首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elemental composition of seven soils of the main geographical regions in Bulgaria for the growth of Leucojum aestivum L. was determined. It was found that a relationship exists between the galanthamine content of the plant and the chemical composition of the soil. These results indicate that galanthamine bio‐ synthesis could be controlled by the soil fertility level.  相似文献   

2.
Use of the nitrogen balance sheet method as a fertilization strategy in the semi-arid Pampas of Argentina is restricted because of a lack of available information regarding nitrogen mineralization in its coarse soils. Our objective was to determine nitrogen mineralization during corn (Zea mays L.) and following wheat (Triticum aestivum L.) growing cycles under contrasting tillage systems in a representative soil of the region. Mineralized nitrogen from decomposing residues was estimated using the litter bag method and mineralization from soil organic matter using a mass balance approach. Soil water content was higher under no-till during the corn growing season and no differences were detected for wheat during this period. Soil temperature was practically not affected by tillage system. Biomass and nitrogen absorption were higher under no-till than under disk till in corn (p ≤ 0.05), as were nitrogen mineralization from residues and organic matter (p ≤ 0.05). In wheat, no differences in biomass, nitrogen absorption and mineralization were detected between treatments. Mineralization during crop growing cycles accounted for 44.8–67.5% of the absorbed nitrogen. Differences in nitrogen mineralization between tillage systems resulted from the greater water availability under no-till than under disk till during the summer.  相似文献   

3.
Triticum monococcum L., Triticum dicoccum Schrank and Triticum spelt L. nowadays offer an alternative to Triticum aestivum L. We analyzed grain and straw yield, yielding parameters, chemical composition and bakery quality of these species and compared them with modern T. aestivum at three sites with different soil-climate conditions. The average grain yield varied from 0.41 t ha?1 (T. monococcum) to 5.17 t ha?1 (T. aestivum), straw yield varied from 1.50 t ha?1 (T. dicoccum) to 5.83 t ha?1 (T. aestivum). The yielding parameters and chemical composition of the grain were significantly influenced by soil-climate conditions and wheat species. The highest average crude protein content was recorded in T. spelta (20.55%), while the lowest in T. aestivum (11.20%). The Zeleny’s sedimentation test ranged from 9.0 ml (T. monococcum) to 34.5 ml (T. aestivum) and the value of the Gluten index varied from 7.45 (T. dicoccum) to 89.75 (T. aestivum). According to the results, ancient wheat species provides lower grain and straw yields, higher protein content and mineral concentrations. Concentration of proteins and grain’s baking quality strongly depends on wheat species and soil-climate conditions.  相似文献   

4.
Peat moss is used as potting mix for growing muskmelon (Cucumis melo L.) seedlings. However, it is not economical for most of the farmers in developing countries. The objectives of the present study were to compare various sources of composts as substitutes for peat moss, evaluate their physicochemical properties, and their effects on germination and growth of muskmelon (Cucumis melo L.) seedlings under greenhouse conditions. The treatments included pure peat moss (control), and composts prepared from guar (Cyammopsis tetragonoloba L.), jantar (Sesbania aculeate L.), and wheat (Triticum aestivum L) straw, at three air-filled porosity (AFP) levels (10, 15, and 20%) and rice (Oryza sativa) hulls at 10% AFP level. The second factor was the addition and devoid of nitrogen (N), phosphorus (P), and potassium (K) fertilizers. The addition of fertilizers in all potting media at 10% AFP level showed a small increase in total nitrogen, extractable phosphorus, and potassium. In the guar and jantar compost at 10% AFP, the values of total N (92.43 and 85.32%), extractable P (68.13 and 76.65%), and K (63.33 and 49%) were higher than in peat moss. It is concluded that composts of guar, jantar, wheat straw, and rice hulls at 10% AFP level can be used as a substitute of peat moss for growing muskmelon seedlings, but the addition of N, P, and K fertilizers is required in wheat straw and rice hulls compost for better nutrition of muskmelon seedlings.  相似文献   

