自引:0,他引:1  
为探究添加生物质炭对淹水稻田体系脱氢酶活性及土水界面铁还原过程的影响,选择2种不同地区水稻土,采用土壤泥浆厌氧培养试验方法,分析添加不同粒径生物质炭后泥浆培养体系中脱氢酶活性、pH以及Fe(Ⅱ)浓度的变化。结果表明:生物质炭能够提高水稻土厌氧培养体系的脱氢酶活性,促进微生物铁还原进程。脱氢酶活性和铁还原能力随着生物质炭粒径的减小而增大。未添加生物质炭的处理中,2种水稻土脱氢酶活性最大分别为3.13,2.60μg/(ml·g·min),Fe(Ⅱ)累积量最高分别为8.07,7.44mg/g;通过添加生物质炭,2种水稻土培养体系脱氢酶活性最大分别达4.35,4.18μg/(ml·g·min)、Fe(Ⅱ)累积量最高分别为9.01,8.18mg/g。典范对应分析显示,水稻土初始pH与最大铁还原潜势及达到最大铁还原速率对应的时间呈极显著相关,表明生物质炭对铁还原过程的影响因土壤性质不同而存在差异;脱氢酶活性、Fe(Ⅱ)累积量之间呈现极显著的相关关系,两者在培养过程中相互促进。  相似文献   

19.
为了阐明铁炉渣施加对稻田水养分动态的影响,对福州平原稻田不同铁炉渣施加水平下稻田水养分动态进行测定与分析。结果表明:对照、处理一、处理二、处理三样地稻田表层水中磷酸盐含量分别为657.3,622.2,546.8,474.1μg/L;铵氮含量分别为3.9,3.5,3.1,2.4mg/L;硫酸盐含量分别为82.8,69.1,66.0,69.6mg/L;溶解性有机碳含量分别为13.1,14.4,14.2,13.4mg/L。0-10cm土壤水中磷酸盐含量分别为135.4,141.7,161.1,201.4μg/L;铵氮含量分别为3.0,4.8,5.5,5.1mg/L;硫酸盐含量分别为84.6,59.1,81.6,70.6mg/L;溶解性有机碳含量分别为37.6,46.0,44.5,43.6mg/L。10-20cm土壤水中磷酸盐含量分别为68.6,100.3,113.8,141.6μg/L;铵氮含量分别为4.7,4.9,8.7,5.6mg/L;硫酸盐含量分别为81.9,75.1,62.8,60.0mg/L;溶解性有机碳含量分别为55.5,43.8,58.3,48.8mg/L。20-30cm土壤水中磷酸盐含量分别为138.0,156.1,166.6,188.6μg/L;铵氮含量分别为2.3,2.3,4.2,4.7mg/L;硫酸盐含量分别为78.6,61.5,70.2,73.3mg/L;溶解性有机碳含量分别为49.4,42.8,50.1,45.4mg/L。表层水中磷酸盐、铵氮和硫酸盐含量对照样地高于处理样地,0-30cm土壤水中磷酸盐、铵氮对照样地低于处理样地,硫酸盐含量高于处理样地,溶解性有机碳变化特征不明显。  相似文献   

20.
陕南杜仲林地土壤营养状况及施肥效应   总被引:1,自引:0,他引:1  
分析了陕南杜仲主要产区林地土壤的营养状况及其与杜仲生长间的关系,并通过大田多点肥料对比试验评价了杜仲施肥的效果。结果表明,研究地区林地土壤养分普遍缺乏,其中以土壤有效养分的缺乏尤为严重。土壤全氮及有效磷含量高低是影响陕南杜仲生长的关键因素。施肥显著地促进了杜仲当年高度、胸径的生长及树体各部分生物量的累积;同时,林地施肥还表现出了明显的后效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号