5.
In order to evaluate and compare the germplasm resources of wheat in Tibet, we analyzed the genetic diversity of 136 Triticum aestivum ssp. tibetanum Shao and 119 Tibetan wheat landraces (Triticum aestivum L.) by using Intron-Splice Junction (ISJ) primers. The results showed that polymorphism of PCR products were obtained by 33 primer combinations, which accounted for 11% of the 300 primer combinations produced by 26 ISJ primers. A total of 333 stable bands can be amplified from the T. aestivum ssp. tibetanum Shao and 243 bands were polymorphic, which accounted for 72.9% of the total bands. Tibetan wheat Landraces produced 316 stable bands, of which 197 bands were polymorphic. The polymorphic bands accounted for 62.34% of the total bands produced from Tibetan wheat landraces. The genetic diversity of T. aestivum ssp. tibetanum Shao was higher than that of Tibetan wheat landraces in Tibet, suggesting that T. aestivum ssp. tibetanum Shao can be used as important genetic resource for the breeding and genetic improvement of wheat in Tibet. Matrix (1, 0) was generated according to the presence or absence of the bands produced from a particular wheat accession. Clustering and principle coordinates analysis showed that T. aestivum ssp. tibetanum Shao and Tibetan wheat landraces were divided into two groups. We conclude that high polymorphisms produced by ISJ primers can reflect the genetic diversity between T. aestivum ssp. tibetanum Shao and Tibetan wheat landraces.  相似文献   

6.
黄土丘陵小流域蒸散发和水分平衡对植被恢复的影响   总被引:6,自引:0,他引:6  
Evapotranspiration, soil moisture balance and the dynamics in a gully catchment of the Loess Plateau in China were determined with 6 land use treatments including natural grassland, shrubs (Caragana rnicrophylla), two woodlands (Prunus armeniaca var. ansu and Pinus tabulaeformis), cultivated fallow, and farmland (Triticum aestiuum L.) in order to obtain a better understanding of soil moisture balance principles and to improve vegetation restoration efficiency for ecological rebuilding on the plateau. Average runoff from cultivated fallow was very high, reaching 10.3% of the seasonal rainfall. Evapotranspiration under T. aestivurn was not significantly different from natural grasslands. Compared with natural grass, evapotranspiration was significantly greater (P 〈 0.05) in 2002 and there was an increase in soil moisture depleted in the 1-3 m soil under P. armeniaca, P. tabulaeformis and C. microphylla. During the two years of the study the average soil moisture (0-100 cm soil profile) of T. aestivurn was generally the highest, with P. armeniaca, P. tabulaeformis and C. rnicrophylla usually the lowest. Thus, according to the soil moisture balance principle for this area the planned reforestation project was not ecologically reasonable. Reducing human disturbance and restoration with grass could be more effective.  相似文献   

7.
Genetic diversity among some important Syrian wheat cultivars was estimated using Amplified Fragment Length Polymorphism (AFLP) markers. Five Triticum aestivum L. and 10 Triticum turgidum ssp. durum were analyzed with 11 EcoRI–MseI primer pair combinations. Of the approximately 525 detected AFLP markers, only 46.67% were polymorphic. Cluster analysis with the entire AFLP data divided all cultivars into two major groups reflecting their origins. The first one contained T. aestivum L. cultivars, and the T. turgidum ssp. durum cultivars and landraces were grouped in the second. Narrow genetic diversity among all cultivars was detected with an average genetic similarity of 0.884. The lowest similarity index (0.9) was found between Cham5 and Hamary (durum wheat), whereas this value was 0.93 between Salamony and Bouhouth 4 (T. aestivum L.). The narrow genetic diversity level indicates that these genotypes could be originated from the same source. AFLP analysis provides crucial information for studying genetic variation among wheat cultivars and provides important information for plant improvement.  相似文献   

8.
A field experiment was conducted to examine responses of soil respiration, nitrification, and denitrification to warming in a winter wheat (Triticum aestivum L.)–soybean (Glycine max (L.) Merr) rotation cropland. The results showed that seasonal variations in soil respiration were positively related to seasonal fluctuations in soil temperature. Seasonal mean soil respiration rates for the experimental warming (EW) and control (CK) plots were 3.98 ± 0.43 and 2.54 ± 0.45 μmol m?2 s?1, respectively, in the winter wheat growing season, and they were 4.59 ± 0.16 and 4.36 ± 0.08 μmol m?2 s?1, respectively, in the soybean growing season. There was a marginally significant level (p = 0.097) for mean nitrification rates between EW and CK plots. Soil temperature and moisture accounted for 58.2% and 58.1% of the seasonal variations observed in the winter wheat and soybean plots, respectively.  相似文献   

9.
To investigate the effect of plants on soil water repellency (SWR), two column experiments with wheat (Triticum aestivum) and alfalfa (Medicago sativa) with a growing period of three months had been carried out under constant and near‐natural climatic conditions. Model soils with defined wettability were created by mixing a natural sandy loam subsoil with different proportions of a wettable and a hydrophobized pure quartz sand, resulting in a wettable model soil and three model soils with increasing level of subcritical SWR (initial contact angle CA > 0° and < 90°). Results showed a significant decrease of the mean CA after the experiments compared to the initial CA while the mean CA was constant for plant free columns used as a reference. CA as a function of depth in some cases showed a depth dependent variation with decreased CA at the bottom or as well at top and bottom. The deviation from the initial CA was most pronounced for wheat under constant climatic conditions. Changes in CA could be related to changes in pH, i.e., CA was decreased and pH increased. Subcritical WR at the beginning of the growth period affected significantly the moisture content profiles during the entire growing season as well as plant dry mass production. We expect that plant root exudates of plants widely used for foot production cause directly or indirectly pH‐related modifications of the WR level in the root zone dependent on plant species and the ambient climatic conditions.  相似文献   

10.
Cover crops (CCs) can improve soil hydraulic properties prior to termination, but their effects on soil hydraulic properties during the growing season are less known. The objective of this study was to investigate the influence of no-till CC on the soil hydraulic properties during the commodity crop growing season in Murfreesboro, USA. The CCs included hairy vetch (Vicia villosa Roth.), crimson clover (Trifolium incarnatum L.), winter wheat (Triticum aestivum L.), winter peas (Lathyrus hirsutus L.), oats (Avena sativa), triticale (Triticale hexaploide Lart.), barley (Hordeum vulgare L.) and flax (Linum usitatissimum L.). The cash crop grown was corn (Zea mays). Soil samples were collected using a cylindrical core (55 mm inside diameter, 60 mm long) at 0–10, 10–20, and 20–30 cm depths during April (prior to CC termination), May, June and July. Results showed that soil bulk density (Db) was 23%, 12%, 11% and 10% higher under no cover crop (NCC) compared with CC management during April – July, respectively. This suggests a lower rate of soil consolidation under CC management even after several rainfall events. Four months after CC termination, macroporosity and total porosity were 306 and 50% higher, respectively, under CC compared with NCC management. Therefore, saturated hydraulic conductivity (Ksat) during July was two times higher under CC management compared with NCC management and this can affect increase water infiltration and conservation during the growing season. Due to CC root-induced improvement in macroporosity, CCs had 64% higher volumetric water content (θ) at saturation during July compared with NCC management. Cover crops can improve soil hydraulic properties and these benefits can persist for up to four months after termination.  相似文献   

11.
Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder radish on N dynamics and root growth. Field experiments were carried out on a humid temperate sandy loam soil. Aboveground biomass and soil inorganic N were determined in late autumn; N uptake and grain yield of winter wheat were measured at harvest. Nitrate leaching was estimated from soil water samples taken at 1 m depth. Root growth was measured late autumn using the core break and root washing methods. Winter wheat root growth dynamics were followed during the growing season using the minirhizotron method. The 2013–2014 results showed that early seeding of wheat improved autumn growth and N uptake and reduced N leaching during the winter compared with the normal seeding time. Early‐seeded wheat (WWearly) was, however, not as efficient as fodder radish at reducing N leaching. Proper establishment of WWearly was a prerequisite for benefiting from early seeding, as indicated by the 2012–2013 results. Early seeding improved root growth throughout the 2013–2014 growing season compared with normal seeding time, but had no significant effect on crop grain yield. Our results indicate the potential of using early seeding as a tool to limit drought susceptibility and increase nutrient uptake from the subsoil.  相似文献   

12.
Conservation crop residue management increases soil organic carbon (SOC) storage, nutrient cycling and availability and improves soil quality. This study was conducted to evaluate the amount of residue biomass, residue carbon to nitrogen (C:N) ratio, residue carbon (C) and nitrogen (N), and residue N fertilizer deficit (supplemental N fertilizer requirement) from crop residue decomposition in long-term no-till production. Aboveground aged and fresh residues were collected in spring 2011 and fall 2012, respectively. Results showed slightly greater residue dry matter weight in aged residue than fresh residue. C:N ratios were wider in fresh residue than the aged residue. Both aged and fresh residue also showed wider C:N ratio in the corn (Zea mays L.)-soybean (Glycine max L.) rotation (66.6 and 64.4, respectively) and narrower C:N ratio in the spring wheat (Triticum aestivum L.)-winter wheat (Triticum aestivum L.)-alfalfa (Medicago sativa L.)-alfalfa-corn (Zea mays L.)-soybean (Glycine max L.) (45.6 and 35.7, respectively). Individual fresh crop residues showed narrower C:N ratios for legume and cover crops than non-legume crops. Analysis of potential supplemental N fertilizer requirements showed greater potential N requirement for the fresh residue than the aged residue.  相似文献   

13.
Hexaploid bread wheat (Triticum aestivum L. ssp. aestivum) is assumed to have originated by natural hybridization between cultivated tetraploid Triticum turgidum L. and wild diploid Aegilops tauschii Coss. This scenario is broadly accepted, but very little is known about the ecological aspects of bread wheat evolution. In this study, we examined whether T. turgidum cultivation still is associated with weedy Ae. tauschii in today’s Middle Eastern agroecosystems. We surveyed current distributions of T. turgidum and Ae. tauschii in northern Iran and searched for sites where these two species coexist. Ae. tauschii occurred widely in the study area, whereas cultivated T. turgidum had a narrow distribution range. Traditional durum wheat (T. turgidum ssp. durum (Desf.) Husn.) cultivation associated with weedy Ae. tauschii was observed in the Alamut and Deylaman-Barrehsar districts of the central Alborz Mountain region. The results of our field survey showed that the T. turgidumAe. tauschii association hypothesized in the theory of bread wheat evolution still exists in the area where bread wheat probably evolved.  相似文献   

14.
Soil testing was conducted during 1985–2005 in 11 paddocks on sandy duplex soils on Newdegate Research Station, average annual rainfall of 377 mm, with about 70% falling in the May–October growing season, in the Mediterranean-type climate of southwestern Australia. The study was undertaken to determine lime and fertilizer requirements of eight crop species grown in rotation with one another (one crop each year in the typical May–October growing season, comprising wheat, Triticum aestivum L.; barley, Hordeum vulgare L.; oats, Avena sativa L.; lupin, Lupinus angustifolius L.; canola, Brassica napus L.; chickpea, Cicer arietinum L.; field pea, Pisum sativum L.; and subterranean clover-based pasture, Trifolium subterraneum L. All crops were sown using no-till. The study demonstrated that plant testing was required in conjunction with soil testing to confirm decisions based on soil testing and to assess management decisions for elements not covered by soil testing. Pasture dry-matter production seldom exceeds 2 t ha?1 during the growing season in the region, but clover pasture is valued as a break crop for diseases and pests of grain crops and to facilitate control of herbicide-resistant weeds for cropping. Pastures had negligible impact on soil-test values. By contrast, grain crops typically produce more dry matter than pasture (4–8 t ha?1) and consistently significantly resulted in soil pH, soil-test potassium (K), and organic carbon (C) of soil decreasing through time. Fertilizer phosphorus (P) was not applied to pasture but was applied while sowing most grain crops from 1985 to 1996, a common practice at the time, and soil-test P significantly increased through time in these years. Thereafter fertilizer P was only applied when soil-test P was less than the critical value for that soil and grain crop species resulting, in little P being applied in these years, and soil-test P significantly declined through time. Plant testing indicated P was adequate when soil testing indicated no fertilizer P was required. The soils only started to become K deficient in the mid-1990s because of the removal of indigenous soil K in grain, and fertilizer K was applied when soil-test K was less than the 50 mg kg?1 critical value determined for wheat and canola. Plant testing indicated K was adequate when soil testing indicated no fertilizer K was required, and it indicated K was adequate after fertilizer K was applied, showing K levels applied were adequate for grain production. Plant testing indicated nitrogen (N), sulfur (S), calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), and boron (B) were adequate for grain production. Electrical conductivity (EC) of soil was very variable but EC values indicated soil salinity was unlikely to reduce grain yields of all the crop species grown. We conclude soil testing for pH is reliable for indicating paddocks requiring lime to ameliorate soil acidity and to monitor progress of liming. Soil testing proved reliable for determining when fertilizer P and K needed to be applied. Research has shown that for the low rainfall cropping areas of southwestern Australia laboratories need to measure and report soil pH, soil-test P, and soil-test K every 1–3 years and the P-buffering index (estimating P sorption of soil), organic C, and electrical conductivity every 3–5 years.  相似文献   

15.
采用裂区试验设计,对黄土塬区补充灌溉及氮磷配施条件下麦田土壤水分动态、作物产量及水分利用效率等进行研究。结果表明:1)冬小麦对土壤水分的利用深度随小麦生长发育逐渐加深,在越冬前期和孕穗期分别达1.2和2.2 m土层以下,不同处理土壤含水量在小麦生育前期差异不明显,孕穗后氮磷配施处理的土壤含水量显著低于不施肥处理;2)试验条件下,补充灌溉后同样施肥处理的作物产量与雨养相比,虽有增加但不显著;不论是雨养水平,还是补充灌溉水平,氮磷配施均表现出显著的增产效果,从低氮低磷到高氮高磷,增产幅度在134%到240%之间;3)氮磷配施能显著提高冬小麦水分利用效率,而补充灌溉后水分利用效率降低3%-30%,但未达显著水平;4)不同氮磷配施的增产效应高于补充灌溉,补充灌溉与高氮高磷处理有显著的水肥协同效应,能显著提高作物产量并保持较高的水分利用效率。  相似文献   

16.
Genetic diversity of a set of introgression lines of Triticum aestivum L./T. polonicum L. with long glume and T. petropavlovskyi Udacz. et Migusch. were analyzed by Amplified Fragments Length Polymorphism (AFLP). Small-scale bulk breeding method was applied throughout until F6 generation to develop the introgression lines. Thirty-eight hexapolid F7 plants with long glume phenotype and their parents were subjected to AFLP analysis by four primer combinations. A total of 47 polymorphic loci were detected between the parents, 15 of them were introgressed across the 38 lines. It was hypothesized that approximately 50% of A or B genomes associated polymorphic loci were introgressed. The variation of introgression lines was limited within the diversity between their parents, T. aestivum L. cv. Novosibirskaya 67 (N67) and T. polonicum L. cv. IC12196. N67 was closer to 38 introgression lines than that of IC12196. The UPGMA cluster and principal coordinate analysis (PCO) grouping showed 0.84 to 0.98 similarity values between N67 and the introgression lines. Eleven T. petropavlovskyi accessions were distinguished from introgression lines with UPGMA clusters and PCO groupings, and T. petropavlovskyi was located between the introgressions lines and IC12196. Several introgression lines resembled with T. petropavlovskyi for awning and glume length. The genetic variation among 38 introgression lines was much wider than that of T. petropavlovskyi. We concluded that T. petropavlovskyi was established by intensive selection of hybrid between T. aestivum/T. polonicum.  相似文献   

17.
Water potentials, osmotic potentials and stomatal resistances were measured daily in a growth chamber during a two‐week period, in growing leaves of a drought‐sensitive and a drought‐resistant winter wheat (Triticum aestivum L. em. Thell.), which had the roots maintained in nutrient culture media with 0.001 or 0.01 M FeEDDHA. For both cultivars, the high level of FeEDDHA increased water potentials, turgor potentials, and stomatal resistances, and decreased osmotic potentials. Roots of plants grown with the high level of FeEDDHA had lower concentrations of Ca and K, and higher concentrations of Fe, than those grown with the low level. The results showed that the concentration of FeEDDHA used in plant‐water‐relation studies should be defined because the chelate affects the water balance of plants.  相似文献   

18.
Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L., 2n=2x=14, DD genome) with its diverse range of accessions and distribution provides a unique opportunity for exploiting novel genetic variability for wheat (T. aestivum L.) improvement associated with biotic/abiotic stress factors. From our working collection of 490 T. tauschii accessions we have so far produced 430 different synthetic hexaploids (2n=6x=42, AABBDD) resulting from the chromosome doubling of Triticum turgidum L. s. lat. x T. tauschii F1 hybrids (each synthetic involving a different T. tauschii accession). We present here our results on hybrid production, plantlet regeneration, cytology, colchicine induced doubling of the 2n=3x=21 chromosome F1 hybrids, seed increase of the doubled progeny and screening for a biotic stress; Cochliobolus sativus Ito and Kuribay (syn. Helminthosporium sativum Pamm. King and Bakke); of 250 of these synthetic hexaploid (2n=6x=42) amphiploids. Application of the direct crossing methodology involving susceptible T. aestivum cultivars with resistant T. tauschii accessions is also alluded to.  相似文献   

19.
Dough extensibility affects processing ease, gas retention, and loaf volume of finished products. The Kieffer dough extensibility test was developed to assess extensibility of small dough samples and is therefore adapted for use in breeding programs. Information is lacking on relationships between wheat growing environments and dough properties measured by the Kieffer dough extensibility test. This study documents the variability of dough extensibility (Ext), maximum resistance to extension (Rmax), and area under the extensibility curve (Area) in relation to breadmaking quality, and the effect of wheat growing environments. Mixograph, Kieffer dough extensibility, and bake tests were performed on flour milled from 19 hard red spring wheat (Triticum aestivum L.) genotypes grown during three growing seasons (2007‐2009) at six South Dakota locations. Although both genotype and environment had significant effects on Kieffer dough extensibility variables, environment represented the largest source of variation. Among genotype means, Area was most correlated (r = 0.63) with loaf volume, suggesting that by selecting lines with increased Area, loaf volume should improve. Rmax was positively correlated (r = 0.58) with loaf volume among genotype means but negatively correlated (r = –0.80) among environmental means. Ext was positively correlated (r = 0.90) with loaf volume among environmental means. Weather variables were correlated with Rmax, Ext and loaf volume and therefore could help predict end‐use quality.  相似文献   

20.
After 23 years of war, current information about the biodiversity of crops in the Hindukush mountains of Afghanistan is scarce. This study aimed at assessing the genetic composition of farmers wheat (Triticum spp.) populations through a survey of 21 randomly chosen cereal fields on both sides of the Panjsher river in the upper Panjsher valley of Northern Afghanistan. A stratified sampling of wheat heads according to morphological differences was followed by estimates of field size and grain yield and a formal interview with the landowner about the cropping sequence and the inputs used. About 75% of the cereal fields were cropped in rotation systems with faba bean (Vicia faba L.), barley (Hordeum vulgare L.), potato (Solanum tuberosum L.), maize (Zea mays L.) or fallow. Manure application at between 2.3 and 5.3 t ha−1 was the major source of nutrient inputs at grain yield levels between 1.2 and 4.7 t ha−1. The morphological characterization of the collection revealed 19 taxonomically different varieties of bread wheat (Triticum aestivum L.) but also barley and triticale (Triticosecale Wittm.) grown in mixtures. Populations within one field consisted of up to seven botanical wheat varieties. Farmers did not differentiate between morphological differences within such mixtures but identified their populations instead according to grain color, cooking properties and resistance to mildew and frost. Triticum aestivum var. subferrugineum was the most widespread wheat variety and no effects of altitude on biodiversity of wheat was noted across the transect. Particularly interesting was the occurrence of T. aestivum var. subferrugininflatum and var. subgraecinflatum which so far have only been reported from Mongolia. The finding of triticale indicated the active seed exchange with lowland or long-distance seed sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号